
Logical
Agents

Logical agents for Wumpus World

We’ll use the Wumpus World domain to explore
three (non-exclusive) agent architectures:
• Reflex agents

– Have rules that classify situations based on percepts
and specify how to react to each possible situation

• Model-based agents
– Construct an internal model of their world

• Goal-based agents
– Form goals and try to achieve them

AIMA’s Wumpus World

The agent always
starts in the field [1,1]

Agent’s task is to find
the gold, return to the
field [1,1] and climb
out of the cave

A simple reflex agent: if-then rules
• Rules to map percepts into observations:
∀b,g,u,c,t Percept([Stench, b, g, u, c], t) → Stench(t)
∀s,g,u,c,t Percept([s, Breeze, g, u, c], t) → Breeze(t)
∀s,b,u,c,t Percept([s, b, Glitter, u, c], t) → AtGold(t)

• Rules to select action given observations:
∀t AtGold(t) → Action(Grab, t);

• Difficulties:
– Consider Climb: No percept indicates agent should climb

out; position & holding gold not part of percept sequence
– Loops: percepts repeated when you return to a square,

causing same response (unless we maintain some internal
model of the world)

Representing change
• Representing changing world in logic can be tricky
• One way is just to change the KB

– Add and delete sentences from KB to reflect changes
– How do we remember past, or reason about changes?

• Situation calculus is another way
• Situation: snapshot of the world

at some instant in time
• When the agent performs

action A in situation S1,
result is new situation S2

Situation calculus
A situation is a snapshot of the world at an
interval of time during which nothing changes
w.r.t a particular situation
– Add situation variables to every predicate.
–  at(Agent, L) becomes at(Agent, L, s0):

at(Agent, L) true in situation (i.e., state) s0
– Or, add a special second order predicate,

holds(f, s), meaning “f is true in situation s”,
e.g., holds(at(Agent, L), s0)

Situation calculus
• Add new function, result(a, s), mapping

situation s to new situation as result of
performing action a
– i.e., result(forward, s) is a function returning next

situation
• Example: The action agent-walks-to-location-

y could be represented by

(∀x)(∀y)(∀s) (at(Agent, L1, S) ∧ ¬onbox(S))
→ at(Agent, L2, result(walk(L2), S))

Deducing hidden properties

• From the perceptual information we obtain
in situations, we can infer properties of
locations

∀l,s at(Agent, L, s) ∧ Breeze(s) → Breezy(L)
∀l,s at(Agent, L s) ∧ Stench(s) → Smelly(L)

• Neither Breezy nor Smelly need situation
arguments because pits and the Wumpus do
not move around

Deducing hidden properties II
• We need rules relating aspects of a single world state (as

opposed to between states)
• Two main kinds of such rules:

– Causal rules reflect assumed direction of causality
(∀L1,L2,S) at(Wumpus,L1,S) ∧ adjacent(L1,L2) → Smelly(L2)
(∀ L1,L2,S) at(Pit,L1,S) ∧ adjacent(L1,L2) → Breezy(L2)

•  Systems that reason with causal rules are model-based reasoning
systems

– Diagnostic rules infer presence of hidden properties
directly from percept-derived information, e.g.

(∀ L,S) at(Agent,L,S) ∧ Breeze(S) → Breezy(L)
(∀ L,S) at(Agent,L,S) ∧ Stench(S) → Smelly(L)

Blocks world
The blocks world is a micro-world consisting of a table,
a set of blocks and a robot hand.
Some domain constraints:

– Only one block can be on another block
– Any number of blocks can be on

the table
– The hand can only hold one block

Typical representation:
ontable(b) ontable(d)
on(c,d) holding(a)
clear(b) clear(c)

Meant to be a simple model!

Representing change
• Frame axioms encode what’s not changed

by an action
• E.g., moving a clear block to the table doesn’t

change the location of any other blocks
On (x, z, s) ∧ Clear (x, s) →

 On (x, table, Result(Move(x, table), s)) ∧
 ¬On(x, z, Result (Move (x, table), s))

On (y, z, s) ∧ y≠ x → On (y, z, Result (Move (x, table), s))

• Proliferation of frame axioms becomes very
cumbersome in complex domains
– What about color, size, shape, ownership, etc.

blocks world

The frame problem II
• Successor-state axiom characterizes every way

in which a particular predicate can become true:
– Either it can be made true, or it can already be true and

not be changed:
– On (x, table, Result(a,s)) ↔

 [On (x, z, s) ∧ Clear (x, s) ∧ a = Move(x, table)] v
 [On (x, table, s) ∧ a ≠ Move (x, z)]

• Complex worlds require reasoning about long
action chains; even these types of axioms are too
cumbersome
Planning systems use custom inference methods to reason
about the expected state of the world during multi-step plans

Qualification problem

• How can you characterize every effect of
an action, or every exception that might occur?

• Putting my bread into the toaster, & pushing the button,
it will become toasted after two minutes, unless…
– The toaster is broken, or…
– The power is out, or…
– I blow a fuse, or…
– A neutron bomb explodes nearby and fries all electrical

components, or…
– A meteor strikes the earth, and the world we know it

ceases to exist, or…

Ramification problem
Nearly impossible to characterize every side
effect of every action, at every level of detail

When I put my bread into the toaster, and push the button,
the bread will become toasted after two minutes, and…
–  The crumbs that fall off the bread onto the bottom of the toaster over tray

will also become toasted, and…
–  Some of the those crumbs will become burnt, and…
–  The outside molecules of the bread will become “toasted,” and…
–  The inside molecules of the bread will remain more “breadlike,” and…
–  The toasting process will release a small amount of humidity into the air

because of evaporation, and…
–  The heating elements will become a tiny fraction more likely to burn out

the next time I use the toaster, and…
–  The electricity meter in the house will move up slightly, and…

Knowledge engineering!
• Modeling the right conditions and the right

effects at the right level of abstraction is difficult
• Knowledge engineering (creating & maintaining

KBs for intelligent reasoning) is field unto itself
• We hope automated knowledge acquisition and

machine learning tools can fill the gap:
– Intelligent systems should learn about conditions and

effects, just like we do!
– Intelligent systems should learn when to pay attention

to, or reason about, certain aspects of processes,
depending on context. (metacognition?)

Preferences among actions

• A problem with the WWKB described so far is
how to decide which of several actions is best

• E.g., how to decide between forward and grab,
axioms describing when it is OK to move to a
square would have to mention glitter

• This is not modular!
• We can solve this problem by separating facts

about actions from facts about goals
• This way our agent can be reprogrammed just

by asking it to achieve different goals

Preferences among actions
• First step: describe the desirability of actions

independent of each other
• We can use a simple scale: actions can be

Great, Good, Medium, Risky, or Deadly
• Obviously, the agent should always do the

best action it can find:
(∀a,s) Great(a,s) → Action(a,s)
(∀a,s) Good(a,s) ∧ ¬(∃b) Great(b,s) → Action(a,s)
(∀a,s) Medium(a,s) ∧ (¬(∃b) Great(b,s) ∨

Good(b,s)) → Action(a,s)
 ...

Preferences among actions
Until it finds gold, basic agent strategy can be:

• Great actions: picking up the gold when found,
climbing out of the cave with the gold

• Good actions: moving to a square that’s OK and
hasn't been visited yet

• Medium actions: moving to a square that is OK
and has already been visited

• Risky actions: moving to a square that’s not
known to be deadly or OK

• Deadly actions: moving into a square that is
known to have a pit or a Wumpus

Goal-based agents
• Once gold is found, we must change strategies,

requiring a new set of action values.
• We could encode this as a rule:

– (∀s) Holding(Gold,s) → GoalLocation([1,1]),s)
• We must decide how the agent will work out a

sequence of actions to accomplish the goal
• Three possible approaches:
–  Inference: good versus wasteful solutions
– Search: a problem with operators and set of states
– Planning: to be discussed later

Coming up next

• Logical inference
• Knowledge representation
• Planning

