Resolution in Propositional and First-Order Logic

Inference rules

- Logical inference creates new sentences that logically follow from a set of sentences (KB)
- An inference rule is **sound** if every sentence X it produces when operating on a KB logically follows from the KB

-i.e., inference rule creates no contradictions

- An inference rule is **complete** if it can produce every expression that logically follows from (is entailed by) the KB.
 - Note analogy to complete search algorithms

Sound rules of inference

- Here are some examples of sound rules of inference
- Each can be shown to be sound using a truth table **RULE PREMISE CONCLUSION** Modus Ponens $A, A \rightarrow B$ B A ^ B And Introduction A, B And Elimination $A \land B$ A Double Negation $\neg \neg A$ A Unit Resolution $A \vee B, \neg B$ A **Resolution** $A \lor B, \neg B \lor C A \lor C$

Soundness of modus ponens

Α	В	$\mathbf{A} \rightarrow \mathbf{B}$	OK?
True	True	True	
True	False	False	
False	True	True	
False	False	True	

Resolution

- **Resolution** is a valid inference rule producing a new clause implied by two clauses containing *complementary literals*
 - A literal is an atomic symbol or its negation, i.e., P, ~P
- Amazingly, this is the only interference rule you need to build a sound and complete theorem prover
 - Based on proof by contradiction and usually called resolution refutation
- The resolution rule was discovered by Alan Robinson (CS, U. of Syracuse) in the mid 60s

Resolution

- A KB is actually a set of sentences all of which are true, i.e., a conjunction of sentences.
- To use resolution, put KB into *conjunctive normal* form (CNF), where each sentence written as a disjunction of (one or more) literals
 Tautologies

 $(A \rightarrow B) \leftrightarrow (\sim A \lor B)$

 $(Av(B\wedge C)) \leftrightarrow (AvB) \wedge (AvC)$

Example

- KB: $[P \rightarrow Q, Q \rightarrow R \land S]$
- KB in CNF: [~PvQ, ~QvR, ~QvS]
- Resolve KB(1) and KB(2) producing: $\sim P \vee R$ (*i.e.*, $P \rightarrow R$)
- Resolve KB(1) and KB(3) producing: $\sim P \lor S$ (*i.e.*, $P \rightarrow S$)
- New KB: [~PvQ , ~Qv~Rv~S , ~PvR , ~PvS]

Soundness of the

resolution inference rule

α	β	γ	$\alpha \lor \beta$	$\neg\beta \lor \gamma$	$\alpha \vee \gamma$
False	False	False	False	True	False
False	False	Тпие	False	True	True
False	True	False	True	False	False
<u>False</u>	True	True	True	True	True
True	False	False	True	True	True
True	<u>False</u>	True	True	True	True
True	True	False	Тгие	False	True
<u>True</u>	True	<u>True</u>	True	<u>True</u>	True

From the rightmost three columns of this truth table, we can see that

 $(\alpha \lor \beta) \land (\beta \lor \gamma) \leftrightarrow (\alpha \lor \gamma)$ is valid (i.e., always true regardless of the truth values assigned to α , β and γ

Resolution

- Resolution is a **sound** and **complete** inference procedure for unrestricted FOL
- Reminder: Resolution rule for propositional logic:
 - $-P_1 \vee P_2 \vee \dots \vee P_n$ $-\neg P_1 \vee Q_2 \vee \dots \vee Q_m$ $-\text{Resolvent: } P_2 \vee \dots \vee P_n \vee Q_2 \vee \dots \vee Q_m$
- We'll need to extend this to handle quantifiers and variables

Resolution covers many cases

- Modes Ponens
 - from P and P \rightarrow Q derive Q
 - from P and \neg P v Q derive Q
- Chaining
 - from $P \rightarrow Q$ and $Q \rightarrow R$ derive $P \rightarrow R$
 - from $(\neg P \lor Q)$ and $(\neg Q \lor R)$ derive $\neg P \lor R$
- Contradiction detection
 - from P and \neg P derive false
 - from P and \neg P derive the empty clause (=false)

Resolution in first-order logic

•Given sentences in *conjunctive normal form*:

- P_1 v ... v P_n and Q_1 v ... v Q_m

- P_i and Q_i are literals, i.e., positive or negated predicate symbol with its terms
- •if P_j and $\neg Q_k$ unify with substitution list θ , then derive the resolvent sentence:

subst(θ , $P_1 \vee \ldots \vee P_{j-1} \vee P_{j+1} \ldots P_n \vee Q_1 \vee \ldots Q_{k-1} \vee Q_{k+1} \vee \ldots \vee Q_m$)

- •Example
 - from clause $P(x, f(a)) \vee P(x, f(y)) \vee Q(y)$
 - and clause $\neg P(z, f(a)) \vee \neg Q(z)$
 - -derive resolvent $P(z, f(y)) \vee Q(y) \vee \neg Q(z)$
 - -Using $\theta = \{x/z\}$

A resolution proof tree

Resolution refutation

- Given a consistent set of axioms KB and goal sentence Q, show that KB $\mid= Q$
- Proof by contradiction: Add ¬Q to KB and try to prove false, i.e.:
 (KB |- Q) ↔ (KB ∧ ¬Q |- False)
- Resolution is **refutation complete:** it can establish that a given sentence Q is entailed by KB, but can't (in general) generate all logical consequences of a set of sentences
- Also, it cannot be used to prove that Q is **not entailed** by KB
- Resolution **won' t always give an answer** since entailment is only semi-decidable
 - And you can't just run two proofs in parallel, one trying to prove Q and the other trying to prove ¬Q, since KB might not entail either one

Resolution example

- KB:
 - $allergies(X) \rightarrow sneeze(X)$
 - $cat(Y) \land allergicToCats(X) \rightarrow allergies(X)$
 - cat(felix)
 - allergicToCats(mary)
- Goal:
 - sneeze(mary)

Refutation resolution proof tree

