
Resolution in
Propositional and
First-Order Logic

Inference rules
•  Logical inference creates new sentences that

logically follow from a set of sentences (KB)
•  An inference rule is sound if every sentence X it

produces when operating on a KB logically
follows from the KB
– i.e., inference rule creates no contradictions

•  An inference rule is complete if it can produce
every expression that logically follows from (is
entailed by) the KB.
– Note analogy to complete search algorithms

Sound rules of inference
•  Here are some examples of sound rules of inference
•  Each can be shown to be sound using a truth table

RULE PREMISE CONCLUSION
Modus Ponens A, A → B B
And Introduction A, B A ∧ B
And Elimination A ∧ B A
Double Negation ¬¬A A
Unit Resolution A ∨ B, ¬B A
Resolution A ∨ B, ¬B ∨ C A ∨ C

Soundness of modus ponens

A B A → B OK?

True True True √
True False False √

False True True √

False False True √

Resolution
•  Resolution is a valid inference rule producing a new

clause implied by two clauses containing
complementary literals
–  A literal is an atomic symbol or its negation, i.e., P, ~P

•  Amazingly, this is the only interference rule you
need to build a sound and complete theorem prover
–  Based on proof by contradiction and usually called

resolution refutation

•  The resolution rule was discovered by Alan
Robinson (CS, U. of Syracuse) in the mid 60s

Resolution
•  A KB is actually a set of sentences all of which are

true, i.e., a conjunction of sentences.
•  To use resolution, put KB into conjunctive normal

form (CNF), where each sentence written as a disjunc-
tion of (one or more) literals

Example
•  KB: [P→Q , Q→R∧S]
•  KB in CNF: [~P∨Q , ~Q∨R , ~Q∨S]
•  Resolve KB(1) and KB(2) producing: ~P∨R (i.e., P→R)
•  Resolve KB(1) and KB(3) producing: ~P∨S (i.e., P→S)
•  New KB: [~P∨Q , ~Q∨~R∨~S , ~P∨R , ~P∨S]

Tautologies
(A→B)↔(~A∨B)

(A∨(B∧C)) ↔(A∨B)∧(A∨C)

Soundness of the
resolution inference rule

From the rightmost three columns of this truth table, we
can see that

(α ∨ β) ∧ (β ∨ γ) ↔ (α ∨ γ)
is valid (i.e., always true regardless of the truth values
assigned to α, β and γ

Resolution
•  Resolution is a sound and complete

inference procedure for unrestricted FOL
•  Reminder: Resolution rule for propositional

logic:
– P1 ∨ P2 ∨ ... ∨ Pn
– ¬P1 ∨ Q2 ∨ ... ∨ Qm
– Resolvent: P2 ∨ ... ∨ Pn ∨ Q2 ∨ ... ∨ Qm

•  We’ll need to extend this to handle
quantifiers and variables

Resolution covers many cases
•  Modes Ponens
–  from P and P → Q derive Q
–  from P and ¬ P ∨ Q derive Q

•  Chaining
–  from P → Q and Q → R derive P → R
–  from (¬ P ∨ Q) and (¬ Q ∨ R) derive ¬ P ∨ R

•  Contradiction detection
–  from P and ¬ P derive false
–  from P and ¬ P derive the empty clause (=false)

Resolution in first-order logic
• Given sentences in conjunctive normal form:
–  P1 ∨ ... ∨ Pn and Q1 ∨ ... ∨ Qm
– Pi and Qi are literals, i.e., positive or negated predicate

symbol with its terms

• if Pj and ¬Qk unify with substitution list θ, then derive
the resolvent sentence:
subst(θ, P1∨…∨Pj-1∨Pj+1…Pn∨ Q1∨…Qk-1∨Qk+1∨…∨Qm)
• Example
– from clause P(x, f(a)) ∨ P(x, f(y)) ∨ Q(y)
– and clause ¬P(z, f(a)) ∨ ¬Q(z)
– derive resolvent P(z, f(y)) ∨ Q(y) ∨ ¬Q(z)
– Using θ = {x/z}

A resolution proof tree

A resolution proof tree
~P(w) v Q(w) ~Q(y) v S(y)

~P(w) v S(w)

P(x) v R(x)
~True v P(x) v R(x)

S(x) v R(x)

~R(w) v S(w)

S(A)

Resolution refutation
•  Given a consistent set of axioms KB and goal sentence

Q, show that KB |= Q
•  Proof by contradiction: Add ¬Q to KB and try to

prove false, i.e.:
(KB |- Q) ↔ (KB ∧ ¬Q |- False)

•  Resolution is refutation complete: it can establish
that a given sentence Q is entailed by KB, but can’t
(in general) generate all logical consequences of a set
of sentences

•  Also, it cannot be used to prove that Q is not entailed
by KB

•  Resolution won’t always give an answer since
entailment is only semi-decidable
–  And you can’t just run two proofs in parallel, one trying

to prove Q and the other trying to prove ¬Q, since KB
might not entail either one

Resolution example

•  KB:
– allergies(X) → sneeze(X)
– cat(Y) ∧ allergicToCats(X) → allergies(X)
– cat(felix)
– allergicToCats(mary)

•  Goal:
– sneeze(mary)

Refutation resolution proof tree

¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergicToCats(z) ∨ allergies(z)

¬cat(y) v sneeze(z) ∨ ¬allergicToCats(z) cat(felix)

sneeze(z) v ¬allergicToCats(z) allergicToCats(mary)

false

¬sneeze(mary) sneeze(mary)

w/z

y/felix

z/mary

negated query

Notation
old/new

