

Chapter 9

Some material adopted from notes by Andreas Geyer-Schulz,, Chuck Dyer, and Mary Getoor

Resolution

- Resolution is a sound and complete inference procedure for unrestricted FOL
- Reminder: Resolution rule for propositional logic:
$-P_{1} \vee P_{2} \vee \ldots \vee P_{n}$
$-\neg P_{1} \vee Q_{2} \vee \ldots \vee Q_{m}$
- Resolvent: $P_{2} \vee \ldots \vee P_{n} \vee Q_{2} \vee \ldots \vee Q_{m}$
- We'll need to extend this to handle quantifiers and variables

Two Common Normal Forms for a KB

Implicative normal form

- Set of sentences expressed as implications where left hand sides are conjunctions of 0 or more literals

$$
\begin{aligned}
& P \\
& Q \\
& P \wedge Q=>R
\end{aligned}
$$

Conjunctive normal form

- Set of sentences expressed as disjunctions literals P
Q
$\sim P \vee \sim Q \vee R$
- Recall: literal is an atomic expression or its negation e.g., loves(john, X), ~ hates(mary, john)
- Any KB of sentences can be expressed in either form

Resolution covers many cases

- Modes Ponens
- from P and $\mathrm{P} \rightarrow \mathrm{Q}$ derive Q
- from P and $\neg \mathrm{P} \vee \mathrm{Q}$ derive Q
- Chaining
- from $P \rightarrow Q$ and $Q \rightarrow R \quad$ derive $P \rightarrow R$
- from $(\neg \mathrm{P} \vee \mathrm{Q})$ and $(\neg \mathrm{Q} \vee \mathrm{R})$ derive $\neg \mathrm{P} \vee \mathrm{R}$
- Contradiction detection
- from P and $\neg \mathrm{P}$ derive false
- from P and $\neg P$ derive the empty clause (= false)

Resolution in first-order logic

- Given sentences in conjunctive normal form:
$-P_{1} \vee \ldots \vee P_{n}$ and $Q_{1} \vee \ldots \vee Q_{m}$
$-P_{i}$ and Q_{i} are literals, i.e., positive or negated predicate symbol with its terms
- if P_{j} and $\neg \mathrm{Q}_{\mathrm{k}}$ unify with substitution list θ, then derive the resolvent sentence: $\operatorname{subst}\left(\theta, P_{1} \vee \ldots \vee P_{j-1} \vee P_{j+1} \ldots P_{n} \vee Q_{1} \vee \ldots Q_{k-1} \vee Q_{k+1} \vee \ldots \vee Q_{m}\right)$
- Example
- from clause $\mathbf{P}(\mathbf{x}, \mathbf{f}(\mathbf{a})) \vee \mathbf{P}(\mathbf{x}, \mathbf{f}(\mathbf{y})) \vee \mathbf{Q}(\mathbf{y})$
- and clause $\neg \mathbf{P}(\mathbf{z}, \mathbf{f}(\mathbf{a})) \vee \neg \mathbf{Q}(\mathrm{z})$
- derive resolvent $\mathbf{P}(\mathbf{z}, \mathbf{f}(\mathbf{y})) \vee \mathbf{Q}(\mathbf{y}) \vee \neg \mathbf{Q}(\mathbf{z})$
- Using $\boldsymbol{\theta}=\{\mathbf{x} / \mathbf{z}\}$

A resolution proof tree

A resolution proof tree

Resolution refutation (1)

- Given a consistent set of axioms KB and goal sentence Q , show that $\mathrm{KB} \mid=\mathrm{Q}$
- Proof by contradiction: Add $\neg \mathrm{Q}$ to KB and try to prove false, i.e.:
$(\mathrm{KB} \mid-\mathrm{Q}) \leftrightarrow(\mathrm{KB} \wedge \neg \mathrm{Q} \mid-$ False $)$

Resolution refutation (2)

- Resolution is refutation complete: it can establish that a given sentence Q is entailed by KB, but can't always generate all consequences of a set of sentences
- It cannot be used to prove that Q is not entailed by KB
- Resolution won't always give an answer since entailment is only semi-decidable
- And you can't just run two proofs in parallel, one trying to prove Q and the other trying to prove $\neg \mathrm{Q}$, since KB might not entail either one

Resolution example

- KB:
- allergies $(\mathrm{X}) \rightarrow$ sneeze (X)
$-\operatorname{cat}(\mathrm{Y}) \wedge$ allergicToCats $(\mathrm{X}) \rightarrow$ allergies (X)
- cat(felix)
- allergicToCats(mary)
- Goal:
- sneeze(mary)

Refutation resolution proof tree

$\neg \operatorname{cat}(y) v$ sneeze $(z) \vee \neg$ allergicToCats(z) cat(felix)

allergicToCats(mary)
false

Some tasks to be done

- Convert FOL sentences to conjunctive normal form (a.k.a. CNF, clause form): normalization and skolemization
- Unify two argument lists, i.e., how to find their most general unifier (mgu) q: unification
- Determine which two clauses in KB should be resolved next (among all resolvable pairs of clauses) : resolution (search) strategy

Converting

to CNF

Converting sentences to CNF

1. Eliminate all \leftrightarrow connectives

$$
(\mathrm{P} \leftrightarrow \mathrm{Q}) \Rightarrow\left((\mathrm{P} \rightarrow \mathrm{Q})^{\wedge}(\mathrm{Q} \rightarrow \mathrm{P})\right)
$$

2. Eliminate all \rightarrow connectives

See the function

 to_cnf() in logic.py$$
(\mathrm{P} \rightarrow \mathrm{Q}) \Rightarrow(\neg \mathrm{P} \vee \mathrm{Q})
$$

3. Reduce the scope of each negation symbol to a single predicate

$$
\begin{aligned}
& \neg \neg \mathrm{P} \Rightarrow \mathrm{P} \\
& \neg(\mathrm{P} \vee \mathrm{Q}) \Rightarrow \neg \mathrm{P} \wedge \neg \mathrm{Q} \\
& \neg(\mathrm{P} \wedge \mathrm{Q}) \Rightarrow \neg \mathrm{P} \vee \neg \mathrm{Q} \\
& \neg(\forall \mathrm{x}) \mathrm{P} \Rightarrow(\mathrm{x}) \neg \mathrm{P} \\
& \neg(\exists \mathrm{x}) \mathrm{P} \Rightarrow(\forall \mathrm{x}) \neg \mathrm{P}
\end{aligned}
$$

4. Standardize variables: rename all variables so that each quantifier has its own unique variable name

Converting sentences to clausal form Skolem constants and functions

5. Eliminate existential quantification by introducing Skolem constants/functions
$(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{P}(\mathrm{C})$
C is a Skolem constant (a brand-new constant symbol that is not used in any other sentence)
$(\forall \mathrm{x})(\exists \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y}) \Rightarrow(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$
since \exists is within scope of a universally quantified variable, use a Skolem function f to construct a new value that depends on the universally quantified variable
f must be a brand-new function name not occurring in any other sentence in the KB
E.g., $(\forall x)(\exists y) \operatorname{loves}(x, y) \Rightarrow(\forall x) \operatorname{loves}(x, f(x))$

In this case, $f(x)$ specifies the person that x loves
a better name might be oneWhoIsLovedBy(x)

Converting sentences to clausal form

6. Remove universal quantifiers by (1) moving them all to the left end; (2) making the scope of each the entire sentence; and (3) dropping the "prefix" part
Ex: $(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{P}(\mathrm{x})$
7. Put into conjunctive normal form (conjunction of disjunctions) using distributive and associative laws
$(P \wedge Q) \vee R \Rightarrow(P \vee R) \wedge(Q \vee R)$
$(P \vee Q) \vee R \Rightarrow(P \vee Q \vee R)$
8. Split conjuncts into separate clauses
9. Standardize variables so each clause contains only variable names that do not occur in any other clause

An example

$(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow((\forall \mathbf{y})(\mathbf{P}(\mathbf{y}) \rightarrow \mathbf{P}(\mathbf{f}(\mathbf{x}, \mathbf{y}))) \wedge \neg(\forall \mathbf{y})(\mathbf{Q}(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{P}(\mathbf{y}))))$
2. Eliminate \rightarrow

$$
(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge \neg(\forall \mathrm{y})(\neg \mathrm{Q}(\mathrm{x}, \mathrm{y}) \vee \mathrm{P}(\mathrm{y}))))
$$

3. Reduce scope of negation

$$
(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\exists \mathrm{y})(\mathrm{Q}(\mathrm{x}, \mathrm{y}) \wedge \neg \mathrm{P}(\mathrm{y}))))
$$

4. Standardize variables

$$
(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\exists \mathrm{z})(\mathrm{Q}(\mathrm{x}, \mathrm{z}) \wedge \neg \mathrm{P}(\mathrm{z}))))
$$

5. Eliminate existential quantification

$$
(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \mathrm{v}((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\mathrm{Q}(\mathrm{x}, \mathrm{~g}(\mathrm{x})) \wedge \neg \mathrm{P}(\mathrm{~g}(\mathrm{x})))))
$$

6. Drop universal quantification symbols

$$
(\neg \mathrm{P}(\mathrm{x}) \vee((\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\mathrm{Q}(\mathrm{x}, \mathrm{~g}(\mathrm{x})) \wedge \neg \mathrm{P}(\mathrm{~g}(\mathrm{x})))))
$$

Example

7. Convert to conjunction of disjunctions

$$
\begin{aligned}
& (\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\neg \mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x}, \mathrm{~g}(\mathrm{x}))) \wedge \\
& \quad(\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{~g}(\mathrm{x})))
\end{aligned}
$$

8. Create separate clauses

$$
\begin{aligned}
& \neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y})) \\
& \neg \mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x}, \mathrm{~g}(\mathrm{x})) \\
& \neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{~g}(\mathrm{x}))
\end{aligned}
$$

9. Standardize variables

$$
\begin{aligned}
& \neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y})) \\
& \neg \mathrm{P}(\mathrm{z}) \vee \mathrm{Q}(\mathrm{z}, \mathrm{~g}(\mathrm{z})) \\
& \neg \mathrm{P}(\mathrm{w}) \vee \neg \mathrm{P}(\mathrm{~g}(\mathrm{w}))
\end{aligned}
$$

Unification

Unification

- Unification is a "pattern-matching" procedure
- Takes two atomic sentences (i.e., literals) as input -Returns "failure" if they do not match and a substitution list, θ, if they do
- That is, unify $(p, q)=\theta$ means $\operatorname{subst}(\theta, p)=\operatorname{subst}(\theta, q)$ for two atomic sentences, p and q
- θ is called the most general unifier (mgu)
- All variables in the given two literals are implicitly universally quantified
- To make literals match, replace (universally quantified) variables by terms

Unification algorithm

procedure unify $(\mathrm{p}, \mathrm{q}, \theta)$
Scan p and q left-to-right and find the first corresponding terms where p and q "disagree" (i.e., p and q not equal)
If there is no disagreement, return θ (success!)
Let r and s be the terms in p and q , respectively, where disagreement first occurs
If variable(r) then \{
Let $\theta=\operatorname{union}(\theta,\{r / s\})$
Return unify $(\operatorname{subst}(\theta, \mathrm{p}), \operatorname{subst}(\theta, q), \theta)$
\} else if variable(s) then $\{$
Let $\theta=\operatorname{union}(\theta,\{\mathrm{s} / \mathrm{r}\})$
Return unify $(\operatorname{subst}(\theta, \mathrm{p}), \operatorname{subst}(\theta, q), \theta)$
\} else return "Failure"
end

See the function unify() in logic.py

Unification: Remarks

- Unify is a linear-time algorithm that returns the most general unifier (mgu), i.e., the shortest-length substitution list that makes the two literals match
- In general, there isn't a unique minimum-length substitution list, but unify returns one of minimum length
- Common constraint: A variable can never be replaced by a term containing that variable
Example: $\mathrm{x} / \mathrm{f}(\mathrm{x})$ is illegal.
- This "occurs check" should be done in the above pseudo-code before making the recursive calls

Unification examples

- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(Bill), y)
- $\{\mathrm{x} / \mathrm{Bill}, \mathrm{y} /$ mother(Bill) $\}$ yields parents(Bill,father(Bill), mother(Bill))
- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(y), z)
- \{x/Bill,y/Bill,z/mother(Bill)\} yields parents(Bill,father(Bill), mother(Bill))
- Example:
- parents(x, father(x), mother(Jane))
- parents(Bill, father(y), mother(y))
- Failure

Resolution

 example
Practice example Did Curiosity kill the cat

- Jack owns a dog
- Every dog owner is an animal lover
- No animal lover kills an animal
- Either Jack or Curiosity killed the cat, who is named Tuna.
- Did Curiosity kill the cat?

Practice example Did Curiosity kill the cat

- Jack owns a dog. Every dog owner is an animal lover. No animal lover kills an animal. Either Jack or Curiosity killed the cat, who is named Tuna. Did Curiosity kill the cat?
- These can be represented as follows:
A. $(\exists x) \operatorname{Dog}(x) \wedge$ Owns(Jack,x)
B. $(\forall x)((\exists y) \operatorname{Dog}(y) \wedge \operatorname{Owns}(x, y)) \rightarrow$ AnimalLover (x)
C. $(\forall x)$ AnimalLover $(x) \rightarrow((\forall y)$ Animal $(y) \rightarrow \neg \operatorname{Kills}(x, y))$
D. Kills(Jack,Tuna) v Kills(Curiosity,Tuna)
E. Cat(Tuna)
F. $(\forall x) \operatorname{Cat}(x) \rightarrow \operatorname{Animal}(x) \quad$ GOAL
G. Kills(Curiosity, Tuna)

```
```

\existsx Dog(x) ^ Owns(Jack,x)

```
```

\existsx Dog(x) ^ Owns(Jack,x)
\forallx (\existsy) Dog(y) ^ Owns(x, y) }
\forallx (\existsy) Dog(y) ^ Owns(x, y) }
AnimalLover(x)
AnimalLover(x)
\forallx AnimalLover(x) }->(\forally Animal(y) ->
\forallx AnimalLover(x) }->(\forally Animal(y) ->
\neg Kills(x,y))
\neg Kills(x,y))
Kills(Jack,Tuna) v Kills(Curiosity,Tuna)
Kills(Jack,Tuna) v Kills(Curiosity,Tuna)
Cat(Tuna)
Cat(Tuna)
Cat(x) }->\mathrm{ Animal(x)
Cat(x) }->\mathrm{ Animal(x)
Kills(Curiosity, Tuna)

```
```

Kills(Curiosity, Tuna)

```
```

- Convert to clause form

A1. (Dog(D))
A2. (Owns(Jack,D))
B. $(\neg \operatorname{Dog}(\mathrm{y}), \neg \operatorname{Owns}(\mathrm{x}, \mathrm{y})$, AnimalLover(x))
C. $(\neg$ AnimalLover $(\mathrm{a}), \neg$ Animal(b),$\neg \operatorname{Kills}(\mathrm{a}, \mathrm{b}))$
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. ($\neg \operatorname{Cat}(\mathrm{z}), \operatorname{Animal(z))}$

- Add the negation of query:
$\neg \mathrm{G}: \neg \mathrm{Kills}($ Curiosity, Tuna)

The resolution refutation proof

R1: $\neg \mathrm{G}, \mathrm{D},\{ \}$	(Kills(Jack, Tuna))
R2: R1, C, \{a/Jack, b/Tuna	(~AnimalLover(Jack), ~Animal(Tuna))
R3: R2, B, $\{\mathrm{x} / \mathrm{Jack}\}$	$\begin{aligned} & \quad(\sim \operatorname{Dog}(\mathrm{y}), \sim \text { Owns }(\text { Jack, y) }, \\ & \sim \text { Animal(Tuna) }) \end{aligned}$
R4: R3, A1, $\{\mathrm{y} / \mathrm{D}\}$	$\begin{aligned} & \text { (~Owns(Jack, D), } \\ & \sim \text { Animal(Tuna)) } \end{aligned}$
R5: R4, A2, \{ $\}$	(\sim Animal(Tuna))
R6: R5, F, \{z/Tuna $\}$	($\sim \operatorname{Cat}$ (Tuna))
R7: R6, E, \{\}	FALSE

The proof tree

Resolution

 searchstrategies

Resolution Theorem Proving as search

- Resolution is like the bottom-up construction of a search tree, where the leaves are the clauses produced by KB and the negation of the goal
- When a pair of clauses generates a new resolvent clause, add a new node to the tree with arcs directed from the resolvent to parent clauses
- Resolution succeeds when node containing False is produced, becoming root node of the tree
- Strategy is complete if it guarantees that empty clause (i.e., false) can be derived when it's entailed

Strategies

- There are a number of general (domain-independent) strategies that are useful in controlling a resolution theorem prover
- Well briefly look at the following:
-Breadth-first
- Length heuristics
- Set of support
- Input resolution
- Subsumption
-Ordered resolution

Example

1. Battery-OK \wedge Bulbs-OK \rightarrow Headlights-Work
2. Battery-OK \wedge Starter-OK \rightarrow Empty-Gas-Tank v Engine-Starts
3. Engine-Starts \rightarrow Flat-Tire v Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. $\neg E m p t y-G a s-T a n k$
8. $\neg \mathrm{Car}-\mathrm{OK}$
9. Goal: Flat-Tire ?

Example

1. \neg Battery-OK $\vee \neg$ Bulbs-OK v Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank v Engine-Starts
3. \neg Engine-Starts \vee Flat-Tire v Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. $\neg E m p t y-G a s-T a n k$
8. \neg Car-OK
9. \neg Flat-Tire

Breadth-first search

- Level 0 clauses are the original axioms and the negation of the goal
- Level k clauses are the resolvents computed from two clauses, one of which must be from level k-1 and the other from any earlier level
- Compute all possible level 1 clauses, then all possible level 2 clauses, etc.
- Complete, but very inefficient

BFS example

1. \neg Battery-OK $v \neg$ Bulbs-OK v Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank v Engine-Starts
3. \neg Engine-Starts v Flat-Tire v Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. $\neg E m p t y-G a s-T a n k$
8. \neg Car-OK
9. \neg Flat-Tire

1,4 10. \neg Battery-OK $\vee \neg$ Bulbs-OK
1,5 11. \neg Bulbs-OK \vee Headlights-Work
2,3 12. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank v Flat-Tire \vee Car-OK
2,5 13. \neg Starter-OK \vee Empty-Gas-Tank v Engine-Starts
2,6 14. \neg Battery-OK v Empty-Gas-Tank v Engine-Starts
2,7 15. \neg Battery-OK \neg Starter-OK v Engine-Starts
16. ... [and we' re still only at Level 1!]

Length heuristics

- Shortest-clause heuristic:

Generate a clause with the fewest literals first

- Unit resolution:

Prefer resolution steps in which at least one parent clause is a "unit clause," i.e., a clause containing a single literal
-Not complete in general, but complete for Horn clause KBs

Unit resolution example

1. \neg Battery-OK $v \neg$ Bulbs-OK v Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK v Empty-Gas-Tank v Engine-Starts
3. \neg Engine-Starts v Flat-Tire v Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. $\neg E m p t y-G a s-T a n k$
8. ᄀCar-OK
9. \neg Flat-Tire

1,5 10. \neg Bulbs-OK v Headlights-Work
2,5 11. \neg Starter-OK v Empty-Gas-Tank v Engine-Starts
2,6 12. \neg Battery-OK v Empty-Gas-Tank v Engine-Starts
2,7 13. \neg Battery-OK \neg Starter-OK \vee Engine-Starts
3,8 14. \neg Engine-Starts v Flat-Tire
3,9 15. \neg Engine-Starts \neg Car-OK
16. ... [this doesn't seem to be headed anywhere either!]

Set of support

- At least one parent clause must be the negation of the goal or a "descendant" of such a goal clause (i.e., derived from a goal clause)
- When there's a choice, take the most recent descendant
- Complete, assuming all possible set-of-support clauses are derived
- Gives a goal-directed character to the search (e.g., like backward chaining)

Set of support example

1. \neg Battery-OK $\vee \neg$ Bulbs-OK v Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank v Engine-Starts
3. \neg Engine-Starts v Flat-Tire v Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. \neg Empty-Gas-Tank
8. \neg Car-OK
9. \neg Flat-Tire

9,3 10. \neg Engine-Starts \vee Car-OK
10,2 11. \neg Battery-OK v \neg Starter-OK v Empty-Gas-Tank v Car-OK
10,8 12. \neg Engine-Starts
11,5 13. ᄀStarter-OK v Empty-Gas-Tank v Car-OK
11,6 14. \neg Battery-OK v Empty-Gas-Tank \vee Car-OK
11,7 15. \neg Battery-OK $\vee \neg$ Starter-OK v Car-OK
16. ... [a bit more focused, but we still seem to be wandering]

Unit resolution + set of support example

1. \neg Battery-OK $\vee \neg$ Bulbs-OK v Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank v Engine-Starts
3. \neg Engine-Starts v Flat-Tire v Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. \neg Empty-Gas-Tank
8. ${ }^{\text {Car-OK }}$
9. \neg Flat-Tire

9,3 10. \neg Engine-Starts \vee Car-OK
10,8 11. \neg Engine-Starts
11,2 12. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank
12,5 13. \neg Starter-OK v Empty-Gas-Tank
13,6 14. Empty-Gas-Tank
14,7 15. FALSE
[Hooray! Now that's more like it!]

Simplification heuristics

- Subsumption:

Eliminate sentences that are subsumed by (more specific than) an existing sentence to keep KB small

- If $\mathrm{P}(\mathrm{x})$ is already in the KB , adding $\mathrm{P}(\mathrm{A})$ makes no sense $\mathrm{P}(\mathrm{x})$ is a superset of $\mathrm{P}(\mathrm{A})$
- Likewise adding $\mathrm{P}(\mathrm{A}) \vee \mathrm{Q}(\mathrm{B})$ would add nothing to the KB
- Tautology:

Remove any clause containing two complementary literals (tautology)

- Pure symbol:

If a symbol always appears with the same "sign," remove all the clauses that contain it

Example (Pure Symbol)

1. Battor, OK Rubcol Hoadightc Mork
2. \neg Battery-OK v \neg Starter-OK v Empty-Gas-Tank v Engine-Starts
3. \neg Engine-Starts v Flat-Tire v Car-OK
4. Heallighown
5. Battery-OK
6. Starter-OK
7. $\neg E m p t y-G a s-T a n k$
8. Car-OK
9. - Flat-Tire

Input resolution

- At least one parent must be one of the input sentences (i.e., either a sentence in the original KB or the negation of the goal)
- Not complete in general, but complete for Horn clause KBs
- Linear resolution
- Extension of input resolution
- One of the parent sentences must be an input sentence or an ancestor of the other sentence
- Complete

Ordered resolution

- Search for resolvable sentences in order (left to right)
- This is how Prolog operates
- Resolve the first element in the sentence first
- This forces the user to define what is important in generating the "code"
- The way the sentences are written controls the resolution

