

Chapter 9

Some material adopted from notes by Andreas Geyer-Schulz, Chuck Dyer, and Mary Getoor

Automated inference for FOL

- Automated inference for FOL is harder than PL
 - -Variables can potentially take on an *infinite* number of possible values from their domains
 - -Hence there are potentially an *infinite* number of ways to apply the Universal Elimination rule
- *Godel's Completeness Theorem* says that FOL entailment is only *semi-decidable*
 - -If a sentence is **true** given a set of axioms, there is a procedure that will determine this
 - -If the sentence is **false**, there's no guarantee a procedure will ever determine this — it **may never halt**

Generalized Modus Ponens

• Modus Ponens

 $-P, P => Q \mid = Q$

- Generalized Modus Ponens (GMP) extends this to rules in FOL
- Combines And-Introduction, Universal-Elimination, and Modus Ponens, e.g.

-from P(c) and Q(c) and $\forall x P(x) \land Q(x) \rightarrow R(x)$ derive R(c)

• Need to deal with

more than one condition on left side of rulevariables

Generalized Modus Ponens

- General case: Given
 - atomic sentences P₁, P₂, ..., P_N
 - implication sentence $(Q_1 \land Q_2 \land ... \land Q_N) \rightarrow R$
 - $Q_1, ..., Q_N$ and R are atomic sentences
 - **substitution** subst(θ , P_i) = subst(θ , Q_i) for i=1,...,N
 - Derive new sentence: $subst(\theta, R)$
- Substitutions
 - subst(θ , α) denotes the result of applying a set of substitutions defined by θ to the sentence α
 - A substitution list $\theta = \{v_1/t_1, v_2/t_2, ..., v_n/t_n\}$ means to replace all occurrences of variable symbol v_i by term t_i
 - Substitutions made in left-to-right order in the list
 - subst({x/Cheese, y/Mickey}, eats(y,x)) =
 eats(Mickey, Cheese)

Our rules are Horn clauses

• A Horn clause is a sentence of the form: $P_1(x) \land P_2(x) \land ... \land P_n(x) \rightarrow Q(x)$

where

- $\ge 0 P_i s$ and 0 or 1 Q
- -P_is and Q are positive (i.e., non-negated) literals
- Equivalently: $P_1(x) \vee P_2(x) \dots \vee P_n(x)$ where the P_i are all atomic and *at most one* is positive
- Prolog is based on Horn clauses
- Horn clauses represent a *subset* of the set of sentences representable in FOL

Horn clauses II

- Special cases
 - *Typical rule:* $P_1 \land P_2 \land \dots P_n \rightarrow Q$
 - Constraint: $P_1 \land P_2 \land \dots P_n \rightarrow false$
 - $-A fact: true \rightarrow Q$
- These are not Horn clauses:
 - dead(x) v alive(x)
 - married(x, y) \rightarrow loves(x, y) v hates(x, y)
 - ¬likes(john, mary)
 - $\neg \text{likes}(x, y) \rightarrow \text{hates}(x, y)$
- Can't assert or conclude disjunctions, no negation
- No wonder reasoning over Horn clauses is easier

Horn clauses III

- Where are the quantifiers?
- Variables in conclusion are universally quantified
- -Variables only in premises are existentially quantified
- Examples:
- $-\operatorname{parent}(P,X) \rightarrow \operatorname{isParent}(P)$ $\forall P \exists X \operatorname{parent}(P,X) \rightarrow \operatorname{isParent}(P)$
- $-parent(P1, X) \land parent(X, P2) \rightarrow grandParent(P1, P2)$ ∀P1,P2 ∃X parent(P1,X) ∧ parent(X, P2) → grandParent(P1, P2)
- Prolog: grandParent(P1,P2) :- parent(P1,X), parent(X,P2)

Forward & Backward Reasoning

- We usually talk about two reasoning strategies: forward and backward 'chaining'
- Both are equally powerful
- You can also have a mixed strategy

Forward chaining

- Proofs start with the given axioms/premises in KB, deriving new sentences using GMP until the goal/query sentence is derived
- This defines a **forward-chaining** inference procedure because it moves "forward" from the KB to the goal [eventually]
- Inference using GMP is **sound** and **complete** for KBs containing **only Horn clauses**

Forward chaining algorithm

procedure Forward-Chain(KB, p)

if there is a sentence in *KB* that is a renaming of *p* then return Add *p* to *KB* for each $(p_1 \land \ldots \land p_n \Rightarrow q)$ in *KB* such that for some *i*, UNIFY $(p_i, p) = \theta$ succeeds do FIND-AND-INFER $(KB, [p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n], q, \theta)$ end

procedure FIND-AND-INFER(*KB*, *premises*, *conclusion*, θ)

```
if premises = [] then
    FORWARD-CHAIN(KB, SUBST(θ, conclusion))
else for each p' in KB such that UNIFY(p', SUBST(θ, FIRST(premises))) = θ<sub>2</sub> do
    FIND-AND-INFER(KB, REST(premises), conclusion, COMPOSE(θ, θ<sub>2</sub>))
end
```

Forward chaining example

- KB:
 - $allergies(X) \rightarrow sneeze(X)$
 - $\operatorname{cat}(Y) \land \operatorname{allergicToCats}(X) \rightarrow \operatorname{allergies}(X)$
 - cat(felix)
 - allergicToCats(mary)
- Goal:
 - sneeze(mary)

Backward chaining

- **Backward-chaining** deduction using GMP is also **complete** for KBs containing **only Horn clauses**
- Proofs start with the goal query, find rules with that conclusion, and then prove each of the antecedents in the implication
- Keep going until you reach premises
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 - Has already been proved true
 - Has already failed

Backward chaining algorithm

function BACK-CHAIN(KB, q) returns a set of substitutions

BACK-CHAIN-LIST(KB, [q], $\{\}$)

function BACK-CHAIN-LIST(*KB*, *qlist*, θ) returns a set of substitutions inputs: KB, a knowledge base *qlist*, a list of conjuncts forming a query (θ already applied) θ , the current substitution static: answers, a set of substitutions, initially empty if *qlist* is empty then return $\{\theta\}$ $q \leftarrow \text{FIRST}(qlist)$ for each q'_i in KB such that $\theta_i \leftarrow \text{UNIFY}(q, q'_i)$ succeeds do Add COMPOSE(θ, θ_i) to answers end for each sentence $(p_1 \land \ldots \land p_n \Rightarrow q'_i)$ in KB such that $\theta_i \leftarrow \text{UNIFY}(q, q'_i)$ succeeds do answers $\leftarrow BACK$ -CHAIN-LIST(*KB*, SUBST(θ_i , [$p_1 \dots p_n$]), COMPOSE(θ, θ_i)) \cup answers end

return the union of BACK-CHAIN-LIST(KB, REST(qlist), θ) for each $\theta \in answers$

Backward chaining example

- KB:
 - $allergies(X) \rightarrow sneeze(X)$
 - $\operatorname{cat}(Y) \land \operatorname{allergicToCats}(X) \rightarrow \operatorname{allergies}(X)$
 - cat(felix)
 - allergicToCats(mary)
- Goal:
 - sneeze(mary)

Forward vs. backward chaining

- Forward chaining is *data-driven*
 - Automatic, unconscious processing, e.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
 - Efficient when you want to compute all conclusions
- Backward chaining is goal-driven, better for problemsolving and query answering
 - Where are my keys? How do I get to my next class?
 - Complexity of BC can be much less than linear in the size of the KB
 - Efficient when you want one or a few decisions
 - Good where the underlying facts are changing

Mixed strategy

- Many practical reasoning systems do both forward and backward chaining
- The way you encode a rule determines how it is used, as in

% this is a forward chaining rule

spouse(X,Y) => spouse(Y,X).

% this is a backward chaining rule (Y, Y) for (Y, Y)

wife $(X,Y) \leq spouse(X,Y)$, female(X).

• Given a model of the rules you have and the kind of reason you need to do, it's possible to decide which to encode as FC and which as BC rules.

Completeness of GMP

- GMP (using forward or backward chaining) is complete for KBs that contain only Horn clauses
- *not* complete for simple KBs with non-Horn clauses
- What is entailed by the following sentences:

1.
$$(\forall x) P(x) \rightarrow Q(x)$$

2. $(\forall x) \neg P(x) \rightarrow R(x)$
3. $(\forall x) Q(x) \rightarrow S(x)$
4. $(\forall x) R(x) \rightarrow S(x)$

Completeness of GMP

- The following entail that S(A) is true:
 - 1. $(\forall x) P(x) \rightarrow Q(x)$
 - $2. (\forall x) \neg P(x) \rightarrow R(x)$
 - 3. $(\forall x) Q(x) \rightarrow S(x)$
 - 4. $(\forall x) R(x) \rightarrow S(x)$
- If we want to conclude S(A), with GMP we cannot, since the second one is not a Horn clause
- It is equivalent to $P(x) \vee R(x)$

How about in Prolog?

Try encoding this in Prolog

- 1. q(X) := p(X). 1. $(\forall x) P(x) \rightarrow Q(x)$
- 2. r(X) := neg(p(X)).2. $(\forall x) \neg P(x) \rightarrow R(x)$ 3. s(X) := q(X).3. $(\forall x) Q(x) \rightarrow S(x)$ 4. s(X) := r(X).4. $(\forall x) R(x) \rightarrow S(x)$
- We should not use \+ or not (in SWI) for negation since it means *"negation as failure"*
- Prolog explores possible proofs independently
- It can't take a larger view and realize that one
 branch must be true since p(x) v ~p(x) is always true