
Logical
Inference 2

rule based reasoning

Chapter 9

Some material adopted from notes by Andreas
Geyer-Schulz,, Chuck Dyer, and Mary Getoor

Automated inference for FOL
• Automated inference for FOL is harder than PL

– Variables can potentially take on an infinite number
of possible values from their domains

– Hence there are potentially an infinite number of
ways to apply the Universal Elimination rule

• Godel's Completeness Theorem says that FOL
entailment is only semi-decidable
– If a sentence is true given a set of axioms, there is a

procedure that will determine this
– If the sentence is false, there’s no guarantee a proce-

dure will ever determine this — it may never halt

Generalized Modus Ponens
• Modus Ponens

– P, P=>Q |= Q
• Generalized Modus Ponens (GMP) extends this to

rules in FOL
• Combines And-Introduction, Universal-Elimina-

tion, and Modus Ponens, e.g.
– from P(c) and Q(c) and ∀x P(x)∧Q(x) → R(x)

derive R(c)
• Need to deal with

– more than one condition on left side of rule
– variables

Generalized Modus Ponens
• General case: Given

– atomic sentences P1, P2, ..., PN
–  implication sentence (Q1 ∧ Q2 ∧ ... ∧ QN) → R

•  Q1, ..., QN and R are atomic sentences
– substitution subst(θ, Pi) = subst(θ, Qi) for i=1,...,N
– Derive new sentence: subst(θ, R)

• Substitutions
– subst(θ, α) denotes the result of applying a set of

substitutions defined by θ to the sentence α
– A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to

replace all occurrences of variable symbol vi by term ti
– Substitutions made in left-to-right order in the list
– subst({x/Cheese, y/Mickey}, eats(y,x)) =

eats(Mickey, Cheese)

Our rules are Horn clauses
• A Horn clause is a sentence of the form:

P1(x) ∧ P2(x) ∧ ... ∧ Pn(x) → Q(x)
where

–  ≥ 0 Pis and 0 or 1 Q
– Pis and Q are positive (i.e., non-negated) literals

• Equivalently: P1(x) ∨ P2(x) … ∨ Pn(x) where the
Pi are all atomic and at most one is positive

• Prolog is based on Horn clauses
• Horn clauses represent a subset of the set of

sentences representable in FOL

Horn clauses II
• Special cases

– Typical rule: P1 ∧ P2 ∧ … Pn → Q
– Constraint: P1 ∧ P2 ∧ … Pn → false
– A fact: true → Q

• These are not Horn clauses:
–  dead(x) ∨ alive(x)
–  married(x, y) → loves(x, y) ∨ hates(x, y)
–  ¬likes(john, mary)
–  ¬likes(x, y) → hates(x, y)

• Can’t assert or conclude disjunctions, no negation
• No wonder reasoning over Horn clauses is easier

Horn clauses III
• Where are the quantifiers?
– Variables in conclusion are universally quantified
– Variables only in premises are existentially quantified

• Examples:
– parent(P,X) → isParent(P)
∀P ∃X parent(P,X) → isParent(P)

– parent(P1, X) ∧ parent(X, P2) → grandParent(P1, P2)
∀P1,P2 ∃X parent(P1,X) ∧ parent(X, P2) →
grandParent(P1, P2)

– Prolog: grandParent(P1,P2) :- parent(P1,X), parent(X,P2)

Forward & Backward Reasoning

• We usually talk about two reasoning
strategies: forward and backward ‘chaining’

• Both are equally powerful
• You can also have a mixed strategy

Forward chaining

• Proofs start with the given axioms/premises in
KB, deriving new sentences using GMP until
the goal/query sentence is derived

• This defines a forward-chaining inference
procedure because it moves “forward” from the
KB to the goal [eventually]

•  Inference using GMP is sound and complete
for KBs containing only Horn clauses

Forward chaining algorithm

Forward chaining example

•  KB:
–  allergies(X) → sneeze(X)
–  cat(Y) ∧ allergicToCats(X) → allergies(X)
–  cat(felix)
–  allergicToCats(mary)

•  Goal:
–  sneeze(mary)

Backward chaining
• Backward-chaining deduction using GMP is also

complete for KBs containing only Horn clauses
• Proofs start with the goal query, find rules with that

conclusion, and then prove each of the antecedents
in the implication

• Keep going until you reach premises
• Avoid loops: check if new subgoal is already on

the goal stack
• Avoid repeated work: check if new subgoal

– Has already been proved true
– Has already failed

Backward chaining algorithm

Backward chaining example

•  KB:
–  allergies(X) → sneeze(X)
–  cat(Y) ∧ allergicToCats(X) → allergies(X)
–  cat(felix)
–  allergicToCats(mary)

•  Goal:
–  sneeze(mary)

Forward vs. backward chaining
• Forward chaining is data-driven

– Automatic, unconscious processing, e.g., object recognition,
routine decisions

– May do lots of work that is irrelevant to the goal
– Efficient when you want to compute all conclusions

• Backward chaining is goal-driven, better for problem-
solving and query answering
– Where are my keys? How do I get to my next class?
– Complexity of BC can be much less than linear in the size of

the KB
– Efficient when you want one or a few decisions
– Good where the underlying facts are changing

Mixed strategy
• Many practical reasoning systems do both forward

and backward chaining
• The way you encode a rule determines how it is

used, as in
% this is a forward chaining rule
spouse(X,Y) => spouse(Y,X).
% this is a backward chaining rule
wife(X,Y) <= spouse(X,Y), female(X).

• Given a model of the rules you have and the kind
of reason you need to do, it’s possible to decide
which to encode as FC and which as BC rules.

Completeness of GMP
• GMP (using forward or backward chaining) is

complete for KBs that contain only Horn clauses
• not complete for simple KBs with non-Horn clauses

• What is entailed by the following sentences:

1. (∀x) P(x) → Q(x)
2. (∀x) ¬P(x) → R(x)
3. (∀x) Q(x) → S(x)
4. (∀x) R(x) → S(x)

Completeness of GMP
• The following entail that S(A) is true:

1. (∀x) P(x) → Q(x)
2. (∀x) ¬P(x) → R(x)
3. (∀x) Q(x) → S(x)
4. (∀x) R(x) → S(x)

•  If we want to conclude S(A), with GMP we cannot,
since the second one is not a Horn clause

•  It is equivalent to P(x) ∨ R(x)

How about in Prolog?
Try encoding this in Prolog

1. q(X) :- p(X).
2. r(X) :- neg(p(X)).
3. s(X) :- q(X).
4. s(X) :- r(X).

–  We should not use \+ or not (in SWI) for negation
since it means “negation as failure”

–  Prolog explores possible proofs independently
–  It can’t take a larger view and realize that one

branch must be true since p(x) ∨ ~p(x) is always true

1.  (∀x) P(x) → Q(x)
2.  (∀x) ¬P(x) → R(x)
3.  (∀x) Q(x) → S(x)
4.  (∀x) R(x) → S(x)

