
Chapter 3
Querying RDF

stores with
SPARQL

TL;DR

l We will want to query large RDF
datasets, e.g. LOD

l SPARQL is the SQL of RDF
l SPARQL is a language to query and

update triples in one or more triples
stores

l  It’s key to exploiting Linked Open Data

Three RDF use cases

l Markup web documents with semi-structured data
for better understanding by search engines
(Microdata)

l Use as a data interchange language that’s more
flexible and has a richer semantic schema than
XML or SQL

l Assemble and link large datasets and publish as
as knowledge bases to support a domain (e.g.,
genomics) or in general (DBpedia)

Three RDF use cases

l  Markup web documents with semi-structured data for better
understanding by search engines (Microdata)

l  Use as a data interchange language that’s more flexible and has a
richer semantic schema than XML or SQL

l Assemble and link large datasets and publish as
as knowledge bases to support a domain (e.g.,
genomics) or in general (DBpedia)
–  Such knowledge bases may be very large, e.g., Dbpedia

has ~300M triples
–  Using such a large dataset requires a language to query

and update it

Semantic web technologies
allow machines to share
data and knowledge using
common web language and
protocols.

 ~ 1997

Semantic Web

Semantic Web beginning

Use Semantic Web Technology
to publish shared data &
knowledge

2007

Semantic Web => Linked Open
Data

Use Semantic Web Technology
to publish shared data &
knowledge

Data is inter-
linked to support inte-
gration and fusion of knowledge

LOD beginning

2008

Semantic Web => Linked Open
Data

Use Semantic Web Technology
to publish shared data &
knowledge

Data is inter-
linked to support inte-
gration and fusion of knowledge

LOD growing

2009

Semantic Web => Linked Open
Data

Use Semantic Web Technology
to publish shared data &
knowledge

Data is inter-
linked to support inte-
gration and fusion of knowledge

… and growing

Linked Open Data

2010

LOD is the new Cyc: a common
source of background

knowledge

Use Semantic Web Technology
to publish shared data &
knowledge

Data is inter-
linked to support inte-
gration and fusion of knowledge

…growing faster

Linked Open Data

2011: 31B facts in 295 datasets interlinked by 504M assertions on ckan.net

LOD is the new Cyc: a common
source of background

knowledge

Use Semantic Web Technology
to publish shared data &
knowledge

Data is inter-
linked to support inte-
gration and fusion of knowledge

Linked Open Data (LOD)
l Linked data is just RDF data, typically

just the instances (ABOX), not schema (TBOX)
l RDF data is a graph of triples

–  URI URI string
dbr:Barack_Obama dbo:spouse “Michelle Obama”

–  URI URI URI
dbr:Barack_Obama dbo:spouse dbpedia:Michelle_Obama

l Best linked data practice prefers the 2nd pattern,
using nodes rather than strings for “entities”

l Liked open data is just linked data freely acces-
sible on the Web along with any required
ontologies

Dbpedia: Wikipedia data in RDF

Available for download

• Broken up into files
by information type

• Contains all text,
links, infobox data,
etc.

• Supported by
several ontologies

• Updated ~ every 3
months

• About 300M triples!

Queryable

• You can query any
of several RDF
triple stores

• Or download the
data, load into a
store and query it
locally

Browseable

• There are also RDF
browsers

• These are driven
by queries against
a RDF triple store
loaded with the
DBpedia data

Why an RDF Query Language?

l Why not use an XML query language?
l XML at a lower level of abstraction than RDF
l There are various ways of syntactically

representing an RDF statement in XML
l Thus we would require several XPath

queries, e.g.
–  //uni:lecturer/uni:title if uni:title element
–  //uni:lecturer/@uni:title if uni:title attribute
– Both XML representations equivalent!

SPARQL
l A key to exploiting such large RDF data sets is

the SPARQL query language
l Sparql Protocol And Rdf Query Language
l W3C began developing a spec for a query

language in 2004
l There were/are other RDF query languages, and

extensions, e.g., RQL and Jena’s ARQ
l SPARQL a W3C recommendation in 2008
l SPARQL 1.1 is a proposed recommendation with

update, aggregation functions, federation & more
l Most triple stores support SPARQL 1.1

SPARQL Example

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?age
WHERE {
 ?person a foaf:Person.
 ?person foaf:name ?name.
 ?person foaf:age ?age
}
ORDER BY ?age DESC
LIMIT 10

SPARQL Protocol, Endpoints, APIs

l SPARQL query language
l SPROT = SPARQL Protocol for RDF

– Among other things specifies how results can be
encoded as RDF, XML or JSON

l SPARQL endpoint
– A service that accepts queries and returns

results via HTTP
– Either generic (fetching data as needed) or

specific (querying an associated triple store)
– May be a service for federated queries

SPARQL Basic Queries

l SPARQL is based on matching graph patterns
l The simplest graph pattern is the triple pattern

-  ?person foaf:name ?name
-  Like an RDF triple, but variables can be in any

position
-  Variables begin with a question mark

l Combining triple patterns gives a graph pattern; an
exact match to a graph is needed

l Like SQL, a set of results is returned with a result
for each way the graph pattern can be instantiated

Turtle Like Syntax

As in Turtle and N3, we can omit a common subject
in a graph pattern.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?age
WHERE {
 ?person a foaf:Person;
 foaf:name ?name;
 foaf:age ?age
}

Optional Data

l The query fails unless the entire pattern matches
l We often want to collect some information that

might not always be available
l Note difference with relational model
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?age
WHERE {
 ?person a foaf:Person;
 foaf:name ?name.
OPTIONAL {?person foaf:age ?age}
}

Example of a Generic Endpoint

l Use the sparql endpoint at
– http://demo.openlinksw.com/sparql

l To query graph at
– http://ebiq.org/person/foaf/Tim/Finin/foaf.rdf

l For foaf knows relations
SELECT ?name ?p2
WHERE { ?person a foaf:Person;
 foaf:name ?name;
 foaf:knows ?p2. }

Example

Query results as HTML

Other result format options

Example of a dedicated Endpoint

l Use the sparql endpoint at
– http://dbpedia.org/sparql

l To query DBpedia
l To discover places associated with

President Obama
PREFIX dbp: <http://dbpedia.org/resource/>
PREFIX dbpo: <http://dbpedia.org/ontology/>
SELECT distinct ?Property ?Place
WHERE {dbp:Barack_Obama ?Property ?Place .
 ?Place rdf:type dbpo:Place .}

http://dbpedia.org/sparql/

PREFIX dbp: <http://dbpedia.org/resource/>
PREFIX dbpo: <http://dbpedia.org/ontology/>
SELECT distinct ?Property ?Place
WHERE {dbp:Barack_Obama ?Property ?Place .
 ?Place rdf:type dbpo:Place .}

SELECT FROM

l The FROM clause lets us specify the target graph
in the query

l SELECT * returns all

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *
FROM <http://ebiq.org/person/foaf/Tim/Finin/foaf.rdf>
WHERE {
 ?P1 foaf:knows ?p2
}

A generic web client

 Try it: http://aers.data2semantics.org/yasgui/
Source: https://github.com/LaurensRietveld/yasgui

FILTER

Find landlocked countries with a population >15 million

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX type: <http://dbpedia.org/class/yago/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT ?country_name ?population
WHERE {
 ?country a type:LandlockedCountries ;
 rdfs:label ?country_name ;
 prop:populationEstimate ?population .
 FILTER (?population > 15000000) .
}

FILTER Functions
l  Logical: !, &&, ||
l  Math: +, -, *, /
l  Comparison: =, !=, >, <, ...
l  SPARQL tests: isURI, isBlank, isLiteral, bound
l  SPARQL accessors: str, lang, datatype
l  Other: sameTerm, langMatches, regex
l  Conditionals (SPARQL 1.1): IF, COALESCE
l  Constructors (SPARQL 1.1): URI, BNODE, STRDT, STRLANG
l  Strings (SPARQL 1.1): STRLEN, SUBSTR, UCASE, …
l  More math (SPARQL 1.1): abs, round, ceil, floor, RAND
l  Date/time (SPARQL 1.1): now, year, month, day, hours, …
l  Hashing (SPARQL 1.1): MD5, SHA1, SHA224, SHA256, …

Union

l The UNION keyword forms a disjunction of two
graph patterns

l Both subquery results are included

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?name
WHERE
{
 { [] foaf:name ?name } UNION { [] vCard:FN ?name }
}

Query forms

Each form takes a WHERE block to restrict the query
l  SELECT: Extract raw values from a SPARQL endpoint, the

results are returned in a table format
l  CONSTRUCT: Extract information from the SPARQL

endpoint and transform the results into valid RDF
l  ASK: Returns a simple True/False result for a query on a

SPARQL endpoint
l  DESCRIBE Extract an RDF graph from the SPARQL

endpoint, the contents of which is left to the endpoint to
decide based on what the maintainer deems as useful
information

SPARQL 1.1

SPARQL 1.1 includes
l Updated 1.1 versions of SPARQL Query

and SPARQL Protocol
l SPARQL 1.1 Update
l SPARQL 1.1 Graph Store HTTP Protocol
l SPARQL 1.1 Service Descriptions
l SPARQL 1.1 Entailments
l SPARQL 1.1 Basic Federated Query

Summary

l An important usecase for RDF is exploiting large
collections of semi-structured data, e.g., the linked
open data cloud

l We need a good query language for this
l SPARQL is the SQL of RDF
l SPARQL is a language to query and update

triples in one or more triples stores
l  It’s key to exploiting Linked Open Data

