
Machine Learning: 
Decision Trees 

Chapter 18.1-18.3 

Some material adopted from notes 
by Chuck Dyer 



Learning decision trees 
• Goal: Build a decision tree to classify examples as 

positive or negative instances of a concept using 
supervised learning from a training set 

• A decision tree is a tree where 
–  each non-leaf node has associated 
with it an attribute (feature) 

– each leaf node has associated 
with it a classification (+ or -) 

– each arc has associated with it one 
of the possible values of the attribute 
at the node from which the arc is directed  

• Generalization: allow for >2 classes 
– e.g., for stocks, classify into {sell, hold, buy} 
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A decision tree-induced partition 
The red groups are + examples, blue - 

+: big green shapes 
-: big, blue squares 



Expressiveness of Decision Trees 
• Can express any function of the input attributes, e.g. 
•  For Boolean functions, truth table row → path to leaf: 

 

•  Trivially, there’s a consistent decision tree for any 
training set with one path to leaf for each example 
(unless f nondeterministic in x), but it probably won't 
generalize to new examples 

•  We prefer to find more compact decision trees 



Inductive learning and bias 

•  Suppose that we want to learn a function f(x) = y and we 
are given some sample (x,y) pairs, as in figure (a) 

•  There are several hypotheses we could make about this 
function, e.g.: (b),  (c) and (d) 

•  A preference for one over the others reveals the bias of our 
learning technique, e.g.: 
–  prefer piece-wise functions 
–  prefer a smooth function 
–  prefer a simple function and treat outliers as noise 



Preference bias: Occam’s Razor 
• AKA Occam’s Razor, Law of Economy, or Law of 

Parsimony 
• Principle stated by William of Ockham (1285-1347) 

– “non sunt multiplicanda entia praeter necessitatem”  
– entities are not to be  multiplied beyond necessity  

• The simplest consistent explanation is the best 
• Therefore, the smallest decision tree that correctly 

classifies all of the training examples is best 
• Finding the provably smallest decision tree is NP-

hard, so instead of constructing the absolute smallest 
tree consistent with the training examples, construct 
one that is pretty small 



Hypothesis spaces 
•  How many distinct decision trees with n Boolean 

attributes? 
–  = number of Boolean functions 
–  = number of distinct truth tables with 2n rows = 22n 
–  e.g., with 6 Boolean attributes, 18,446,744,073,709,551,616 trees 

•  How many conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)? 
–  Each attribute can be in (positive), in (negative), or out 

⇒ 3n distinct conjunctive hypotheses 
–  e.g., with 6 Boolean attributes, 729 trees 

•  A more expressive hypothesis space 
–  increases chance that target function can be expressed 
–  increases number of hypotheses consistent with training set 

 ⇒ may get worse predictions in practice 



R&N’s restaurant domain 
• Develop decision tree for decision patron makes 

when deciding whether or not to wait for a table 
• Two classes: wait, leave 
• Ten attributes: Alternative available? Bar in 

restaurant? Is it Friday? Are we hungry? How full 
is the restaurant? How expensive? Is it raining? Do 
we have reservation? What type of restaurant is it? 
Estimated waiting time? 

• Training set of 12 examples 
• ~ 7000 possible cases  



A decision tree 
from introspection 



Attribute-based representations 

• Examples described by attribute values (Boolean, discrete, continuous), 
e.g., situations where I will/won't wait for a table 

• Classification of examples is positive (T) or negative (F) 
• Serves as a training set 



ID3/C4.5 Algorithm 
• A greedy algorithm for decision tree construction 

developed by Ross Quinlan circa 1987  
• Top-down construction of tree by recursively selec-

ting “best attribute” to use at the current node in tree 
– Once attribute is selected for current node, generate 

child nodes, one for each possible value of attribute 
– Partition examples using possible values of attribute, 

and assign these subsets of the examples to appropriate 
child node 

– Repeat for each child node until all examples associated 
with a node are either all positive or all negative 



Choosing the best attribute 
• Key problem: choosing which attribute to split a 

given set of examples 
• Some possibilities: 

– Random: Select any attribute at random  
– Least-Values: Choose attribute with smallest number of 

possible values  
– Most-Values: Choose attribute with largest number of 

possible values  
– Max-Gain: Choose the attribute that has largest 

expected information gain–i.e., attribute that results in 
smallest expected size of subtrees rooted at its children 

• The ID3 algorithm uses the Max-Gain method of 
selecting the best attribute 



Choosing an attribute 

Idea: good attribute splits examples into subsets 
that are (ideally) all positive or all negative 

 
 
 
 
Which is better: Patrons? or Type? 
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Random: Patrons or Wait-time; Least-values: Patrons; Most-values: Type; Max-gain: ??? 
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Splitting 
examples  
by testing 
attributes 



ID3-induced  
decision tree 



Compare the two Decision Trees 



Information theory 101 
•  Information theory sprang almost fully formed from the 

seminal work of Claude E. Shannon at Bell Labs 
A Mathematical Theory of Communication, Bell System 
Technical Journal, 1948.  

•  Intuitions 
– Common words (a, the, dog) shorter than less common ones 

(parlimentarian, foreshadowing) 
– Morse code: common (probable) letters have shorter encodings 

•  Information measured in minimum number of bits 
needed to store or send some information 

• The measure of data (information entropy) is the 
average number of bits needed to storage or send 



Information theory 101 
•  Information is measured in bits 
•  Information conveyed by message depends on its probability 
•  For n equally probable possible messages, each has prob. 1/n 
•  Information conveyed by message is -log(p) = log(n) 

e.g., with 16 messages, then log(16) = 4 and we need 4 bits to 
identify/send each message 

•  Given probability distribution for n messages  P = (p1,p2…pn), 
the information conveyed by distribution (aka entropy of P) is:  
I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn)) 

info in msg 2 probability of msg 2 



Information theory II 
•  Information conveyed by distribution (aka entropy of P):  

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn)) 

•  Examples: 
–  If P is (0.5, 0.5) then I(P) = .5*1 + 0.5*1 = 1 
–  If P is (0.67, 0.33) then I(P) = -(2/3*log(2/3) + 

1/3*log(1/3)) = 0.92 
–  If P is (1, 0) then I(P) = 1*1 + 0*log(0) = 0 

•  The more uniform the probability distribution, the greater 
its information: more information is conveyed by a 
message telling you which event actually occurred 

•  Entropy is the average number of bits/message needed to 
represent a stream of messages 



Example: Huffman code 
•  In 1952 MIT student David Huffman devised, in 

course of doing a homework assignment, an elegant 
coding scheme which is optimal in the case where all 
symbols’ probabilities are integral powers of 1/2.  

• A Huffman code can be built in the following manner: 
– Rank symbols in order of probability of occurrence 
– Successively combine two symbols of the lowest 

probability to form a new composite symbol; 
eventually we will build a binary tree where each 
node is the probability of all nodes beneath it 

– Trace a path to each leaf, noticing direction at each 
node 



Huffman code example 
M   P 
A  .125 
B  .125 
C  .25 
D  .5 
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M code length prob

A 000 3 0.125 0.375
B 001 3 0.125 0.375
C 01 2 0.250 0.500
D 1 1 0.500 0.500

average message length 1.750

If we use this code to many 
messages (A,B,C or D) with this 
probability distribution, then, over 
time, the average bits/message 
should approach 1.75 



Information for classification 
If a set T of records is partitioned into disjoint exhaustive 
classes (C1,C2,..,Ck) on the basis of the value of the class 
attribute, then information needed to identify class of an 
element of T is:   

 Info(T) = I(P) 
where P is the probability distribution of partition (C1,C2,..,Ck):  

P = (|C1|/|T|, |C2|/|T|, ..., |Ck|/|T|) 
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High information 
Low information 



Information for classification II 

If we partition T wrt attribute X into sets {T1,T2, ..,Tn}, 
the information needed to identify class of an element 
of T becomes the weighted average of the information 
needed to identify the class of an element of Ti, i.e. the 
weighted average of Info(Ti):  

Info(X,T) = Σ|Ti|/|T| * Info(Ti) 
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Information gain 

• Gain(X,T) = Info(T) - Info(X,T)  is difference 
between  
–  info needed to identify element of T and  
–  info needed to identify element of T after value of attribute X known 

• This is the gain in information due to attribute X 
• Use to rank attributes and build DT where each node 

uses attribute with greatest gain of those not yet 
considered (in path from root) 

• The intent of this ordering is to Create small DTs to 
minimize questions 
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• I(T) = ? 

• I (Pat, T) =  ? 

• I (Type, T) = ? 

Gain (Pat, T) = ? 
Gain (Type, T) = ? 



Computing information gain 
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I(T) =  
  - (.5 log .5 + .5 log .5) 
  = .5 + .5 = 1 

I (Pat, T) =  
   2/12 (0) + 4/12 (0) +  
   6/12 (- (4/6 log 4/6 +  
                2/6 log 2/6))  
   = 1/2 (2/3*.6 +  
        1/3*1.6)  
   = .47 

I (Type, T) =  
   2/12 (1) + 2/12 (1) +  
   4/12 (1) + 4/12 (1) = 1 

Gain (Pat, T) = 1 - .47 = .53 
Gain (Type, T) = 1 – 1 = 0 



The ID3 algorithm builds a decision tree, given a set of non-categorical attributes C1, C2, .., 
Cn, the class attribute C, and a training set T of records 
 

function ID3(R:input attributes, C:class attribute, 
S:training set) returns decision tree; 

   If S is empty, return single node with value Failure; 

   If every example in S has same value for C, return  
   single node with that value; 

   If R is empty, then return a single node with most 
   frequent of the values of C found in examples S;  
   # causes errors -- improperly classified record 

   Let D be attribute with largest Gain(D,S) among R;  

   Let {dj| j=1,2, .., m} be values of attribute D; 

   Let {Sj| j=1,2, .., m} be subsets of S consisting of     
             records with value dj for attribute D; 

   Return tree with root labeled D and arcs labeled  
     d1..dm going to the trees ID3(R-{D},C,S1). . . 
     ID3(R-{D},C,Sm); 



How well does it work? 

Many case studies have shown that decision trees are 
at least as accurate as human experts.  
– A study for diagnosing breast cancer had humans 

correctly classifying the examples 65% of the 
time; the decision tree classified 72% correct 

– British Petroleum designed a decision tree for gas-
oil separation for offshore oil platforms that  
replaced an earlier  rule-based expert system 

– Cessna designed an airplane flight controller using 
90,000 examples and 20 attributes per example 



Extensions of ID3 
• Using gain ratios 
• Real-valued data 
• Noisy data and overfitting 
• Generation of rules 
• Setting parameters 
• Cross-validation for experimental validation of 

performance 
• C4.5 is an extension of ID3 that accounts for  

unavailable values, continuous attribute value 
ranges, pruning of decision trees, rule derivation, 
and so on 



Using gain ratios 
•  The information gain criterion favors attributes that have a large 

number of values 
–  If we have an attribute D that has a distinct value for each 

record, then Info(D,T) is 0, thus Gain(D,T) is maximal 
•  To compensate for this Quinlan suggests using the following 

ratio instead of Gain: 
GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T) 

•  SplitInfo(D,T) is the information due to the split of T on the 
basis of value of categorical attribute D 

SplitInfo(D,T)  =  I(|T1|/|T|, |T2|/|T|, .., |Tm|/|T|) 

where {T1, T2, .. Tm} is the partition of T induced by value of D 



Computing gain ratio 
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• I(T) = 1 

• I (Pat, T) = .47 

• I (Type, T) = 1 

Gain (Pat, T) =.53 
Gain (Type, T) = 0 
 
SplitInfo (Pat, T) = - (1/6 log 1/6 + 1/3 log 1/3 + 1/2 log 1/2) = 1/6*2.6 + 1/3*1.6 + 1/2*1 
    = 1.47 

SplitInfo (Type, T) = 1/6 log 1/6 + 1/6 log 1/6 + 1/3 log 1/3 + 1/3 log 1/3 
    = 1/6*2.6 + 1/6*2.6 + 1/3*1.6 + 1/3*1.6 = 1.93 

GainRatio (Pat, T) = Gain (Pat, T) / SplitInfo(Pat, T) = .53 / 1.47 = .36 

GainRatio (Type, T) = Gain (Type, T) / SplitInfo (Type, T) = 0 / 1.93 = 0 



Real-valued data 
•  Select set of thresholds defining intervals 
•  Each becomes a discrete value of attribute 
• Use some simple heuristics, e.g. always divide into 

quartiles 
• Use domain knowledge… 

– divide age into infant (0-2), toddler (3-5), school-aged 
(5-8) 

•   Or treat this as another learning problem:  
– Try different ways to discretize the continuous variable; 

see which yield better results w.r.t. some metric 
– E.g., try midpoint between every pair of values 



Noisy data 
• Many kinds of “noise” can occur in the examples: 
• Two examples have same attribute/value pairs, but 

different classifications  
• Some values of attributes are incorrect because of 

errors in the data acquisition process or the 
preprocessing phase  

• The classification is wrong (e.g., + instead of -) because 
of some error  

• Some attributes are irrelevant to the decision-making 
process, e.g., color of a die is irrelevant to its outcome 



Overfitting 

• Irrelevant attributes, can result in overfitting the 
training example data  

• If  hypothesis space has many dimensions (large 
number of attributes), we may find meaningless 
regularity in the data that is irrelevant to the 
true, important, distinguishing features 

• If we have too little training data, even a 
reasonable hypothesis space will ‘overfit’ 



Overfitting 

• Fix by by removing irrelevant features 
–  E.g., remove ‘year observed’, ‘month 

observed’, ‘day observed’, ‘observer name’ 
from feature vector 

• Fix by getting more training data 
• Fix by pruning lower nodes in the decision tree 

–  E.g., if gain of the best attribute at a node is 
below a threshold, stop and make this node a 
leaf rather than generating children nodes 



Pruning decision trees 
•  Pruning of the decision tree is done by replacing a whole 

subtree by a leaf node 
•  The replacement takes place if a decision rule establishes 

that the expected error rate in the subtree is greater than in 
the single leaf. E.g., 
–  Training: one training red success and two training blue failures 
–  Test: three red failures and one blue success 
–  Consider replacing this subtree by a single Failure node.  

•  After replacement we will have only two errors instead of 
five: 

Color 

1 success 
0 failure 

0 success 
2 failures 

red blue 

Color 

1 success 
3 failure 

1 success 
1 failure 

red blue 2 success 
4 failure 

FAILURE Training Test Pruned 



Converting decision trees to rules 
•  It is easy to derive rules from a decision tree: write a 

rule for each path from the root to a leaf 
•  In that rule the left-hand side is built from the label 

of the nodes and the labels of the arcs 
• The resulting rules set can be simplified: 

– Let LHS be the left hand side of a rule 
– LHS’ obtained from LHS by eliminating some conditions  
– Replace LHS by LHS' in this rule if the subsets of the 

training set satisfying LHS and LHS' are equal 
– A rule may be eliminated by using meta-conditions such as 
“if no other rule applies” 



http://archive.ics.uci.edu/ml 

233 data sets 



http://archive.ics.uci.edu/ml/datasets/Zoo 



Zoo data 
animal name: string 
hair: Boolean  
feathers: Boolean  
eggs: Boolean  
milk: Boolean  
airborne: Boolean  
aquatic: Boolean  
predator: Boolean  
toothed: Boolean  
backbone: Boolean  
breathes: Boolean  
venomous: Boolean  
fins: Boolean  
legs: {0,2,4,5,6,8} 
tail: Boolean  
domestic: Boolean  
catsize: Boolean  
type: {mammal, fish, 
bird, shellfish, insect, 
reptile, amphibian} 

101 examples 
aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal 
antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal 
bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish 
bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal 
boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal 
buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal 
calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal 
carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish 
catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish 
cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal 
cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal 
chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird 
chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish 
clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,shellfish 
crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish 
… 



Zoo example 
aima-python> python 
>>> from learning import * 
>>> zoo 
<DataSet(zoo): 101 examples, 18 attributes> 
>>> dt = DecisionTreeLearner() 
>>> dt.train(zoo) 
>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0]) #eggs=1 
'fish' 
>>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0]) #eggs=0 
'mammal’ 



Zoo example 
>> dt.dt 
DecisionTree(13, 'legs', {0: DecisionTree(12, 'fins', {0: 
DecisionTree(8, 'toothed', {0: 'shellfish', 1: 'reptile'}), 1: 
DecisionTree(3, 'eggs', {0: 'mammal', 1: 'fish'})}), 2: 
DecisionTree(1, 'hair', {0: 'bird', 1: 'mammal'}), 4: 
DecisionTree(1, 'hair', {0: DecisionTree(6, 'aquatic', {0: 
'reptile', 1: DecisionTree(8, 'toothed', {0: 'shellfish', 1: 
'amphibian'})}), 1: 'mammal'}), 5: 'shellfish', 6: 
DecisionTree(6, 'aquatic', {0: 'insect', 1: 'shellfish'}), 8: 
'shellfish'}) 



Zoo example 
>>> dt.dt.display() 
Test legs 
 legs = 0 ==> Test fins 
     fins = 0 ==> Test toothed 
         toothed = 0 ==> RESULT =  shellfish 
         toothed = 1 ==> RESULT =  reptile 
     fins = 1 ==> Test eggs 
         eggs = 0 ==> RESULT =  mammal 
         eggs = 1 ==> RESULT =  fish 
 legs = 2 ==> Test hair 
     hair = 0 ==> RESULT =  bird 
     hair = 1 ==> RESULT =  mammal 
 legs = 4 ==> Test hair 
     hair = 0 ==> Test aquatic 
         aquatic = 0 ==> RESULT =  reptile 
         aquatic = 1 ==> Test toothed 
             toothed = 0 ==> RESULT =  shellfish 
             toothed = 1 ==> RESULT =  amphibian 
     hair = 1 ==> RESULT =  mammal 
 legs = 5 ==> RESULT =  shellfish 
 legs = 6 ==> Test aquatic 
     aquatic = 0 ==> RESULT =  insect 
     aquatic = 1 ==> RESULT =  shellfish 
 legs = 8 ==> RESULT =  shellfish 
 
 



Zoo example 
>>> dt.dt.display() 
Test legs 
 legs = 0 ==> Test fins 
     fins = 0 ==> Test toothed 
         toothed = 0 ==> RESULT =  shellfish 
         toothed = 1 ==> RESULT =  reptile 
     fins = 1 ==> Test milk 
         milk = 0 ==> RESULT =  fish 
         milk = 1 ==> RESULT =  mammal 
 legs = 2 ==> Test hair 
     hair = 0 ==> RESULT =  bird 
     hair = 1 ==> RESULT =  mammal 
 legs = 4 ==> Test hair 
     hair = 0 ==> Test aquatic 
         aquatic = 0 ==> RESULT =  reptile 
         aquatic = 1 ==> Test toothed 
             toothed = 0 ==> RESULT =  shellfish 
             toothed = 1 ==> RESULT =  amphibian 
     hair = 1 ==> RESULT =  mammal 
 legs = 5 ==> RESULT =  shellfish 
 legs = 6 ==> Test aquatic 
     aquatic = 0 ==> RESULT =  insect 
     aquatic = 1 ==> RESULT =  shellfish 
 legs = 8 ==> RESULT =  shellfish 
 

Add the shark example 
to the training set and 
retrain 



Summary: Decision tree learning 
• Widely used learning methods in practice  
• Can out-perform human experts in many problems  
• Strengths include 

– Fast and simple to implement 
– Can convert result to a set of easily interpretable rules 
– Empirically valid in many commercial products 
– Handles noisy data  

• Weaknesses include 
– Univariate splits/partitioning using only one attribute at a 

time so limits types of possible trees 
– Large decision trees may be hard to understand 
– Requires fixed-length feature vectors  
– Non-incremental (i.e., batch method) 


