
Resolution in 
Propositional and 
First-Order Logic 



Inference rules 
•  Logical inference creates new sentences that 

logically follow from a set of sentences (KB) 
•  An inference rule is sound if every sentence X it 

produces when operating on a KB logically 
follows from the KB 
– i.e., inference rule creates no contradictions 

•  An inference rule is complete if it can produce 
every expression that logically follows from (is 
entailed by) the KB. 
– Note analogy to complete search algorithms 



Sound rules of inference 
•  Here are some examples of sound rules of inference 
•  Each can be shown to be sound using a truth table 

RULE    PREMISE   CONCLUSION 
Modus Ponens   A, A → B   B 
And Introduction  A, B    A ∧ B 
And Elimination   A ∧ B   A 
Double Negation  ¬¬A    A 
Unit Resolution  A ∨ B, ¬B   A 
Resolution   A ∨ B, ¬B ∨ C A ∨ C 



Soundness of modus ponens 

A B A → B OK? 

True True True √ 
True False False √ 

False True True √ 

False False True √ 



Resolution 
•  Resolution is a valid inference rule producing a new 

clause implied by two clauses containing 
complementary literals 
–  A literal is an atomic symbol or its negation, i.e., P, ~P 

•  Amazingly, this is the only interference rule you 
need to build a sound and complete theorem prover 
–  Based on proof by contradiction and usually called 

resolution refutation 

•  The resolution rule was discovered by Alan 
Robinson (CS, U. of Syracuse) in the mid 60s 



Resolution 
•  A KB is actually a set of sentences all of which are 

true, i.e., a conjunction of sentences. 
•  To use resolution, put KB into conjunctive normal 

form (CNF), where each sentence written as a disjunc- 
tion of (one or more) literals 

Example 
•  KB: [P→Q , Q→R∧S] 
•  KB in CNF: [~P∨Q , ~Q∨R , ~Q∨S] 
•  Resolve KB(1) and KB(2)  producing: ~P∨R   (i.e., P→R) 
•  Resolve KB(1) and KB(3)  producing: ~P∨S   (i.e., P→S) 
•  New KB: [~P∨Q , ~Q∨~R∨~S , ~P∨R , ~P∨S] 

Tautologies 
(A→B)↔(~A∨B) 

(A∨(B∧C)) ↔(A∨B)∧(A∨C)  



Soundness of the  
resolution inference rule  

From the rightmost three columns of this truth table, we 
can see that 

(α ∨ β) ∧ (β ∨ γ) ↔ (α ∨ γ) 
is valid (i.e., always true regardless of the truth values 
assigned to α, β and γ 



Resolution 
•  Resolution is a sound and complete 

inference procedure for unrestricted FOL 
•  Reminder: Resolution rule for propositional 

logic: 
– P1 ∨ P2 ∨ ... ∨ Pn  
– ¬P1 ∨ Q2 ∨ ... ∨ Qm  
– Resolvent: P2 ∨ ... ∨ Pn ∨ Q2 ∨ ... ∨ Qm  

•  We’ll need to extend this to handle 
quantifiers and variables 



Resolution covers many cases 
•  Modes Ponens 
–  from P and P → Q derive Q 
–  from P and ¬ P ∨ Q  derive Q 

•  Chaining 
–  from P → Q and Q → R derive P → R  
–  from (¬ P ∨ Q) and (¬ Q ∨ R)  derive ¬ P ∨ R 

•  Contradiction detection 
–  from P and ¬ P  derive false 
–  from P and ¬ P  derive the empty clause (=false) 



Resolution in first-order logic 
• Given sentences in conjunctive normal form: 
–  P1 ∨ ... ∨ Pn    and   Q1 ∨ ... ∨ Qm  
– Pi and Qi are literals, i.e., positive or negated predicate 

symbol with its terms 

• if Pj and ¬Qk unify with substitution list θ, then derive 
the resolvent sentence: 
subst(θ, P1∨…∨Pj-1∨Pj+1…Pn∨ Q1∨…Qk-1∨Qk+1∨…∨Qm) 
• Example 
– from clause P(x, f(a)) ∨ P(x, f(y)) ∨ Q(y)  
– and clause ¬P(z, f(a)) ∨ ¬Q(z) 
– derive resolvent P(z, f(y)) ∨ Q(y) ∨ ¬Q(z)  
– Using θ = {x/z}  



A resolution proof tree 



A resolution proof tree 
~P(w) v Q(w) ~Q(y) v S(y) 

~P(w) v S(w) 

P(x) v R(x) 
~True v P(x) v R(x) 

S(x) v R(x) 

~R(w) v S(w) 

S(A) 



Resolution refutation 
•  Given a consistent set of axioms KB and goal sentence 

Q, show that KB |= Q 
•  Proof by contradiction:  Add ¬Q to KB and try to 

prove false, i.e.: 
(KB |- Q) ↔ (KB ∧ ¬Q |- False)  

•  Resolution is refutation complete: it can establish 
that a given sentence Q is entailed by KB, but can’t 
(in general) generate all logical consequences of a set 
of sentences 

•  Also, it cannot be used to prove that Q is not entailed 
by KB 

•  Resolution won’t always give an answer since 
entailment is only semi-decidable 
–  And you can’t just run two proofs in parallel, one trying 

to prove Q and the other trying to prove ¬Q, since KB 
might not entail either one 



Resolution example 

•  KB:   
– allergies(X) → sneeze(X) 
– cat(Y) ∧ allergicToCats(X) → allergies(X) 
– cat(felix) 
– allergicToCats(mary) 

•  Goal: 
– sneeze(mary) 



Refutation resolution proof tree 

¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergicToCats(z) ∨ allergies(z) 

¬cat(y) v sneeze(z) ∨ ¬allergicToCats(z) cat(felix) 

sneeze(z) v ¬allergicToCats(z) allergicToCats(mary) 

false 

¬sneeze(mary) sneeze(mary) 

w/z 

y/felix 

z/mary 

negated query 

Notation 
old/new 


