
Description
Logics

What Are Description Logics?

l  A family of logic based KR formalisms
–  Descendants of semantic networks and KL-ONE
–  Describe domain in terms of concepts (classes),

roles (relationships) and individuals
l  Distinguished by:

–  Formal semantics (typically model theoretic)
l  Decidable fragments of FOL
l  Closely related to Propositional Modal & Dynamic Logics

–  Provision of inference services
l  Sound and complete decision procedures for key problems
l  Implemented systems (highly optimized)

Description Logics

l  Major focus of KR research in the 80’s
–  Led by Ron Brachman – (AT&T Labs)
–  Grew out of early network-based KR systems like semantic

networks and frames.

l  Major systems and languages –
–  80s: KL-ONE, NIKL, KANDOR, BACK, CLASSIC, LOOM
–  90s: FACT, RACER, …
–  00s: DAML+OIL, OWL, Pellet, Jena, FACT++

l  Used as the basis for the Semantic web languages
DAML+OIL and OWL

l  Some commercial systems

Description Logics

l  Thought to be well-suited for the representation
of and reasoning about
–  ontologies
–  terminological knowledge
–  Configurations and configuration problems
–  database schemata

l schema design, evolution, and query optimization
l source integration in heterogeneous databases/

data warehouses
l conceptual modeling of multidimensional

aggregation

Example of Network KR

l Person, Female, etc. are concepts
l hasChild is a property of Person

–  hasChild relates Parent to Person
–  Nil means infinity. A Parent is a Person

with between 1 and infinity children

l Large arrows are “IS-A” links
–  A Mother is a (specialization of a) Parent

l Concepts are either primitive or
definitions.
–  Primitive concepts have only necessary

properties
–  Defined concepts have necessary and

sufficient conditions

*

*

Graphical notation introduced by
KL-ONE

DL Paradigm

l  A Description Logic is mainly characterized by a
set of constructors that allow one to build
complex descriptions or terms out of concepts
and roles from atomic ones
–  Concepts correspond to classes

l  and are interpreted as sets of objects,

–  Roles correspond to relations
l  and are interpreted as binary relations on objects

l  Set of axioms for asserting facts about concepts,
roles and individuals

Basic Concepts of a DL

l  Individuals are treated exactly the same as
constants in FOL
–  john

l  Concepts are exactly the same as Unary
Predicates in FOL
–  Person(john)

l  Roles are exactly the same as Binary
Predicates in FOL
–  has_mother(john, mary)

Descriptions
l  As in FOL, we are dealing with (ultimately) sets

of individuals and relations between them
l  The basic unit of semantic significance is the

Description
l  “We are describing sets of individuals”
l  Description logics differ in the operators allowed
l  If a “happy father” is a man with both a son and

daughter and all of whose children are either
rich or happy, then we describe it in DL as
HappyFather = Man ∩ ∃hasChild.Female ∩
∃hasChild.Male ∩ ∀hasChild.(Rich ∪
Happy)

Typical Architecture

Knowledge Base

TBox

ABox

Inference
System

Interface

Definitions of
Terminology

Assertions
about

individuals

father= man ∏ E has.child X
human=mammal ∏ biped
…

john = human ∏ father
john has.child mary

The division into TBox and ABox doesn’t have a logical significance, but
is made for conceptual and implementation convenience.

A family of languages

l  The expressiveness of a description logic is
determined by the operators that it uses

l  Add or eliminate certain operators (e.g., ¬, ∪),
and the statements that can be expressed are
increased/reduced in number

l  Higher expressiveness implies higher complexity
l  AL or Attributive Language is the base and

includes just a few operators
l  Other DLs are described by the additional

operators they include

AL: Attributive Language

Constructor Syntax Example
atomic concept C Human
atomic negation ~ C ~ Human
atomic role R hasChild
conjunction C ∧ D Human ∧ Male
value restriction R.C Human ∃ hasChild.Blond
existential rest. (lim) ∃R Human ∃ hasChild
Top (univ. conc.) T T
bottom (null conc) ⊥ ⊥

 for concepts C and D and role R

ALC

constructor Syntax Example
atomic concept C Human
negation ~ C ~ (Human V Ape)
atomic role R hasChild
conjunction C ^ D Human ^ Male
disjunction C V D Nice V Rich
value restrict. ∃R.C Human ∃ hasChild.Blond
existential rest. ∃R.C Human ∃ hasChild.Male
Top (univ. conc.) T T
bottom (null conc) ⊥ ⊥

ALC is the smallest DL that is propositionally closed (i.e.,
includes full negation and disjunction) and include booleans
(and, or, not) and restrictions on role values

Other Constructors

Constructor Syntax Example

number restriction >= n R >= 7 hasChild

 <= n R <= 1 hasmother
inverse role R- haschild-
Transitive role R* hasChild*
Role composition R ◦ R hasParent ◦ hasBrother
Qualified # restric. >= n R.C >= 2 hasChild.Female
Singleton concepts {<name>} {Italy}

∀ and ∃ deserve special attention.

l  Note that they only can come before a Role:

∀HasChild.Girl ∃isEmployedBy.Farmer

l  Remember, they describe sets of individuals.

l  ∀HasChild.Girl would be interpreted as:
The set { x | ∀(y)(HasChild(x,y) à Girl(y)) }
Note the conditional: Are you in that set?.

l  ∃isEmployedBy.Farmer would be:
The set { x | ∃(y)(isEmployedBy(x,y) ∧

Farmer(y)) }

Special names and combinations

See http://en.wikipedia.org/wiki/Description_logic
l  S = ALC + transitive properties
l  H = role hierarchy, e.g., rdfs:subPropertyOf
l  O = nominals, e.g., values constrained by enumerated

classes, as in owl:oneOf and owl:hasValue
l  I = inverse properties
l  N = cardinality restrictions (owl:cardinality, maxCardonality)
l  (D) = use of datatypes properties
l  R = complex role axioms (e.g. (ir)reflexivity, disjointedness)
l  Q = Qualified cardinality (e.g., at least two female children)
è OWL-DL is SHOIN(D)

è OWL 2 is SROIQ(D)

http://www.cs.man.ac.uk/~ezolin/dl/

OWL as a DL

l OWL-DL is SHOIN(D)

l We can think of OWL as having three kinds of
statements

l Ways to specify classes
–  the intersection of humans and males

l Ways to state axioms about those classes
–  Humans are a subclass of apes

l Ways to talk about individuals
–  John is a human, john is a male, john has a child mary

Subsumption: D ⊆ C ?

l  Concept C subsumes D iff on every interpretation I
–  I(D) ⊆ I(C)

l  This means the same as (for complex statements D
and C) the assertion:
–  ∀(x)(D(x) à C(x))

l  Determining whether one concept logically contains
another is called the subsumption problem.

l  Subsumption is undecidable for reasonably
expressive languages
–  e.g.; for FOL: does one FOL sentence imply another

l  and non-polynomial for fairly restricted ones

These problems can be reduced to subsumption (for
languages with negation) and to the satisfiability
problem, as well
•  Concept satisfiability is C empty?

•  Instance Checking Father(john)?

•  Equivalence CreatureWithHeart ≡ CreatureWithKidney

•  Disjointness C ∏ D

•  Retrieval Father(X)? X = {john, robert}

•  Realization X(john)? X = {Father}

Other reasoning problems

Definitions

l A definition is a description of a concept or a
relationship

l  It is used to assign a meaning to a term
l  In description logics, definitions use a specialized

logical language
l Description logics are able to do limited reasoning

about concepts expressed in their logic
l One important inference is classification

(computation of subsumption)

Necessary vs. Sufficient

l Necessary properties of an object are properties
common to all objects of that type

–  Being a man is a necessary condition for being a father

l Sufficient properties are properties that allow one
to identify an object as belonging to a type and
need not be common to all members of the type

–  Speeding is a sufficient reason for being stopped by
the police

l Definitions often specify both necessary and
sufficient properties

Subsumption
l Meaning of Subsumption

A more general concept or description is said to subsume
a more specific one. Members of a subsumed concept are
necessarily members of a subsuming concept

l Two ways to formalize the meaning of subsumption
–  Using logic

l Satisfying a subsumed concept implies that the
subsuming concept is satisfied also
E.g., if john is a person, he is also an animal

–  Using set theory
l The instances of subsumed concept are necessarily a

subset of the subsuming concept’s instances
E.g., the set of all persons is a subset of all animals

How Does Classification Work?

animal

mammal

dog

sick animal

rabies

disease has

“A dog is
a mammal”

“A sick animal
has a disease”

“rabies is
a disease”

A sick animal is defined as something that is both an animal and has at
least one thing that is a kind of a disease

Defining a “rabid dog”

animal

mammal

dog

sick animal

rabies

disease has

rabid dog

has

A rabid dog is defined as something that is both a dog and has at least
one thing that is a kind of a rabies

Classification as a “sick animal”

animal

mammal

dog

sick animal

rabies

disease has

has

rabid dog

We can easily prove that s rabid dog is a kind of sick animal

Defining “rabid animal”

animal

mammal

dog

sick animal

rabies

disease has

has

rabid dog rabid animal

has

A rabid animal is defined as something that is both an animal and has at
least one thing that is a kind of a rabies

Loom Places Concept in Hierarchy

animal

mammal

dog

sick animal

rabies

disease has

has

rabid dog

rabid animal has

Note: we can remove the subclass link
from rabid animal to animal because it
is redundant. We don’t need to. But
humans like to see the simplest
structure and it may be informative for
agents as well.

We can easily prove that s rabid dog is a kind of rabid animal

Primitive versus Structured (Defined)
l Description logics reason with definitions

–  They prefer to have complete descriptions
–  A complete definition includes both necessary

conditions and sufficient conditions
l This is often impractical or impossible, especially

with natural kinds.
l A “primitive” definition is an incomplete definition

–  This limits the amount of classification that can be done
automatically

l Example:
–  Primitive: a Person
–  Defined: Parent = Person with at least one child

Intentional versus Extensional Semantics

l Extensional Semantics are a model-theoretic
idea. They define the meaning of a description by
enumerating the set of objects that satisfy the
description.

l  Intensional Semantics defines the meaning of a
description based on the intent or use of the
description.

l Example:
–  Morning-Star Evening-Star

l  Extensional: Same object, namely Venus
l  Intensional: Different objects, one meaning Venus seen in the

morning and one in the evening.

Definition vs. Assertion

l A definition is used to describe intrinsic proper-
ties of an object. The parts of a description have
meaning as a part of a composite description of
an object

l An assertion is used to describe an incidental
property of an object. Asserted facts have
meaning on their own.

l Example: “a black telephone”
Could be either a description or an assertion, depending
on the meaning and import of “blackness” on the concept
telephone.

Definition versus Assertion

l  In English, “a black telephone” is ambiguous
(1) A black telephone is a common sight in an office
(2) A black telephone is on the corner of my desk

l KR languages should not be ambiguous so
typically distinguish between descriptions of
classes and descriptions of individuals

l KR languages often also allow additional
assertions to be made that are not part of the
definition (In OWL called annotation properties)

Classification is very useful

l  Classification is a powerful kind of reasoning that
is very useful

l  Many expert systems can be usefully thought of
as doing “heuristic classification”

l  Logical classification over structured descriptions
and individuals is also quite useful.

l  But… can classification ever deduce something
about an individual other than what classes it
belongs to?

l  And what does *that* tell us?

Example: Blood Pressure

Non-Critical
Systolic BP

Systolic
Blood Pressure

•pressure

>= 85

•pressure

<= 160

A Non-Critical Blood
Pressure is “a Systolic
B.P. between 85 and
160.”

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

Example: Blood Pressure

Normal Systolic B.P. is “a Systolic B.P. between 90 and 140.

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

Joe’s BP

?

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

If Joe’s BP is Normal is it also Non-Critical?

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

Concept Classification Infers Normal
BP is Subsumed by Non-Critical BP

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

Joe’s BP

!

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

With Classified Concepts the Answer
is Easy to Compute

Incidental properties

l  If we allow incidental properties (e.g., ones that
don’t participate in the description mechanism)
then these can be deduced via classification

Some DL reasoners

l See http://en.wikipedia.org/wiki/Description_logic
–  CEL, free (for non-commercial use), LISP
–  Cerebra Engine, commercial, C++
–  FaCT++, free, open-source, C++
–  KAON2 free (for non-commercial usage), Java
–  MSPASS free, open-source, C
–  Pellet free, open-source, Java
–  RacerPro commercial, LISP

l DIG is a standard interface to a DL reasoner that
predates RDF and today uses XML

l Protégé uses DIG and can thus use any of several
DL reasoners that have a DIG interface

Dig API: http://dig.sourceforge.net/

