
Machine Learning:
Decision Trees

Chapter 18.1-18.3

Some material adopted from notes
by Chuck Dyer

Learning decision trees
• Goal: Build a decision tree to classify examples as

positive or negative instances of a concept using
supervised learning from a training set

• A decision tree is a tree where
–  each non-leaf node has associated
with it an attribute (feature)

– each leaf node has associated
with it a classification (+ or -)

– each arc has associated with it one
of the possible values of the attribute
at the node from which the arc is directed

• Generalization: allow for >2 classes
– e.g., for stocks, classify into {sell, hold, buy}

Color

Shape Size +

+ - Size

+ -

+
big

big small

small

round square

red green blue

A decision tree-induced partition
The red groups are + examples, blue -

+: big green shapes
-: big, blue squares

Expressiveness of Decision Trees
• Can express any function of the input attributes, e.g.
•  For Boolean functions, truth table row → path to leaf:

•  Trivially, there’s a consistent decision tree for any
training set with one path to leaf for each example
(unless f nondeterministic in x), but it probably won't
generalize to new examples

•  We prefer to find more compact decision trees

Inductive learning and bias

•  Suppose that we want to learn a function f(x) = y and we
are given some sample (x,y) pairs, as in figure (a)

•  There are several hypotheses we could make about this
function, e.g.: (b), (c) and (d)

•  A preference for one over the others reveals the bias of our
learning technique, e.g.:
–  prefer piece-wise functions
–  prefer a smooth function
–  prefer a simple function and treat outliers as noise

Preference bias: Occam’s Razor
• AKA Occam’s Razor, Law of Economy, or Law of

Parsimony
• Principle stated by William of Ockham (1285-1347)

– “non sunt multiplicanda entia praeter necessitatem”
– entities are not to be multiplied beyond necessity

• The simplest consistent explanation is the best
• Therefore, the smallest decision tree that correctly

classifies all of the training examples is best
• Finding the provably smallest decision tree is NP-

hard, so instead of constructing the absolute smallest
tree consistent with the training examples, construct
one that is pretty small

Hypothesis spaces
•  How many distinct decision trees with n Boolean

attributes?
–  = number of Boolean functions
–  = number of distinct truth tables with 2n rows = 22n
–  e.g., with 6 Boolean attributes, 18,446,744,073,709,551,616 trees

•  How many conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)?
–  Each attribute can be in (positive), in (negative), or out

⇒ 3n distinct conjunctive hypotheses
–  e.g., with 6 Boolean attributes, 729 trees

•  A more expressive hypothesis space
–  increases chance that target function can be expressed
–  increases number of hypotheses consistent with training set

 ⇒ may get worse predictions in practice

R&N’s restaurant domain
• Develop decision tree for decision patron makes

when deciding whether or not to wait for a table
• Two classes: wait, leave
• Ten attributes: Alternative available? Bar in

restaurant? Is it Friday? Are we hungry? How full
is the restaurant? How expensive? Is it raining? Do
we have reservation? What type of restaurant is it?
Estimated waiting time?

• Training set of 12 examples
• ~ 7000 possible cases

A decision tree
from introspection

Attribute-based representations

• Examples described by attribute values (Boolean, discrete, continuous),
e.g., situations where I will/won't wait for a table

• Classification of examples is positive (T) or negative (F)
• Serves as a training set

ID3/C4.5 Algorithm
• A greedy algorithm for decision tree construction

developed by Ross Quinlan circa 1987
• Top-down construction of tree by recursively selec-

ting “best attribute” to use at the current node in tree
– Once attribute is selected for current node, generate

child nodes, one for each possible value of attribute
– Partition examples using possible values of attribute,

and assign these subsets of the examples to appropriate
child node

– Repeat for each child node until all examples associated
with a node are either all positive or all negative

Choosing the best attribute
• Key problem: choosing which attribute to split a

given set of examples
• Some possibilities:

– Random: Select any attribute at random
– Least-Values: Choose attribute with smallest number of

possible values
– Most-Values: Choose attribute with largest number of

possible values
– Max-Gain: Choose the attribute that has largest

expected information gain–i.e., attribute that results in
smallest expected size of subtrees rooted at its children

• The ID3 algorithm uses the Max-Gain method of
selecting the best attribute

Choosing an attribute

Idea: good attribute splits examples into subsets
that are (ideally) all positive or all negative

Which is better: Patrons? or Type?

Restaurant example

French

Italian

Thai

Burger
Empty Some Full

Y

Y

Y

Y

Y

Y N

N

N

N

N

N

Random: Patrons or Wait-time; Least-values: Patrons; Most-values: Type; Max-gain: ???

Patrons variable

Ty
pe

 v
ar

ia
bl

e

Splitting
examples
by testing
attributes

ID3-induced
decision tree

Compare the two Decision Trees

Information theory 101
•  Information theory sprang almost fully formed from the

seminal work of Claude E. Shannon at Bell Labs
A Mathematical Theory of Communication, Bell System
Technical Journal, 1948.

•  Intuitions
– Common words (a, the, dog) shorter than less common ones

(parlimentarian, foreshadowing)
– Morse code: common (probable) letters have shorter encodings

•  Information measured in minimum number of bits
needed to store or send some information

• The measure of data (information entropy) is the
average number of bits needed to storage or send

Information theory 101
•  Information is measured in bits
•  Information conveyed by message depends on its probability
•  For n equally probable possible messages, each has prob. 1/n
•  Information conveyed by message is -log(p) = log(n)

e.g., with 16 messages, then log(16) = 4 and we need 4 bits to
identify/send each message

•  Given probability distribution for n messages P = (p1,p2…pn),
the information conveyed by distribution (aka entropy of P) is:
I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

info in msg 2 probability of msg 2

Information theory II
•  Information conveyed by distribution (aka entropy of P):

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

•  Examples:
–  If P is (0.5, 0.5) then I(P) = .5*1 + 0.5*1 = 1
–  If P is (0.67, 0.33) then I(P) = -(2/3*log(2/3) +

1/3*log(1/3)) = 0.92
–  If P is (1, 0) then I(P) = 1*1 + 0*log(0) = 0

•  The more uniform the probability distribution, the greater
its information: more information is conveyed by a
message telling you which event actually occurred

•  Entropy is the average number of bits/message needed to
represent a stream of messages

Example: Huffman code
•  In 1952 MIT student David Huffman devised, in

course of doing a homework assignment, an elegant
coding scheme which is optimal in the case where all
symbols’ probabilities are integral powers of 1/2.

• A Huffman code can be built in the following manner:
– Rank symbols in order of probability of occurrence
– Successively combine two symbols of the lowest

probability to form a new composite symbol;
eventually we will build a binary tree where each
node is the probability of all nodes beneath it

– Trace a path to each leaf, noticing direction at each
node

Huffman code example
M P
A .125
B .125
C .25
D .5

.5 .5

1

.125 .125

.25

A

C

B

D
.25

0 1

0

0 1

1

M code length prob

A 000 3 0.125 0.375
B 001 3 0.125 0.375
C 01 2 0.250 0.500
D 1 1 0.500 0.500

average message length 1.750

If we use this code to many
messages (A,B,C or D) with this
probability distribution, then, over
time, the average bits/message
should approach 1.75

Information for classification
If a set T of records is partitioned into disjoint exhaustive
classes (C1,C2,..,Ck) on the basis of the value of the class
attribute, then information needed to identify class of an
element of T is:

 Info(T) = I(P)
where P is the probability distribution of partition (C1,C2,..,Ck):

P = (|C1|/|T|, |C2|/|T|, ..., |Ck|/|T|)

C1
C2

C3

C1
C2

C3

High information
Low information

Information for classification II

If we partition T wrt attribute X into sets {T1,T2, ..,Tn},
the information needed to identify class of an element
of T becomes the weighted average of the information
needed to identify the class of an element of Ti, i.e. the
weighted average of Info(Ti):

Info(X,T) = Σ|Ti|/|T| * Info(Ti)

C1
C2

C3
C1

C2

C3

High information Low information

Information gain

• Gain(X,T) = Info(T) - Info(X,T) is difference
between
–  info needed to identify element of T and
–  info needed to identify element of T after value of attribute X known

• This is the gain in information due to attribute X
• Use to rank attributes and build DT where each node

uses attribute with greatest gain of those not yet
considered (in path from root)

• The intent of this ordering is to Create small DTs to
minimize questions

26

Computing Information Gain
French

Italian

Thai

Burger

Empty Some Full

Y

Y

Y

Y

Y

Y N

N

N

N

N

N

• I(T) = ?

• I (Pat, T) = ?

• I (Type, T) = ?

Gain (Pat, T) = ?
Gain (Type, T) = ?

Computing information gain
French

Italian

Thai

Burger

Empty Some Full

Y

Y

Y

Y

Y

Y N

N

N

N

N

N

I(T) =
 - (.5 log .5 + .5 log .5)
 = .5 + .5 = 1

I (Pat, T) =
 2/12 (0) + 4/12 (0) +
 6/12 (- (4/6 log 4/6 +
 2/6 log 2/6))
 = 1/2 (2/3*.6 +
 1/3*1.6)
 = .47

I (Type, T) =
 2/12 (1) + 2/12 (1) +
 4/12 (1) + 4/12 (1) = 1

Gain (Pat, T) = 1 - .47 = .53
Gain (Type, T) = 1 – 1 = 0

The ID3 algorithm builds a decision tree, given a set of non-categorical attributes C1, C2, ..,
Cn, the class attribute C, and a training set T of records

function ID3(R:input attributes, C:class attribute,
S:training set) returns decision tree;

 If S is empty, return single node with value Failure;

 If every example in S has same value for C, return
 single node with that value;

 If R is empty, then return a single node with most
 frequent of the values of C found in examples S;
 # causes errors -- improperly classified record

 Let D be attribute with largest Gain(D,S) among R;

 Let {dj| j=1,2, .., m} be values of attribute D;

 Let {Sj| j=1,2, .., m} be subsets of S consisting of
 records with value dj for attribute D;

 Return tree with root labeled D and arcs labeled
 d1..dm going to the trees ID3(R-{D},C,S1). . .
 ID3(R-{D},C,Sm);

How well does it work?

Many case studies have shown that decision trees are
at least as accurate as human experts.
– A study for diagnosing breast cancer had humans

correctly classifying the examples 65% of the
time; the decision tree classified 72% correct

– British Petroleum designed a decision tree for gas-
oil separation for offshore oil platforms that
replaced an earlier rule-based expert system

– Cessna designed an airplane flight controller using
90,000 examples and 20 attributes per example

Extensions of ID3
• Using gain ratios
• Real-valued data
• Noisy data and overfitting
• Generation of rules
• Setting parameters
• Cross-validation for experimental validation of

performance
• C4.5 is an extension of ID3 that accounts for

unavailable values, continuous attribute value
ranges, pruning of decision trees, rule derivation,
and so on

Using gain ratios
•  The information gain criterion favors attributes that have a large

number of values
–  If we have an attribute D that has a distinct value for each

record, then Info(D,T) is 0, thus Gain(D,T) is maximal
•  To compensate for this Quinlan suggests using the following

ratio instead of Gain:
GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T)

•  SplitInfo(D,T) is the information due to the split of T on the
basis of value of categorical attribute D

SplitInfo(D,T) = I(|T1|/|T|, |T2|/|T|, .., |Tm|/|T|)

where {T1, T2, .. Tm} is the partition of T induced by value of D

Computing gain ratio
French

Italian

Thai

Burger

Empty Some Full

Y

Y

Y

Y

Y

Y N

N

N

N

N

N

• I(T) = 1

• I (Pat, T) = .47

• I (Type, T) = 1

Gain (Pat, T) =.53
Gain (Type, T) = 0

SplitInfo (Pat, T) = - (1/6 log 1/6 + 1/3 log 1/3 + 1/2 log 1/2) = 1/6*2.6 + 1/3*1.6 + 1/2*1
 = 1.47

SplitInfo (Type, T) = 1/6 log 1/6 + 1/6 log 1/6 + 1/3 log 1/3 + 1/3 log 1/3
 = 1/6*2.6 + 1/6*2.6 + 1/3*1.6 + 1/3*1.6 = 1.93

GainRatio (Pat, T) = Gain (Pat, T) / SplitInfo(Pat, T) = .53 / 1.47 = .36

GainRatio (Type, T) = Gain (Type, T) / SplitInfo (Type, T) = 0 / 1.93 = 0

Real-valued data
•  Select set of thresholds defining intervals
•  Each becomes a discrete value of attribute
• Use some simple heuristics, e.g. always divide into

quartiles
• Use domain knowledge…

– divide age into infant (0-2), toddler (3-5), school-aged
(5-8)

•  Or treat this as another learning problem:
– Try different ways to discretize the continuous variable;

see which yield better results w.r.t. some metric
– E.g., try midpoint between every pair of values

Noisy data
• Many kinds of “noise” can occur in the examples:
• Two examples have same attribute/value pairs, but

different classifications
• Some values of attributes are incorrect because of

errors in the data acquisition process or the
preprocessing phase

• The classification is wrong (e.g., + instead of -) because
of some error

• Some attributes are irrelevant to the decision-making
process, e.g., color of a die is irrelevant to its outcome

Overfitting

• Irrelevant attributes, can result in overfitting the
training example data

• If hypothesis space has many dimensions (large
number of attributes), we may find meaningless
regularity in the data that is irrelevant to the
true, important, distinguishing features

• If we have too little training data, even a
reasonable hypothesis space will ‘overfit’

Overfitting

• Fix by by removing irrelevant features
–  E.g., remove ‘year observed’, ‘month

observed’, ‘day observed’, ‘observer name’
from feature vector

• Fix by getting more training data
• Fix by pruning lower nodes in the decision tree

–  E.g., if gain of the best attribute at a node is
below a threshold, stop and make this node a
leaf rather than generating children nodes

Pruning decision trees
•  Pruning of the decision tree is done by replacing a whole

subtree by a leaf node
•  The replacement takes place if a decision rule establishes

that the expected error rate in the subtree is greater than in
the single leaf. E.g.,
–  Training: one training red success and two training blue failures
–  Test: three red failures and one blue success
–  Consider replacing this subtree by a single Failure node.

•  After replacement we will have only two errors instead of
five:

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURE Training Test Pruned

Converting decision trees to rules
•  It is easy to derive rules from a decision tree: write a

rule for each path from the root to a leaf
•  In that rule the left-hand side is built from the label

of the nodes and the labels of the arcs
• The resulting rules set can be simplified:

– Let LHS be the left hand side of a rule
– LHS’ obtained from LHS by eliminating some conditions
– Replace LHS by LHS' in this rule if the subsets of the

training set satisfying LHS and LHS' are equal
– A rule may be eliminated by using meta-conditions such as
“if no other rule applies”

http://archive.ics.uci.edu/ml

233 data sets

http://archive.ics.uci.edu/ml/datasets/Zoo

Zoo data
animal name: string
hair: Boolean
feathers: Boolean
eggs: Boolean
milk: Boolean
airborne: Boolean
aquatic: Boolean
predator: Boolean
toothed: Boolean
backbone: Boolean
breathes: Boolean
venomous: Boolean
fins: Boolean
legs: {0,2,4,5,6,8}
tail: Boolean
domestic: Boolean
catsize: Boolean
type: {mammal, fish,
bird, shellfish, insect,
reptile, amphibian}

101 examples
aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal
antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal
bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal
boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal
buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal
calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal
carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish
catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal
cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal
chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird
chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish
clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,shellfish
crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish
…

Zoo example
aima-python> python
>>> from learning import *
>>> zoo
<DataSet(zoo): 101 examples, 18 attributes>
>>> dt = DecisionTreeLearner()
>>> dt.train(zoo)
>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0]) #eggs=1
'fish'
>>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0]) #eggs=0
'mammal’

Zoo example
>> dt.dt
DecisionTree(13, 'legs', {0: DecisionTree(12, 'fins', {0:
DecisionTree(8, 'toothed', {0: 'shellfish', 1: 'reptile'}), 1:
DecisionTree(3, 'eggs', {0: 'mammal', 1: 'fish'})}), 2:
DecisionTree(1, 'hair', {0: 'bird', 1: 'mammal'}), 4:
DecisionTree(1, 'hair', {0: DecisionTree(6, 'aquatic', {0:
'reptile', 1: DecisionTree(8, 'toothed', {0: 'shellfish', 1:
'amphibian'})}), 1: 'mammal'}), 5: 'shellfish', 6:
DecisionTree(6, 'aquatic', {0: 'insect', 1: 'shellfish'}), 8:
'shellfish'})

Zoo example
>>> dt.dt.display()
Test legs
 legs = 0 ==> Test fins
 fins = 0 ==> Test toothed
 toothed = 0 ==> RESULT = shellfish
 toothed = 1 ==> RESULT = reptile
 fins = 1 ==> Test eggs
 eggs = 0 ==> RESULT = mammal
 eggs = 1 ==> RESULT = fish
 legs = 2 ==> Test hair
 hair = 0 ==> RESULT = bird
 hair = 1 ==> RESULT = mammal
 legs = 4 ==> Test hair
 hair = 0 ==> Test aquatic
 aquatic = 0 ==> RESULT = reptile
 aquatic = 1 ==> Test toothed
 toothed = 0 ==> RESULT = shellfish
 toothed = 1 ==> RESULT = amphibian
 hair = 1 ==> RESULT = mammal
 legs = 5 ==> RESULT = shellfish
 legs = 6 ==> Test aquatic
 aquatic = 0 ==> RESULT = insect
 aquatic = 1 ==> RESULT = shellfish
 legs = 8 ==> RESULT = shellfish

Zoo example
>>> dt.dt.display()
Test legs
 legs = 0 ==> Test fins
 fins = 0 ==> Test toothed
 toothed = 0 ==> RESULT = shellfish
 toothed = 1 ==> RESULT = reptile
 fins = 1 ==> Test milk
 milk = 0 ==> RESULT = fish
 milk = 1 ==> RESULT = mammal
 legs = 2 ==> Test hair
 hair = 0 ==> RESULT = bird
 hair = 1 ==> RESULT = mammal
 legs = 4 ==> Test hair
 hair = 0 ==> Test aquatic
 aquatic = 0 ==> RESULT = reptile
 aquatic = 1 ==> Test toothed
 toothed = 0 ==> RESULT = shellfish
 toothed = 1 ==> RESULT = amphibian
 hair = 1 ==> RESULT = mammal
 legs = 5 ==> RESULT = shellfish
 legs = 6 ==> Test aquatic
 aquatic = 0 ==> RESULT = insect
 aquatic = 1 ==> RESULT = shellfish
 legs = 8 ==> RESULT = shellfish

Add the shark example
to the training set and
retrain

Summary: Decision tree learning
• Widely used learning methods in practice
• Can out-perform human experts in many problems
• Strengths include

– Fast and simple to implement
– Can convert result to a set of easily interpretable rules
– Empirically valid in many commercial products
– Handles noisy data

• Weaknesses include
– Univariate splits/partitioning using only one attribute at a

time so limits types of possible trees
– Large decision trees may be hard to understand
– Requires fixed-length feature vectors
– Non-incremental (i.e., batch method)

