
Chapter 5
Non monoticic rules

Based on slides from Grigoris Antoniou and Frank van Harmelen

Motivation – Negation in Rule Head

l In nonmonotonic rule systems, a rule may
not be applied even if all premises are
known because we have to consider
contrary reasoning chains

l Now we consider defeasible rules that can
be defeated by other rules

l Negated atoms may occur in the head and
the body of rules, to allow for conflicts
–  p(X) → q(X)
–  r(X) → ¬q(X)

Defeasible Rules

 p(X) ⇒ q(X)
 r(X) ⇒ ¬q(X)

l Given also the facts p(a) and r(a) we conclude
neither q(a) nor ¬q(a)
–  This is a typical example of 2 rules blocking each other

l Conflict may be resolved using priorities among
rules

l Suppose we knew somehow that the 1st rule is
stronger than the 2nd
–  Then we could derive q(a)

Origin of Rule Priorities

l  Higher authority
–  E.g. in law, federal law preempts state law
–  E.g., in business administration, higher management

has more authority than middle management
l  Recency
l  Specificity

–  A typical example is a general rule with some
exceptions

l  We abstract from the specific prioritization
principle

–  We assume the existence of an external priority
relation on the set of rules

Rule Priorities

 r1: p(X) ⇒ q(X)
 r2: r(X) ⇒ ¬q(X)
 r1 > r2

l Rules have a unique label
l The priority relation to be acyclic

Competing Rules

l In simple cases two rules are competing
only if one head is the negation of the other

l But in many cases once a predicate p is

derived, some other predicates are excluded
from holding
–  E.g., an investment consultant may base his

recommendations on three levels of risk
investors are willing to take: low, moderate, high

–  Only one risk level per investor is allowed to
hold

Competing Rules (2)

l  These situations are modelled by
maintaining a conflict set C(L) for each
literal L

l  C(L) always contains the negation of L but
may contain more literals

Defeasible Rules: Syntax

 r : L1, ..., Ln ⇒ L
l r is the label
l {L1, ..., Ln} the body (or premises)
l L the head of the rule
l L, L1, ..., Ln are positive or negative literals
l A literal is an atomic formula p(t1,...,tm) or

its negation ¬p(t1,...,tm)
l No function symbols may occur in the rule

Defeasible Logic Programs

l A defeasible logic program is a triple
(F,R,>) consisting of
–  a set F of facts
–  a finite set R of defeasible rules
–  an acyclic binary relation > on R

l A set of pairs r > r' where r and r' are labels of rules
in R

Lecture Outline

1.  Introduction
2.  Monotonic Rules: Example
3.  Monotonic Rules: Syntax & Semantics
4.  DLP: Description Logic Programs
5.  SWRL: Semantic Web Rules Language
6.  Nonmonotonic Rules: Syntax
7.  Nonmonotonic Rules: Example
8.  RuleML: XML-Based Syntax

Brokered Trade

l Brokered trades take place via an
independent third party, the broker

l The broker matches the buyer’s
requirements and the sellers’ capabilities,
and proposes a transaction when both
parties can be satisfied by the trade

l The application is apartment renting an
activity that is common and often tedious
and time-consuming

The Potential Buyer’s Requirements

–  At least 45 sq m with at least 2 bedrooms
–  Elevator if on 3rd floor or higher
–  Pet animals must be allowed

l  Carlos is willing to pay:
–  $ 300 for a centrally located 45 sq m apartment
–  $ 250 for a similar flat in the suburbs
–  An extra $ 5 per square meter for a larger apartment
–  An extra $ 2 per square meter for a garden
–  He is unable to pay more than $ 400 in total

l  If given the choice, he would go for the cheapest option
l  His second priority is the presence of a garden
l  His lowest priority is additional space

Carlos’s Requirements – Predicates Used

l  size(x,y), y is the size of apartment x (in sq m)
l  bedrooms(x,y), x has y bedrooms
l  price(x,y), y is the price for x
l  floor(x,y), x is on the y-th floor
l  gardenSize(x,y), x has a garden of size y
l  lift(x), there is an elevator in the house of x
l  pets(x), pets are allowed in x
l  central(x), x is centrally located
l  acceptable(x), flat x satisfies Carlos’s requirements
l  offer(x,y), Carlos is willing to pay $ y for flat x

Carlos’s Requirements – Rules

r1: ⇒ acceptable(X)

r2: bedrooms(X,Y), Y < 2 ⇒ ¬acceptable(X)

r3: size(X,Y), Y < 45 ⇒ ¬acceptable(X)

r4: ¬pets(X) ⇒ ¬acceptable(X)

r5: floor(X,Y), Y > 2,¬lift(X) ⇒ ¬acceptable(X)

r6: price(X,Y), Y > 400 ⇒ ¬acceptable(X)

r2 > r1, r3 > r1, r4 > r1, r5 > r1, r6 > r1

Carlos’s Requirements – Rules (2)

r7: size(X,Y), Y ≥ 45, garden(X,Z), central(X) ⇒

 offer(X, 300 + 2*Z + 5*(Y − 45))

r8: size(X,Y), Y ≥ 45, garden(X,Z), ¬central(X) ⇒

 offer(X, 250 + 2*Z + 5(Y − 45))

r9: offer(X,Y), price(X,Z), Y < Z ⇒ ¬acceptable(X)

r9 > r1

Representation of Available Apartments

bedrooms(a1,1)

size(a1,50)

central(a1)

floor(a1,1)

¬lift(a1)

pets(a1)

garden(a1,0)

price(a1,300)

Available Apartments (2)

Flat Bedrooms Size Central Floor Lift Pets Garden Price

a1 1 50 yes 1 no yes 0 300

a2 2 45 yes 0 no yes 0 335

a3 2 65 no 2 no yes 0 350

a4 2 55 no 1 yes no 15 330

a5 3 55 yes 0 no yes 15 350

a6 2 60 yes 3 no no 0 370

a7 3 65 yes 1 no yes 12 375

Determining Acceptable Apartments

l  If we match Carlos’s requirements and the available
apartments, we see that

l  flat a1 is not acceptable because it has one bedroom only
(rule r2)

l  flats a4 and a6 are unacceptable because pets are not
allowed (rule r4)

l  for a2, Carlos is willing to pay $ 300, but the price is
higher (rules r7 and r9)

l  flats a3, a5, and a7 are acceptable (rule r1)

Selecting an Apartment

 r10: cheapest(X) ⇒ rent(X)
 r11: cheapest(X), largestGarden(X) ⇒ rent(X)
 r12: cheapest(X), largestGarden(X), largest(X)
 ⇒ rent(X)
 r12 > r10, r12 > r11, r11 > r10

l  We must specify that at most one apartment can be
rented, using conflict sets:

–  C(rent(x)) = {¬rent(x)} ∪ {rent(y) | y ≠ x}

Lecture Outline

1.  Introduction
2.  Monotonic Rules: Example
3.  Monotonic Rules: Syntax & Semantics
4.  DLP: Description Logic Programs
5.  SWRL: Semantic Web Rules Language
6.  Nonmonotonic Rules: Syntax
7.  Nonmonotonic Rules: Example
8.  RuleML: XML-Based Syntax

RuleML

l  In accordance with the Semantic Web vision:
–  Make rules machine-accessible.

l  RuleML is an important standardization effort for rule
markup on the Web.

l  Actually a family of rule markup languages, corresponding
to different kinds of rule languages:

–  derivation rules, integrity constraints, reaction rules

l  Kernel: Datalog (function-free Horn logic)

RuleML (2)

l XML based
–  in the form of XML schemas
–  DTDs for earlier versions

l Straightforward correspondence between
RuleML elements and rule components

Rule Components vs. RuleML

program rulebase
rule Implies
head head
body body
& of atoms And
predicate Rel
constant Ind
var Var

An Example

l The discount for a customer buying a
product is 7.5 percent if the customer is
premium and the product is luxury.

RuleML Representation

<Implies>
 <head>
 <Atom>
 <Rel>discount</Rel>
 <Var>customer</Var>
 <Var>product</Var>
 <Ind>7.5</Ind>
 </Atom>
 </head>

RuleML Representation (2)

 <body>
 <And>
 <Atom>
 <Rel>premium</Rel>
 <Var>customer</Var>
 </Atom>
 <Atom>
 <Rel>luxury</Rel>
 <Var>product</Var>
 </Atom>
 </And>
 </body>

</Implies>

Summary

l Horn logic is a subset of predicate logic that
allows efficient reasoning, orthogonal to
description logics

l Horn logic is the basis of monotonic rules
l DLP and SWRL are two important ways of

combining OWL with Horn rules.
–  DLP is essentially the intersection of OWL and

Horn logic
–  SWRL is a much richer language

Summary (2)

l Nonmonotonic rules are useful in situations
where the available information is
incomplete

l They are rules that may be overridden by
contrary evidence

l Priorities are used to resolve some conflicts
between rules

l Representation XML-like languages is
straightforward

