
CWM
Closed World

Machine

CWM Overview

l CWM is a popular Semantic Web program that
can do the following tasks
–  Parse and pretty-print several RDF formats: XML RDF,

Notation3, and Ntriples
–  Store triples in a queryable triples database
–  Perform inferences as a forward chaining inference

engine
–  Perform builtin functions such as comparing strings,

retrieving resources, all using an extensible builtins suite
l CWM was written in Python by Tim Berners-Lee

and Dan Connolly of the W3C

What’s CWM good for?

l CWM is good for experimenting with RDF and
RDFS and some OWL

l CWM’s rule based reasoner can’t cover all of
OWL

l  It’s good as a Unix tool that you can call from the
command line

l  rdfs:seeAlso
–  http://infomesh.net/2001/cwm/
–  http://w3.org/2000/10/swap/doc/Processing

CWM in a Nutshell

CWM rdf in various
encodings

rdf in various
encodings

Reasoning via
N3 rules

filter

Some alternative libraries

If you want to play with RDF and RDFS from a
programming language, you might check out some
of these:
l Redland RDF Libraries (C): http://librdf.org/
l Jena (Java): http://jena.sourceforge.net/
l Sesame (Java): http://www.openrdf.org/
l RDFLib (Python): http://rdflib.net/
l SWI (Prolog): http://www.swi-prolog.org/web
l Wilbur (Lisp): http://wilbur-rdf.sourceforge.net/

CWM command line

l Example: cwm --rdf foo.rdf --n3 > foo.n3
l Args are processed left to right (except for flags

 --pipe and –help
l Here’s what happens:

–  Switch to RDF/XML input-output format
–  Read in foo.rdf (use a filename or URI) and add

triples to store
–  Switch to --n3 input-output format
–  Output triples in store to stdout in N3
–  Unic redirect captures output in foo.ne

On N3 and Turtle

l The N3 notation was invented by Tim Berners Lee
l  It’s not a standard, but a large subset, Turtle, is

(almost) a standard
l What’s in N3 but not in Turtle

–  Representing inference rules over RDF triples
–  A compact syntac for reification
–  Some other bits

l The rules part is most useful
–  It’s been supplanted in part by SPARQL
–  And by RIF (Rule Interchange Formalism)

Reasoning using N3 Rules

l N3 has a simple notation for Prolog like rules
l These are represented in RDF, of course, and

can read these into CWM just like a data file
l Command line args tell CWM to reason
–  --apply=foo : read rules from foo, apply to store, adding

conclusions to store
–  --rules : apply once the rules in the store to the store, adding

conclusions to the store
–  --filter=foo : apply rules in foo to the store, REPLACING the

store with the conclusions
–  --think : apply rules in store to the store, adding conclusions to

the store, iteratively until no more new conclusions are made

N3 facts and rules

l  :Pat owl:sameAs :Patrick .
l  :Man rdfs:subclassOf :Human .

:YoungMan rdfs:subclassOf :Man .
l  :has_father rdfs:domain :Human; s:range :Man .

:Sara :has_father :Alan .
l  { ?x :has_parent ?y } => { ?y :has_child :?x } .
l  {?x :has_parent ?y. ?y :has_brother ?z}

 => {?x :has_uncle ?z} .
l  { :thermostat :temp ?x. ?x math:greaterThan

"70" } => { :cooling :power "high" } .

Implications in logic

l In logic, an implication is a sentence that is
either true or false
–  forall X man(x) => mortal(x)

l If we believe an implication to be true, we
can use it to derive new sentences that
must be true from others we believe true
–  man(socrates) therefore mortal(socrates)

l This is the basis for the rule based
reasoning systems
–  Prolog, Datalog, Jess, etc.

Quantifiers

l In first order logic, we have two quantifiers,
for all (∀) and exists (∃)
–  ∀x ∃y has_child(x, y) => is_parent(x)
–  For all x, if there exists a y such that x

has_child y, then x is a parent or
–  X is a parent if X has (at least) one child
–  You only need to find one child to conclude that

someone is a parent
l Variables (e.g., x and y) range over all objects in

the universe, but for KB systems, we can narrow
this to objects mentioned in the KB

Variables in rules implicitly quantified

l Most rule-based systems don’t use explicit
quantifiers

l Variables are implicitly quantified as either ∀ or ∃
using the following
l  All variables in the rule’s conclusion are universally

quantified
l  All variables appearing only in the premise are

existentially quantified

l Thus foo(a,b) => bar(b) is interpreted as ∀b ∃a
foo(a,b)) => bar(b)

Variables in rules implicitly quantified

• To see why this is a reasonable design decision
for a rule language, consider
•  ∀x ∀y has_child(x, y) => is_parent(x)

•  What does this mean?
•  “X is a parent if we can prove that X has every

object in our universe as a child”
•  Such rules are not often useful
•  Many rule languages do have ways to

express them, of course

Reasoning: Forward and Backward

l Rule based systems ten to use one of two
reasoning strategies (and some do both)
– Reasoning forward from known facts to new ones (find all

people who are parents; is Bob among them?)
– Reasoning backward from a conclusion posed as a query

to see if it is true (Is Bob a parent)
l Each has advantages and disadvantages which

may effect its utility in a given use case
l CWM uses a forward reasoning strategy

–  Principally because we often want to compute all RDF
triples that follow from a given set (i.e., find the
deductive closure)

N3 Rules

l An N3 rule has a conjunction of triples as a
premise and a conjunction as a conclusion

l Eg: 2nd element of a triple is always a property
{ ?S ?P ?O. } => { ?P a rdf:Property. }

l Eg: The meaning of rdfs:domain
{ ?S ?P ?O. ?P rdfs:domain ?D.} => { ?O a ?D. }

l  Variables begin with a ?.
l  Every variable in the conclusions must appear in

the premise
l  Each way to instantiate triple patterns in the pre-

mise with a set of triples in the KB yields new facts

Note: limited negation & disjunction

l Disjunction in the premise can be achieved using
several rules
–  { ?S :foo1 ?0.} = { ?S :bar ?O.}
–  { ?S :foo2 ?0.} = { ?S :bar ?O.}

l No disjunction is allows in the conclusion
l No general negation is allowed (there is a very

limited kind of negation)
l Negation and disjunction are supported in other

ways in OWL and RIF and in other reasoners

N3 rules use cases

l Use N3 rules to implement the semantics of RDF,
RDFS, and OWL vocabularies
–  See rdfs-rules.n3
–  See owl-rules.n3

l Use N3 rules to provide domain/application
specific rules
–  See gedcom-relations.n3

A simple example

% more simple1.n3

A simple example

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix : <#> .

:john a foaf:Person;
 foaf:name "John Smith";
 foaf:gender "Male";
 foaf:name "John Smith" .

Invoking CSM (1)

% cwm simple1.n3
Processed by Id: cwm.py,v 1.197 2007/12/13 15:38:39 syosi Exp
using base file:///Users/finin/Sites/691s13/examples/n3/simple1.n3
Notation3 generation by notation3.py,v 1.200 2007/12/11 21:18:08 syosi Exp
Base was: file:///Users/finin/Sites/691s13/examples/n3/simple1.n3

@prefix : <#> .

 :john a <http://xmlns.com/foaf/0.1/Person>;
 <http://xmlns.com/foaf/0.1/gender> "Male";
 <http://xmlns.com/foaf/0.1/name> "John Smith" .
#ENDS

Invoking CSM (2)

n3> cwm -n3=/d simple1.n3
Processed by Id: cwm.py,v 1.197 2007/12/13 15:38:39 syosi Exp
using base file:///Users/finin/Sites/691s13/examples/n3/simple1.n3
Notation3 generation by notation3.py,v 1.200 2007/12/11 21:18:08 syosi Exp
Base was: file:///Users/finin/Sites/691s13/examples/n3/simple1.n3

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

 <#john> a foaf:Person;
 foaf:gender "Male";
 foaf:name "John Smith" .

Some useful CWM flags

l CWM command has a lot of flags and switches
l Do cwm --help to see them
l Here are a few

--rdf Input & Output ** in RDF/XML insead of n3 from now on
--n3 Input & Output in N3 from now on. (Default)
--n3=flags Input & Output in N3 and set N3 flags
--ntriples Input & Output in NTriples (equiv --n3=usbpartane -bySubject -quiet)
--apply=foo Read rules from foo, apply to store, adding conclusions to store
--think as -rules but continue until no more rule matches (or forever!)
--think=foo as -apply=foo but continue until no more rule matches (or forever!)
--data Remove all except plain RDF triples (formulae, forAll, etc)
--help print this message

RDFS in N3 (1)

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
…
rdfs:comment rdfs:domain rdfs:Resource; rdfs:range rdfs:Literal.
rdfs:domain rdfs:domain rdf:Property; rdfs:range rdfs:Class.
rdfs:label rdfs:domain rdfs:Resource; rdfs:range rdfs:Literal.
rdfs:range rdfs:domain rdf:Property; rdfs:range rdfs:Class.
rdfs:seeAlso rdfs:domain rdfs:Resource; rdfs:range rdfs:Resource.
rdfs:subClassOf rdfs:domain rdfs:Class; rdfs:range rdfs:Class.
rdfs:subPropertyOf rdfs:domain rdf:Property; rdfs:range rdf:Property.
rdf:type rdfs:domain rdfs:Resource; rdfs:range rdfs:Class.
…

RDFS in N3 (2)

{?S ?P ?O} => {?P a rdf:Property}.
{?S ?P ?O} => {?S a rdfs:Resource}.
{?S ?P ?O} => {?O a rdfs:Resource}.

{?P rdfs:domain ?C. ?S ?P ?O} => {?S a ?C}.
{?P rdfs:range ?C. ?S ?P ?O} => {?O a ?C}.

{?Q rdfs:subPropertyOf ?R. ?P rdfs:subPropertyOf ?Q}
 => {?P rdfs:subPropertyOf ?R}.
{?P rdfs:subPropertyOf ?R. ?S ?P ?O} => {?S ?R ?O}.

{?A rdfs:subClassOf ?B. ?S a ?A} => {?S a ?B}.
{?B rdfs:subClassOf ?C. ?A rdfs:subClassOf ?B}
 => {?A rdfs:subClassOf ?C}.

Demonstration

l  Install cwm
l Download files in the n3 examples directory

http://cs.umbc.edu/courses/graduate/691/
spring13/01/examples/n3/

HW3

Summary

l CWM is a relatively simple program that lets you
manipulate and explore RDF and Semantic Web
technology

l  It’s limited in what it can do and not very efficient
l But useful and “close to the machine”
l Written in Python
l There are related tools in Python, see rdflib
l And lots more tools in other languages

genesis

A simple example of family relations
using the gedcom vocabulary.

@prefix gc: <http://www.daml.org/

2001/01/gedcom/gedcom#>.
@prefix log: <http://www.w3.org/2000/10/

swap/log#>.
@prefix owl: <http://www.w3.org/2002/07/

owl#>.
@prefix : <#> .
data from the Bible in GEDCOM form
:fam1 a gc:Family.

:Able gc:sex gc:Male;
 gc:givenName "Able";
 gc:childIn :fam1;
 owl:differentFrom :Cain.

:Cain gc:sex gc:Male;
 gc:givenName "Cain";
 gc:childIn :fam1;
 owl:differentFrom :Able.

:Adam gc:sex gc:Male;
 gc:givenName "Adam";
 gc:spouseIn :fam1;
 owl:differentFrom :Eve.

:Eve gc:sex gc:Female;
 gc:givenName "Eve";
 gc:spouseIn :fam1;
 owl:differentFrom

