Graphplan/ SATPlan

Chapter 11.4-11.7

Some material adapted from slides by
Jean-Claude Latombe / Lise Getoor

GraphPlan

GraphPlan: Basic idea

- Construct a graph that encodes constraints on possible plans
- Use this "planning graph" to constrain search for a valid plan
- Planning graph can be built for each problem in a relatively short time

Planning graph

- Directed, leveled graph with alternating layers of nodes
- Odd layers ("state levels") represent candidate propositions that could possibly hold at step i
- Even layers ("action levels") represent candidate actions that could possibly be executed at step i, including maintenance actions [do nothing]
- Arcs represent preconditions, adds and deletes
- We can only execute one real action at any step, but the data structure keeps track of all actions and states that are possible

GraphPlan properties

- STRIPS operators: conjunctive preconditions, no conditional or universal effects, no negations
- Planning problem must be convertible to propositional representation
- NO continuous variables, temporal constraints, ...
- Problem size grows exponentially
- Finds "shortest" plans (by some definition)
- Sound, complete, and will terminate with failure if there is no plan

What actions and what literals?

- Add an action in level A_{i} if all of its preconditions are present in level S_{i}
- Add a literal in level S_{i} if it is the effect of some action in level $\mathrm{A}_{\mathrm{i}-1}$ (including no-ops)
- Level S_{0} has all of the literals from the initial state

Simple domain: Ricket to Mars

- Literals:
- at X Y
- fuel R
- in XR
X is at location Y
rocket R has fuel
X is in rocket R
- Actions:
- load X L
- unload XL unload X (from R) at location L (R must be at L)
- move $X Y \quad$ move rocket R from X to Y
(R must be at L and have fuel)
- Graph representation:
- Solid black lines: preconditions/effects
- Dotted red lines: negated preconditions/effects
(define (domain rockets)
(:requirements :strips)
(:predicates (cargo ?x) (rocket ?x) (location ?x) (at ?t ?l) (in ?c ?r) (fuel ?r))
(:action load
:parameters (?c ?r ?l)
:precondition (and (cargo ?c) (rocket ?r) (location ?l)
(at ?c ? I) (at ?r ?l))
:effect (and (not (at ?c ?l)) (in ?c ?r)))
(:action unload
:parameters (?c ?r ?I)
:precondition (and (cargo ?c) (rocket ?r) (location ?l)
(in ?c ?r) (at ?r ?l))
:effect (and (not (in ?c ?r)) (at ?c ?l)))
(:action fly
:parameters (?r ?dep ?dst)
:precondition (and (rocket ?r) (location ?dep) (location ?dst)
(at ?r ?dep) (fuel ?r))
:effect (and (not (at ?r ?dep)) (at ?r ?dst) (not (fuel ?r)))))
(define (problem rrt5)
(:domain rockets)
(:requirements :strips)
(:objects venus earth mars moon saturn $\times 1 \times 2 \times 3 \times 4 \times 5$ anna beth carol diane emma fiona)
(:init
(location venus) (location earth) (location mars) (location moon)
(location saturn) (rocket x1) (rocket x2) (rocket x3) (rocket x4)
(rocket $\times 5$) (cargo anna) (cargo beth) (cargo carol) (cargo diane)
(cargo emma) (cargo fiona)
(at $x 1$ venus) (at $x 2$ earth) (at $x 3$ mars) (at $x 4$ moon) (at $x 5$ saturn)
(at anna venus) (at beth venus) (at carol earth) (at diane mars)
(at emma moon) (at fiona saturn)
(fuel x1) (fuel x2) (fuel x3) (fuel x4) (fuel x5))
(:goal (and (at anna earth) (at beth saturn) (at carol mars)
(at diane moon) (at emma saturn) (at fiona earth))))

Example planning graph

States	Actions	States	Actions	States	Actions	States
S_{0}	$\mathrm{~A}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~A}_{2}$	$\mathrm{~S}_{3}$
						(Goals!)

BlackBox Planner

STRIPS-based plan representation

