
1

Rules, RIF
and RuleML

2

Rule Knowledge
l  Rules generalize facts by making them conditional on

other facts (often via chaining through further rules)
l  Rules generalize taxonomies via multiple premises,

n-ary predicates, structured arguments, etc.
l  Two uses of rules - top-down (backward-chaining) and

bottom-up (forward-chaining) - represented only once
l  To avoid n2–n pairwise translators:

Int'l standards with 2n–2 in-and-out translators:
–  RuleML: Rule Markup Language (work with ISO, OMG, W3C, OASIS)

l  Deliberation RuleML 1.0 released as a de facto standard
–  ISO: Common Logic (incl. CGs & KIF: Knowledge Interchange Format)

l  Collaboration on Relax NG schemas for XCL 2 / CL RuleML
–  OMG: Production Rules Representation (PRR), SBVR, and API4KB
–  W3C: Rule Interchange Format (RIF)

l  Gave rise to open-source and commercial RIF implementations
–  OASIS: LegalRuleML

The interchange approach

l W3C’s RDF stack is an integrated solution
for encoding & interchanging knowledge
–  Supporting OWL (DL) constrains it quite a bit
–  E.g., preventing adoption of an OWL rule standard

l There are other approaches to standardiz-
ing rule languages for knowledge exchange
–  RuleML: Rule Markup Language, an XML approach

for representing rules
–  RIF: Rule Interchange Format, a W3C standard for

exchanging rules

l Neither tries to be compatible with OWL

Many different rule languages

l There are rule languages families: logic, logic
programming, production, procedural, etc.
–  Instances in a family may differ in their syntax,

semantics or other aspects
l Jess production rule language

(defrule r42 (parent ?a ?b) (male ?a)
 => (assert (father ?a ?b)))

l Prolog logic programming language
father(A,B) :- parent(A,B), Male (A).

l Common Logic logic format
(=> (and (paent ?a ?b) (male ?a)) (father ?a ?b))

2

X Interchange Format

l Rather than have N2 translators for N
languages, we could
– Develop a common rule interchange format
– Let each language do import/export mappings for it

l Two modern interchange formats for rules
–  RuleML: Rule Markup Language, an XML approach

for representing rules
–  RIF: Rule Interchange Format, a W3C standard for

exchanging rules

RuleML

l RuleML's goal: express both forward
(bottom-up) and backward (top-down)
rules in XML

l See http://ruleml.org/
l Effort began in 2001 and has informed and

been informed by W3C efforts
l An “open network of individuals and groups

from both industry and academia”

Taxonomy of RuleML rules

from Boley et. al., RuleML 1.0: The Overarching Specification of Web Rules, 2010. http://bit.ly/RuleML

RIF

l W3C Rule Interchange Format
l Three dialects: Core, BLD, and PRD

–  Core: common subset of most rule engines, a
"safe" positive datalog with builtins

–  BLD (Basic Logic Dialect): adds logic functions,
equality and named arguments, ~positive horn
logic

–  PRD (Production Rules Dialect): adds action
with side effects in rule conclusion

l Has a mapping to RDF

3

An example of a RIF rule

From http://w3.org/2005/rules/wiki/Primer

Document(
 Prefix(rdfs <http://www.w3.org/2000/01/rdf-schema#>)
 Prefix(imdbrel <http://example.com/imdbrelations#>)
 Prefix(dbpedia <http://dbpedia.org/ontology/>)

 Group(
 Forall ?Actor ?Film ?Role (
 If And(imdbrel:playsRole(?Actor ?Role)
 imdbrel:roleInFilm(?Role ?Film))
 Then dbpedia:starring(?Film ?Actor))))

Another RIF example, with guards

From http://w3.org/2005/rules/wiki/Primer
Document(
 Prefix(rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>)
 Prefix(rdfs <http://www.w3.org/2000/01/rdf-schema#>)
 Prefix(imdbrel <http://example.com/imdbrelations#>)
 Prefix(dbpedia http://dbpedia.org/ontology/)
 Group(
 Forall ?Actor ?Film ?Role (
 If And(?Actor # imdbrel:Actor
 ?Film # imdbrel:Film
 ?Role # imdbrel:Character
 imdbrel:playsRole(?Actor ?Role)
 imdbrel:roleInFilm(?Role ?Film))
 Then dbpedia:starring(?Film ?Actor))))

Rif document can contain facts

The following will conclude bio:mortal(phil:Socrates)

Document(
 Prefix(bio <http://example.com/biology#>)
 Prefix(phil <http://example.com/philosophers#>)
 Group(
 If bio:human(?x)
 Then bio:mortal(?x))
 Group(
 bio:human(phil:Socrates)))

Another RIF example (PRD)

From http://w3.org/2005/rules/wiki/Primer
Document(
 Prefix(rdfs <http://www.w3.org/2000/01/rdf-schema#>)
 Prefix(imdbrelf <http://example.com/fauximdbrelations#>)
 Prefix(dbpediaf <http://example.com/fauxibdbrelations>)
 Prefix(ibdbrelf <http://example.com/fauxibdbrelations#>)
 Group(
 Forall ?Actor (
 If Or(Exists ?Film (imdbrelf:winAward(?Actor ?Film))
 Exists ?Play (ibdbrelf:winAward(?Actor ?Play)))
 Then assert(dbpediaf:awardWinner(?Actor)))

 imdbrelf:winAward(RobertoBenigni LifeIsBeautiful)))

4

Why do we need YAKL

l YAKL: Yet another knowledge language
l Rules are good for representing knowledge
l Rule idioms have powerful features that are

not and can not be supported by OWL
–  Non-monotonic rules
–  Default reasoning
–  Arbitrary functions, including some with with

side effects
–  etc.

Non-monotonic rules

l Non-monotonic rules use an “unprovable”
operator

l This can be used to implement default
reasoning, e.g.,
–  assume P(X) is true for some X unless

you can prove hat it is not
– Assume that a bird can fly unless you

know it can not

monotonic

canFly(X) :- bird (X)
bird(X) :- eagle(X)
bird(X) :- penguin(X)
eagle(sam)
penguin(tux)

Non-monotonic

canFly(X) :- bird (X), \+ not(canFly(X))
bird(X) :- eagle(X)
bird(X) :- penguin(X)
not(canFly(X)) :- penguin(X)
eagle(sam)
penguin(tux)

5

Default rules in Prolog

l In prolog it’s easy to have
–  Default(?head :- ?body).

l  Expand to
–  ?head :- ?body, +\ not(?head) .

l So
–  default(canFly(X) :- bird(X))

l Expands to
–  canFly(X) :- bird(X), \+(not(canFly(X))).

Rule priorities

l This approach can be extended to
implement systems where rules have
priorities

l This seems to be intuitive to people – used
in many human systems
– E.g., University policy overrules

Department policy
–  The “Ten Commandments” can not be

contravened

Two Semantic Webs? Limitations
l The rule inference support not integrated with

OWL classifier
– New assertions by rules may violate exist-

ing restrictions in ontology
– New inferred knowledge from classification

may produce knowledge
useful for rules

 Ontology

Classification Rule Inference

Inferred
Knowledge

Inferred
Knowledge

1 2

4 3

6

Limitations

l Existing solution: solve possible conflicts
manually

l Ideal solution: a single module for both
ontology classification and rule inference

l What if we want to combine non-
monotonic features with classical logic?

l Partial Solutions:
–  Answer set programming
–  Externally via appropriate rule engines

Summary

l Horn logic is a subset of predicate logic that
allows efficient reasoning, orthogonal to
description logics

l Horn logic is the basis of monotonic rules
l DLP and SWRL are two important ways of

combining OWL with Horn rules.
–  DLP is essentially the intersection of OWL and

Horn logic
–  SWRL is a much richer language

Summary (2)

l Nonmonotonic rules are useful in situations
where the available information is
incomplete

l They are rules that may be overridden by
contrary evidence

l Priorities are sometimes used to resolve
some conflicts between rules

l Representation XML-like languages is
straightforward

