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Automated inference for FOL 
• Automated inference for FOL is harder than PL 

– Variables can potentially take on an infinite number 
of possible values from their domains 

– Hence there are potentially an infinite number of 
ways to apply the Universal Elimination rule 

• Godel's Completeness Theorem says that FOL 
entailment is only semi-decidable 
– If a sentence is true given a set of axioms, there is a 

procedure that will determine this 
– If the sentence is false, there’s no guarantee a proce-

dure will ever determine this — it may never halt 



Generalized Modus Ponens 
• Modus Ponens 

– P,  P=>Q   |= Q 
• Generalized Modus Ponens (GMP) extends this to 

rules in FOL 
• Combines And-Introduction, Universal-Elimina-

tion, and Modus Ponens, e.g.  
– from P(c)  and  Q(c) and ∀x P(x)∧Q(x) → R(x) 

derive R(c)  
• Need to deal with 

– more than one condition on left side of rule 
– variables 



Generalized Modus Ponens 
• General case: Given 

– atomic sentences P1, P2, ..., PN 
–  implication sentence (Q1 ∧ Q2 ∧ ... ∧ QN) → R 

•  Q1, ..., QN and R are atomic sentences  
– substitution subst(θ, Pi) = subst(θ, Qi) for i=1,...,N 
– Derive new sentence: subst(θ, R)   

• Substitutions 
– subst(θ, α) denotes the result of applying a set of 

substitutions defined by θ to the sentence α 
– A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to 

replace all occurrences of variable symbol vi by term ti 
– Substitutions made in left-to-right order in the list 
– subst({x/Cheese, y/Mickey}, eats(y,x)) = 

eats(Mickey, Cheese)  



Our rules are Horn clauses 
• A Horn clause is a sentence of the form: 

P1(x) ∧ P2(x) ∧ ... ∧ Pn(x) → Q(x)  
where  

–  ≥ 0 Pis and 0 or 1 Q 
– Pis and Q are positive (i.e., non-negated) literals 

• Equivalently: P1(x) ∨ P2(x) … ∨ Pn(x) where the 
Pi are all atomic and at most one is positive 

• Prolog is based on Horn clauses 
• Horn clauses represent a subset of the set of 

sentences representable  in FOL 



Horn clauses II 
• Special cases 

– Typical rule: P1 ∧ P2 ∧ … Pn → Q 
– Constraint: P1 ∧ P2 ∧ … Pn → false 
– A fact: true → Q 

• These are not Horn clauses: 
–  dead(x) ∨ alive(x) 
–  married(x, y) → loves(x, y) ∨ hates(x, y) 
–  ¬likes(john, mary) 
–  ¬likes(x, y) → hates(x, y) 

• Can’t assert or conclude disjunctions, no negation 
• No wonder reasoning over Horn clauses is easier 



Horn clauses III 
• Where are the quantifiers? 
– Variables in conclusion are universally quantified 
– Variables only in premises are existentially quantified 

• Examples:  
– parent(P,X) → isParent(P) 
∀P ∃X parent(P,X) → isParent(P) 

– parent(P1, X) ∧ parent(X, P2) → grandParent(P1, P2) 
∀P1,P2 ∃X parent(P1,X) ∧ parent(X, P2) → 
grandParent(P1, P2) 

– Prolog: grandParent(P1,P2) :- parent(P1,X), parent(X,P2) 
 



Forward & Backward Reasoning 

• We usually talk about two reasoning 
strategies: forward and backward ‘chaining’ 

• Both are equally powerful 
• You can also have a mixed strategy 



Forward chaining 

• Proofs start with the given axioms/premises in 
KB, deriving new sentences using GMP until 
the goal/query sentence is derived 

• This defines a forward-chaining inference 
procedure because it moves “forward” from the 
KB to the goal [eventually] 

•  Inference using GMP is sound and complete 
for KBs containing only Horn clauses 



Forward chaining algorithm 



Forward chaining example 

•  KB:   
–  allergies(X) → sneeze(X) 
–  cat(Y) ∧ allergicToCats(X) → allergies(X) 
–  cat(felix) 
–  allergicToCats(mary) 

•  Goal: 
–  sneeze(mary) 



Backward chaining 
• Backward-chaining deduction using GMP is also 

complete for KBs containing only Horn clauses 
• Proofs start with the goal query, find rules with that 

conclusion, and then prove each of the antecedents 
in the implication 

• Keep going until you reach premises 
• Avoid loops: check if new subgoal is already on 

the goal stack 
• Avoid repeated work: check if new subgoal 

– Has already been proved true 
– Has already failed 



Backward chaining algorithm 



Backward chaining example 

•  KB:   
–  allergies(X) → sneeze(X) 
–  cat(Y) ∧ allergicToCats(X) → allergies(X) 
–  cat(felix) 
–  allergicToCats(mary) 

•  Goal: 
–  sneeze(mary) 



Forward vs. backward chaining 
• Forward chaining is data-driven   

– Automatic, unconscious processing, e.g., object recognition, 
routine decisions 

– May do lots of work that is irrelevant to the goal 
– Efficient when you want to compute all conclusions 

• Backward chaining is goal-driven, better for problem-
solving and query answering 
– Where are my keys?  How do I get to my next class? 
– Complexity of BC can be much less than linear in the size of 

the KB 
– Efficient when you want one or a few decisions 
– Good where the underlying facts are changing 



Mixed strategy 
• Many practical reasoning systems do both forward 

and backward chaining 
• The way you encode a rule determines how it is 

used, as in 
% this is a forward chaining rule 
spouse(X,Y) => spouse(Y,X). 
% this is a backward chaining rule 
wife(X,Y) <= spouse(X,Y), female(X). 

• Given a model of the rules you have and the kind 
of reason you need to do, it’s possible to decide 
which to encode as FC and which as BC rules. 



Completeness of GMP 
• GMP (using forward or backward chaining) is 

complete for KBs that contain only Horn clauses 
• not complete for simple KBs with non-Horn clauses 
 
• What is entailed by the following sentences: 

1. (∀x) P(x) → Q(x) 
2. (∀x) ¬P(x) → R(x) 
3. (∀x) Q(x) → S(x) 
4. (∀x) R(x) → S(x) 
 
 



Completeness of GMP 
• The following entail that S(A) is true: 

1. (∀x) P(x) → Q(x) 
2. (∀x) ¬P(x) → R(x) 
3. (∀x) Q(x) → S(x) 
4. (∀x) R(x) → S(x) 

•  If we want to conclude S(A), with GMP we cannot, 
since the second one is not a Horn clause 

•  It is equivalent to P(x) ∨ R(x) 



How about in Prolog? 
Try encoding this in Prolog 

1. q(X) :- p(X). 
2. r(X) :- neg(p(X)). 
3. s(X) :- q(X). 
4. s(X) :- r(X). 

–  We should not use \+ or not (in SWI) for negation 
since it means “negation as failure” 

–  Prolog explores possible proofs independently 
–  It can’t take a larger view and realize that one 

branch must be true since p(x) ∨ ~p(x) is always true 
 

1.    (∀x) P(x) → Q(x) 
2.    (∀x) ¬P(x) → R(x) 
3.    (∀x) Q(x) → S(x) 
4.    (∀x) R(x) → S(x) 


