
Chapter 3
RDF Schema

Introduction

l RDF has a very simple data model
l RDF Schema (RDFS) enriches the data model,

adding vocabulary and associated semantics for
–  Classes and subclasses
–  Properties and sub-properties
–  Typing of properties

l Support for describing simple ontologies
l Adds an object-oriented flavor
l But with a logic-oriented approach and using

“open world” semantics

RDFS is a simple KB Language

Several widely used Knowledge-Base tools can import and
export in RDFS, including Stanford’s Protégé KB editor

RDFS Vocabulary

l Terms for classes
–  rdfs:Class
–  rdfs:subClassOf

l Terms for properties
–  rdfs:domain
–  rdfs:range
–  rdfs:subPropertyOf

l Special classes
–  rdfs:Resource
–  rdfs:Literal
–  rdfs:Datatype

l Terms for collections
–  rdfs:member
–  rdfs:Container
–  rdfs:ContainerMem-

bershipProperty
l Special properties

–  rdfs:comment
–  rdfs:seeAlso
–  rdfs:isDefinedBy
–  rdfs:label

RDFS introduces the following terms, giving
each a meaning w.r.t. the rdf data model

Modeling the semantics in logic

l We could represent any RDF triple with a binary
predicate, e.g.
–  type(john, human)
–  age(john, 32)
–  subclass(human, animal)

l But traditionally we model a classe as a unary
predicate
–  human(john)
–  age(john, 32)
–  subclass(human, animal)

Classes and Instances

l We must distinguish between
–  Concrete “things” (individual objects) in the domain:

Discrete Math, Richard Chang, etc.
–  Sets of individuals sharing properties called classes:

lecturers, students, courses etc.

l Individual objects belonging to a class are
referred to as instances of that class

l Relationship between instances and classes in
RDF is through rdf:type

l Note similarity to Classes and Objects in an OO
prog. language (but RDF classes stand for sets)

Classes are Useful

Classes let us impose restrictions on what
can be stated in an RDF document using
the schema

–  As in programming languages
l  E.g. A+1, where A is an array

–  Disallow nonsense from being stated by
detecting contradictions

–  Allow us to infer a type of an object from
how it is used -- like type inference in a
programming language

Preventing nonsensical Statements

l Discrete Math is taught by Calculus
– We want courses to be taught by lecturers only
– Restriction on values of the property “is taught

by” (range restriction)
l Room ITE228 is taught by Richard Chang

– Only courses can be taught
– This imposes a restriction on the objects to

which the property can be applied (domain
restriction)

Class Hierarchies

l Classes can be organized in hierarchies
– A is a subclass of B if every instance of A is

also an instance of B
– We also say that B is a superclass of A

l  A subclass graph needn’t be a tree
– A class may have multiple superclasses

l In logic:
–  subclass(p, q) ó	 p(x)	 =>	 q(x)	

–  subclass(p, q) ∧	 p(x)	 =>	 q(x)	

Domain and Range

l The domain and range properties let us associate
classes with a property’s subject and object, e.g.

l Only a course can be taught
–  domain(isTaughtBy, course)

l Only an academic staff member can teach
–  range(isTaughtBy, academicStaffMember)

l Semantics in logic:
–  domain(pred, aclass) ∧	 pred(subj, obj) =>	 aclass(subj)
–  range(pred, aclass) ∧	 pred(subj, obj) =>	 aclass(obj)

Property Hierarchies

l Hierarchical relationships for properties
–  E.g., “is taught by” is a subproperty of “involves”
–  If a course C is taught by an academic staff member

A, then C also involves Α
l The converse is not necessarily true

–  E.g., A may be the teacher of the course C, or a TA
who grades student homework but doesn’t teach

l Semantics in logic
–  subproperty(p, q) ∧ p(subj, obj) =>	 q(sub,obj)
–  e.g, subproperty(mother,parent), mother(p1, p2) =>	

parent(p1, p2)

RDF Layer vs RDF Schema Layer

l  Discrete Math is taught by Richard Chang
l  The schema is itself written in a formal

language, RDF Schema, that can express its
ingredients:

–  subClassOf, Class, Property, subPropertyOf,
Resource, etc.

RDF Schema in RDF

l RDFS’s modelling primitives are defined using
resources and properties (RDF itself is used!)

l To declare that “lecturer” is a subclass of
“academic staff member”

–  Define resources lecturer, academicStaffMember, and
subClassOf

–  define property subClassOf
–  Write triple (subClassOf, lecturer, academicStaffMember)

l We use the XML-based syntax of RDF

Core Classes

l rdfs:Resource: class of all resources
l rdfs:Class: class of all classes
l rdfs:Literal: class of all literals (strings)
l rdf:Property: class of all properties
l rdf:Statement: class of all reified

statements

Core Properties

l rdf:type: relates a resource to its class
The resource is declared to be an instance of
that class

l rdfs:subClassOf: relates a class to one
of its superclasses
All instances of a class are instances of its
superclass

l rdfs:subPropertyOf: relates a property
to one of its superproperties

Core Properties

l rdfs:domain: specifies the domain of a
property P
– The class of those resources that may appear

as subjects in a triple with predicate P
–  If the domain is not specified, then any

resource can be the subject
l rdfs:range: specifies the range of a

property P
– The class of those resources that may appear

as values in a triple with predicate P

Examples

<rdfs:Class rdf:about="#lecturer">
 <rdfs:subClassOf rdf:resource="#staffMember"/>

</rdfs:Class>

<rdf:Property rdf:ID="phone">
 <rdfs:domain rdf:resource="#staffMember"/>
 <rdfs:range rdf:resource="http://www.w3.org/
 2000/01/rdf-schema#Literal"/>

</rdf:Property>

Relationships: Core Classes & Properties

l rdfs:subClassOf and rdfs:subPropertyOf
are transitive, by definition

l rdfs:Class is a subclass of rdfs:Resource
– Because every class is a resource

l rdfs:Resource is an instance of
rdfs:Class
– rdfs:Resource is the class of all resources, so it

is a class
l Every class is an instance of rdfs:Class

– For the same reason

Subclass Hierarchy of RDFS Primitives

rdfs:Resource

rdfs:Class rdf:Property rdfs:Literal

rdfs:Datatype rdf:XMLLiteral

arrows represent the rdfs:subClassOf relation

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Instance Relationships of RDFS Primitives

rdfs:Class

rdfs:Resource rdf:Property rdfs:Literal

rdfs:Datatype rdf:XMLLiteral

arrows represent the rdf:type relation

rdf:type

rdf:type
rdf:type

rdf:type

rdf:type

rdf:type

RDF and RDFS Property Instances

rdf:Property

rdfs:domain

rdf:range

rdf:type

rdfs:subClassOf rdfs:subPropertyOf

arrows represent the rdf:type relation

rdf:type rdf:type

rdf:type
rdf:type

rdf:type

Reification and Containers
l  rdf:subject: relates a reified statement to its

subject
l  rdf:predicate: relates a reified statement to its

predicate
l  rdf:object: relates a reified statement to its object
l  rdf:Bag: the class of bags
l  rdf:Seq: the class of sequences
l  rdf:Alt: the class of alternatives
l  rdfs:Container: a superclass of all container

classes, including the three above

Utility Properties

l  rdfs:seeAlso relates a resource to another
resource that explains it

l  rdfs:isDefinedBy: a subproperty of rdfs:seeAlso
that relates a resource to the place where its
definition, typically an RDF schema, is found

l  rfds:comment. Comments, typically longer text,
can be associated with a resource

l  rdfs:label. A human-friendly label (name) is
associated with a resource

Ex: University Lecturers – Prefix
<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

>

Ex: University Lecturers -- Classes
<rdfs:Class rdf:ID="staffMember">

 <rdfs:comment>The class of staff members </rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="academicStaffMember">

 <rdfs:comment>The class of academic staff members </rdfs:comment>
 <rdfs:subClassOf rdf:resource="#staffMember"/>

</rdfs:Class>

<rdfs:Class rdf:ID="lecturer">

 <rdfs:comment> The class of lecturers. All lecturers are academic staff
members.
 </rdfs:comment>
 <rdfs:subClassOf rdf:resource="#academicStaffMember"/>

</rdfs:Class>

<rdfs:Class rdf:ID="course">

 <rdfs:comment>The class of courses</rdfs:comment>
</rdfs:Class>

Ex: University Lecturers -- Properties
<rdf:Property rdf:ID="isTaughtBy">
 <rdfs:comment>Assigns lecturers to courses. </

rdfs:comment>
 <rdfs:domain rdf:resource="#course"/>
 <rdfs:range rdf:resource="#lecturer"/>
</rdf:Property>

<rdf:Property rdf:ID="teaches">
 <rdfs:comment>Assigns courses to lecturers. </

rdfs:comment>
 <rdfs:domain rdf:resource="#lecturer"/>
 <rdfs:range rdf:resource="#course"/>
</rdf:Property>

Ex: University Lecturers -- Instances
<uni:lecturer rdf:ID="949318"

 uni:name="Richard Chang"
 uni:title="Associate Professor">
 <uni:teaches rdf:resource="#CIT1111"/>
 <uni:teaches rdf:resource="#CIT3112"/>

</uni:lecturer>
<uni:lecturer rdf:ID="949352"

 uni:name="Grigoris Antoniou"
 uni:title="Professor">
 <uni:teaches rdf:resource="#CIT1112"/>
 <uni:teaches rdf:resource="#CIT1113"/>

</uni:lecturer>
<uni:course rdf:ID="CIT1111"

 uni:courseName="Discrete Mathematics">
 <uni:isTaughtBy rdf:resource="#949318"/>

</uni:course>
<uni:course rdf:ID="CIT1112"

 uni:courseName="Concrete Mathematics">
 <uni:isTaughtBy rdf:resource="#949352"/>

</uni:course>

Example: A University

<rdfs:Class rdf:ID="lecturer">
 <rdfs:comment>
 The class of lecturers. All lecturers are

 academic staff members.
 </rdfs:comment>
 <rdfs:subClassOf
rdf:resource="#academicStaffMember"/>

</rdfs:Class>

Example: A University

<rdfs:Class rdf:ID="course">
 <rdfs:comment>The class of courses</rdfs:comment>
</rdfs:Class>

<rdf:Property rdf:ID="isTaughtBy">
 <rdfs:comment>

 Inherits its domain ("course") and range ("lecturer")
 from its superproperty "involves”

 </rdfs:comment>
 <rdfs:subPropertyOf rdf:resource="#involves"/>
</rdf:Property>

Example: A University

<rdf:Property rdf:ID="phone">
 <rdfs:comment>
 It is a property of staff members
 and takes literals as values.
 </rdfs:comment>

 <rdfs:domain rdf:resource="#staffMember"/>
 <rdfs:range rdf:resource="http://www.w3.org/

2000/01/rdf-schema#Literal"/>
</rdf:Property>

RDF and RDFS Namespaces

l The RDF, RDFS and OWL namespaces
specify some constraints on the ‘languages’
– http://www.w3.org/1999/02/22-rdf-syntax-ns#
– http://www.w3.org/2000/01/rdf-schema#
– http://www.w3.org/2002/07/owl#

l Strangely, each uses terms from all three to
define its own terms

l Don’t be confused: the real semantics of the
terms isn’t specified in the namespace files

RDF Namespace
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <owl:Ontology
 rdf:about="http://www.w3.org/2000/01/rdf-schema#"
 dc:title="The RDF Schema vocabulary (RDFS)"/>

<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Resource">
 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/>
 <rdfs:label>Resource</rdfs:label>
 <rdfs:comment>The class resource, everything.</rdfs:comment>
</rdfs:Class>

…

RDF Namespace example

This example shows how RDFS terms are used to
say something important about the RDF predicate
property

<rdf:Property rdf:ID="predicate"
 rdfs:comment="Identifies the property of a
 statement in reified form"/>

 <rdfs:domain rdf:resource="#Statement"/>
 <rdfs:range rdf:resource="#Property"/>
</rdf:Property>

predicate is a property from a Statement to a Property

RDF Namespace

Define rdf:Resource and rdf:Class as instances of
rdfs:Class & rdf:Class as a subclass of rdf:Resource

<rdfs:Class rdf:ID="Resource"
 rdfs:comment="The most general class"/>

<rdfs:Class rdf:ID="Class"
 rdfs:comment="The concept of classes.
 All classes are resources"/>
 <rdfs:subClassOf rdf:resource="#Resource"/>

</rdfs:Class>

RDF Namespace

Define rdf:Resource and rdf:Class as instances of
rdfs:Class & rdf:Class as a subclass of rdf:Resource

<rdfs:Class rdf:ID="Resource"
 rdfs:comment="The most general class"/>

<rdfs:Class rdf:ID="Class"
 rdfs:comment="The concept of classes.
 All classes are resources"/>
 <rdfs:subClassOf rdf:resource="#Resource"/>

</rdfs:Class>

rdf:
Resource

rdf:
Class

rdfs:
Class

rdf:type

rdfs:subclass

rdf:type

RDFS Namespace

<rdf:RDF … xmlns:dc="http://purl.org/dc/elements/1.1/">
…
<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Class">
 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/>
 <rdfs:label>Class</rdfs:label>
 <rdfs:comment>The class of classes.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

<rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#subClassOf">
 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/>
 <rdfs:label>subClassOf</rdfs:label>
 <rdfs:comment>The subject is a subclass of a class.</rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Property>
…

Namespaces vs. Semantics

l Consider rdfs:subClassOf
– The namespace specifies only that it applies to

classes and has a class as a value
– The meaning of being a subclass not specified

l The meaning cannot be expressed in RDF
–  If it could RDF Schema would be unnecessary

l  External definition of semantics required
– Respected by RDF/RDFS processing software

RDFS vs. OO Models

l In OO models, an object class defines the
properties that apply to it
–  Adding a new property means modifying the class

l In RDF, properties are defined globally and aren’t
encapsulated as attributes in the class definition
–  One can define new properties w/o changing the class
–  Properties can have properties

:mother rdfs:subPropertyOf :parent;
 rdf:type :FamilyRelation.

–  You can’t narrow the domain and range of properties in
a subclass

Example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix bio: <http://example.com/biology#> .

bio:Animal a rdfs:Class.
Bio:offspring a rdfs:Property;

 rdfs:domain bio:Animal;
 rdfs:range bio:Animal.

bio:Human rdfs:subClassOf bio:Animal.
bio:Dog rdfs:subClassOf bio:Animal.
:fido a bio:Dog.
:john a bio:Human;

 bio:offspring :fido.

There is no way to say that
the offspring of humans are
humans and the offspring of
dogs are dogs.

Example

Bio:child rdfs:subPropertyOf bio:offspring;
 rdfs:domain bio:Human;
 rdfs:range bio:Human.

Bio:puppy rdfs:subPropertyOf bio:offspring;
 rdfs:domain bio:Dog;
 rdfs:range bio:Dog.

:john bio:child :mary.
:fido bio:puppy :rover.

What do we know after
each of the last two
triples are asserted?

Suppose we also assert:
•  :john bio:puppy :rover
•  :john bio:child :fido

Not like types in OO systems

l Classes differ from types in OO systems in how
they are used.
– They are not constraints on well-formedness

l The lack of negation and the open world
assumption in RDF+RDFS make it impossible to
detect contradictions
– Can’t say that Dog and Human are disjoint classes
– Not knowing that there are individuals who are both

doesn’t mean it’s not true

No disjunctions or union types

What does this mean?

Bio:Human rdfs:subClassOf bio:Animal.
bio:Cat rdfs:subClassOf bio:Animal.
Bio:Dog rdfs:subClassOf bio:Animal.
bio:hasPet a rdfs:Property;
 rdfs:domain bio:Human;
 rdfs:range bio:Dog;
 rdfs:range bio:Cat.

No disjunctions or union types

What does this mean?

Bio:Human rdfs:subClassOf bio:Animal.
bio:Cat rdfs:subClassOf bio:Animal.
Bio:Dog rdfs:subClassOf bio:Animal.
bio:hasPet a rdfs:Property;
 rdfs:domain bio:Human;
 rdfs:range bio:Dog;
 rdfs:range bio:Cat.

Consider adding the
following fact.

:john bio:hasPet :spot

What do we want to say?

l There are many different possibilities
– Only a dog or a cat can be the object of a hasPet

property.
– Dogs and cats and maybe other animals are

possible as pets.
– Dogs and cats and maybe other things, not

necessarily animals, are possible as pets.
– All dogs and all cats are pets.
–  It is possible for some dogs and for some cats to be

pets.
l Not all of these can be said in RDF+RDFS

What do we want to say?

animal

cat dog human

pet

subclass
subclass

subclass

property

hasPet

subclass

domain

range

subclass

subclass subclass

Classes and individuals are not disjoint

l  In OO systems a thing is either a class or object
–  Many KR systems are like this: you are either an

instance or a class, not both.
l Not so in RDFS

bio:Species rdf:type rdfs:Class.
bio:Dog rdf:type rdfs:Species; rdfs:subClassOf bio:Animal.
:fido rdf:type bio:Dog.

l Adds richness to the language but causes
problems, too
–  In OWL lite and OWL DL you can’t do this.
–  OWL has it’s own notion of a Class, owl:Class

Inheritance is simple

l No defaults, overriding, shadowing
l What you say about a class is necessarily true of

all sub-classes
l A class’ properties are not inherited by its

members.
–  Can’t say “Dog’s are normally friendly” or even “All dogs

are friendly”
–  The meaning of the Dog class is a set of individuals

Set Based Model Theory Example

World Interpretation

Daisy isA Cow

Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

Δ	

{... list of facts
 about individuals ...}

a

b

Model

Mary drives Z123ABC

Is RDF(S) better than XML?

Q: For a specific application, should I use XML or RDF?
A: It depends…
l  XML's model is

–  a tree, i.e., a strong hierarchy
–  applications may rely on hierarchy position
–  relatively simple syntax and structure
–  not easy to combine trees

l  RDF's model is
–  a loose collections of relations
–  applications may do “database”-like search
–  not easy to recover hierarchy
–  easy to combine relations in one big collection
–  great for the integration of heterogeneous information

Problems with RDFS
l  RDFS too weak to describe resources in detail

– No localised range and domain constraints
Can’t say the range of hasChild is person when applied
to persons and elephant when applied to elephants

– No existence/cardinality constraints
Can’t say that all instances of person have a mother
that’s a person, or that persons have exactly 2 parents

– No transitive, inverse or symmetrical properties
Can’t say isPartOf is a transitive property, hasPart is
the inverse of isPartOf or that touches is symmetrical

l We need RDF terms providing these and other
features

Conclusions

l  RDF is a simple data model based on a graph
–  Independent on any serialization (e.g., XML or N3)

l  RDF has a formal semantics providing a dependable basis
for reasoning about the meaning of RDF expressions

l  RDF has an extensible URI-based vocabulary
l  RDF has an XML serialization and can use values

represented as XML schema datatypes
l  Anyone can make statements about any resource (open

world assumption)
l  RDFS builds on RDF’s foundation by adding vocabulary

with well defined semantics (e.g., Class, subClassOf, etc.)
l  OWL addresses some of RDFS’s limitations adding

richness (and complexity).

