
1

First-Order
Logic: Review

First-order logic
•  First-order logic (FOL) models the world in terms of

– Objects, which are things with individual identities
– Properties of objects that distinguish them from others
– Relations that hold among sets of objects
– Functions, which are a subset of relations where there is

only one “value” for any given “input”
•  Examples:

– Objects: Students, lectures, companies, cars ...
– Relations: Brother-of, bigger-than, outside, part-of, has-

color, occurs-after, owns, visits, precedes, ...
– Properties: blue, oval, even, large, ...
– Functions: father-of, best-friend, second-half, more-than ...

User provides
• Constant symbols representing individuals in the

world
– Mary, 3, green

• Function symbols, map individuals to individuals
– father_of(Mary) = John
– color_of(Sky) = Blue

• Predicate symbols, map individuals to truth values
– greater(5,3)
– green(Grass)
– color(Grass, Green)

FOL Provides

• Variable symbols
– E.g., x, y, foo

• Connectives
– Same as in propositional logic: not (¬),

and (∧), or (∨), implies (→), iff (↔)
• Quantifiers

– Universal ∀x or (Ax)
– Existential ∃x or (Ex)

Sentences: built from terms and atoms
• A term (denoting a real-world individual) is a

constant symbol, variable symbol, or n-place
function of n terms, e.g.:
– Constants: john, umbc
– Variables: x, y, z
– Functions: mother_of(john), phone(mother(x))

• Ground terms have no variables in them
– Ground: john, father_of(father_of(john))
– Not Ground: father_of(X)

Sentences: built from terms and atoms
• An atomic sentence (which has value true or

false) is an n-place predicate of n terms, e.g.:
– green(Kermit))
– between(Philadelphia, Baltimore, DC)
– loves(X, mother(X))

• A complex sentence is formed from atomic
sentences connected by logical connectives:

¬P, P∨Q, P∧Q, P→Q, P↔Q
where P and Q are sentences

Sentences: built from terms and atoms

• quantified sentences adds quantifiers ∀ and ∃
– ∀x loves(x, mother(x))
– ∃x number(x) ∧ greater(x, 100), prime(x)

• A well-formed formula (wff) is a sentence
containing no “free” variables, i.e., all
variables are “bound” by either a universal or
existential quantifiers

(∀x)P(x,y) has x bound as a universally
quantified variable, but y is free

A BNF for FOL
S := <Sentence> ;
<Sentence> := <AtomicSentence> |
 <Sentence> <Connective> <Sentence> |
 <Quantifier> <Variable>,... <Sentence> |
 "NOT" <Sentence> |
 "(" <Sentence> ")";
<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
 <Term> "=" <Term>;
<Term> := <Function> "(" <Term>, ... ")" |
 <Constant> |
 <Variable>;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ;
<Function> := "Mother" | "LeftLegOf" | ... ;

Quantifiers
• Universal quantification

– (∀x)P(x) means P holds for all values of x
in domain associated with variable

– E.g., (∀x) dolphin(x) → mammal(x)
• Existential quantification

– (∃ x)P(x) means P holds for some value of
x in domain associated with variable

– E.g., (∃ x) mammal(x) ∧ lays_eggs(x)
– This lets us make a statement about some

object without naming it

Quantifiers
• Universal quantifiers often used with implies to form rules:

(∀x) student(x) → smart(x) means “All students are smart”

• Universal quantification rarely used to make blanket
statements about every individual in the world:
(∀x)student(x) ∧ smart(x) means “Everyone in the world is a

student and is smart”

• Existential quantifiers usually used with “and” to specify a
list of properties about an individual:
(∃x) student(x) ∧ smart(x) means “There is a student who is smart”

• Common mistake: represent this sentence in FOL as:
(∃x) student(x) → smart(x)
– What does this sentence mean?

Quantifier Scope
• FOL sentences have structure, like programs
•  In particular, the variables in a sentence have a scope
• For example, suppose we want to say

– “everyone who is alive loves someone”
– (∀x) alive(x) → (∃y) loves(x,y)

• Here’s how we scope the variables

(∀x) alive(x) → (∃y) loves(x,y)

Scope of x
Scope of y

Quantifier Scope
• Switching order of universal quantifiers does not

change the meaning
–  (∀x)(∀y)P(x,y) ↔ (∀y)(∀x) P(x,y)
– “Dogs hate cats” (i.e., “all dogs hate all cats”)

• You can switch order of existential quantifiers
–  (∃x)(∃y)P(x,y) ↔ (∃y)(∃x) P(x,y)
– “A cat killed a dog”

• Switching order of universals and existentials
does change meaning:
– Everyone likes someone: (∀x)(∃y) likes(x,y)
– Someone is liked by everyone: (∃y)(∀x) likes(x,y)

Connections between All and Exists

• We can relate sentences involving ∀ and ∃ using
extensions to De Morgan’s laws:
1. (∀x) ¬P(x) ↔ ¬(∃x) P(x)
2. ¬(∀x) P ↔ (∃x) ¬P(x)
3. (∀x) P(x) ↔ ¬ (∃x) ¬P(x)
4. (∃x) P(x) ↔ ¬(∀x) ¬P(x)

• Examples
1.  All dogs don’t like cats ↔ No dogs like cats
2.  Not all dogs dance ↔ There is a dog that doesn’t dance
3.  All dogs sleep ↔ There is no dog that doesn’t sleep
4.  There is a dog that talks ↔ Not all dogs can’t talk

Quantified inference rules

• Universal instantiation
– ∀x P(x) ∴ P(A) # where A is some constant

• Universal generalization
– P(A) ∧ P(B) … ∴ ∀x P(x) # if AB… enumerate all

 # individuals
• Existential instantiation

– ∃x P(x) ∴P(F)
• Existential generalization

– P(A) ∴ ∃x P(x)

← Skolem* constant F
 F must be a “new” constant not
 appearing in the KB

* After Thoralf Skolem

Universal instantiation
(a.k.a. universal elimination)

• If (∀x) P(x) is true, then P(C) is true, where
C is any constant in the domain of x, e.g.:
(∀x) eats(John, x) ⇒

 eats(John, Cheese18)
• Note that function applied to ground terms is

also a constant
(∀x) eats(John, x) ⇒

 eats(John, contents(Box42))

Existential instantiation
(a.k.a. existential elimination)

• From (∃x) P(x) infer P(c), e.g.:
–  (∃x) eats(Mikey, x) → eats(Mikey, Stuff345)

• The variable is replaced by a brand-new constant
not occurring in this or any sentence in the KB

• Also known as skolemization; constant is a skolem
constant

• We don’t want to accidentally draw other inferences
about it by introducing the constant

• Can use this to reason about unknown objects, rather
than constantly manipulating existential quantifiers

Existential generalization
(a.k.a. existential introduction)

• If P(c) is true, then (∃x) P(x) is inferred, e.g.:
Eats(Mickey, Cheese18) ⇒

 (∃x) eats(Mickey, x)
• All instances of the given constant symbol

are replaced by the new variable symbol
• Note that the variable symbol cannot already

exist anywhere in the expression

Translating English to FOL
Every gardener likes the sun
∀x gardener(x) → likes(x,Sun)

You can fool some of the people all of the time
∃x ∀t person(x) ∧ time(t) → can-fool(x, t)

You can fool all of the people some of the time
 ∃t time(t) ∧ ∀x person(x) → can-fool(x, t)
∀x person(x) → ∃t time(t) ∧can-fool(x, t)

All purple mushrooms are poisonous
∀x (mushroom(x) ∧ purple(x)) → poisonous(x)

Note 2 possible
readings of
NL sentence

Translating English to FOL

No purple mushroom is poisonous (two ways)
¬∃x purple(x) ∧ mushroom(x) ∧ poisonous(x)
∀x (mushroom(x) ∧ purple(x)) → ¬poisonous(x)

There are exactly two purple mushrooms
∃x ∃y mushroom(x) ∧ purple(x) ∧ mushroom(y) ∧
purple(y) ∧ ¬(x=y) ∧ ∀z (mushroom(z) ∧ purple(z))
→ ((x=z) ∨ (y=z))

Obama is not short
¬short(Obama)

20

Logic and People

•  People can easily be confused by logic
•  And are often suspicious of it, or give it too much weight

21

Monty Python example (Russell & Norvig)

FIRST VILLAGER: We have found a witch. May we burn her?
ALL: A witch! Burn her!
BEDEVERE: Why do you think she is a witch?
SECOND VILLAGER: She turned me into a newt.
B: A newt?
V2 (after looking at himself for some time): I got better.
ALL: Burn her anyway.
B: Quiet! Quiet! There are ways of telling whether she is a witch.

22

Monty Python cont.

B: Tell me… what do you do with witches?
ALL: Burn them!
B: And what do you burn, apart from witches?
V4: …wood?
B: So why do witches burn?
V2 (pianissimo): because they’re made of wood?
B: Good.
ALL: I see. Yes, of course.

23

B: So how can we tell if she is
made of wood?

V1: Make a bridge out of her.
B: Ah… but can you not also make

bridges out of stone?
ALL: Yes, of course… um… er…
B: Does wood sink in water?
ALL: No, no, it floats. Throw her

in the pond.
B: Wait. Wait… tell me, what also

floats on water?
ALL: Bread? No, no no. Apples…

gravy… very small rocks…
B: No, no, no,

24

KING ARTHUR: A duck!
(They all turn and look at Arthur. Bedevere looks up, very impressed.)
B: Exactly. So… logically…
V1 (beginning to pick up the thread): If she… weighs the same as a

duck… she’s made of wood.
B: And therefore?
ALL: A witch!

25

Fallacy: Affirming the conclusion
∀x witch(x) → burns(x)
∀x wood(x) → burns(x)

∴ ∀z witch(x) → wood(x)

p → q
r → q

p → r

26

Monty Python Near-Fallacy #2

wood(x) → can-build-bridge(x)

∴ can-build-bridge(x) → wood(x)

• B: Ah… but can you not also make bridges out of
stone?

27

Monty Python Fallacy #3

∀x wood(x) → floats(x)
∀x duck-weight (x) → floats(x)

∴ ∀x duck-weight(x) → wood(x)

p → q
r → q

∴ r → p

28

Monty Python Fallacy #4
∀z light(z) → wood(z)
light(W)

∴ wood(W) % ok…………..

witch(W) → wood(W) % applying universal instan.

 % to fallacious conclusion #1
wood(W)

∴ witch(z)

Simple genealogy KB in FOL

Design a knowledge base using FOL that
–  Has facts of immediate family relations,

e.g., spouses, parents, etc.
–  Has definitions of more complex relations

(ancestors, relatives)
–  Can detect conflicts, e.g., you are your

own parent
–  Can infer relations, e.g., grandparernt from

parent
–  Can answer queries about relationships

between people

How do we approach this?
• Design an initial ontology of types, e.g.

– e.g., person, man, woman, gender
• Add general individuals to ontology, e.g.

– gender(male), gender(female)
• Extend ontology be defining relations, e.g.

–  spouse, has_child, has_parent
• Add general constraints to relations, e.g.

– spouse(X,Y) => ~ X = Y
– spouse(X,Y) => person(X), person(Y)

• Add FOL sentences for inference, e.g.
– spouse(X,Y) ó spouse(Y,X)
– man(X) ó person(X) ∧gender(X, male)

Simple genealogy KB in FOL

People knowledge base using FOL that
–  Has facts of immediate family relations,

e.g., spouses, parents, etc.
–  Has definitions of more complex relations

(ancestors, relatives)
–  Can detect conflicts, e.g., you are your

own parent
–  Can infer relations, e.g., grandparernt from

parent
–  Can answer queries about relationships

between people

Example: A simple genealogy KB by FOL
•  Build a small genealogy knowledge base using FOL that

–  contains facts of immediate family relations (spouses, parents, etc.)
–  contains definitions of more complex relations (ancestors, relatives)
–  is able to answer queries about relationships between people

•  Predicates:
–  parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
–  spouse(x, y), husband(x, y), wife(x,y)
–  ancestor(x, y), descendant(x, y)
– male(x), female(y)
–  relative(x, y)

•  Facts:
–  husband(Joe, Mary), son(Fred, Joe)
–  spouse(John, Nancy), male(John), son(Mark, Nancy)
–  father(Jack, Nancy), daughter(Linda, Jack)
–  daughter(Liz, Linda)
–  etc.

•  Rules for genealogical relations
(∀x,y) parent(x, y) ↔ child (y, x)
(∀x,y) father(x, y) ↔ parent(x, y) ∧ male(x) ;similarly for mother(x, y)
(∀x,y) daughter(x, y) ↔ child(x, y) ∧ female(x) ;similarly for son(x, y)
(∀x,y) husband(x, y) ↔ spouse(x, y) ∧ male(x) ;similarly for wife(x, y)
(∀x,y) spouse(x, y) ↔ spouse(y, x) ;spouse relation is symmetric
(∀x,y) parent(x, y) → ancestor(x, y)
(∀x,y)(∃z) parent(x, z) ∧ ancestor(z, y) → ancestor(x, y)
(∀x,y) descendant(x, y) ↔ ancestor(y, x)
(∀x,y)(∃z) ancestor(z, x) ∧ ancestor(z, y) → relative(x, y)

 ;related by common ancestry
(∀x,y) spouse(x, y) → relative(x, y) ;related by marriage
(∀x,y)(∃z) relative(z, x) ∧ relative(z, y) → relative(x, y) ;transitive
(∀x,y) relative(x, y) ↔ relative(y, x) ;symmetric

•  Queries
–  ancestor(Jack, Fred) ; the answer is yes
–  relative(Liz, Joe) ; the answer is yes
–  relative(Nancy, Matthew) ;no answer, no under closed world assumption
–  (∃z) ancestor(z, Fred) ∧ ancestor(z, Liz)

Axioms for Set Theory in FOL
1. The only sets are the empty set and those made by adjoining something to a set:

∀s set(s) <=> (s=EmptySet) v (∃x,r Set(r) ^ s=Adjoin(s,r))
2. The empty set has no elements adjoined to it:

~ ∃x,s Adjoin(x,s)=EmptySet
3. Adjoining an element already in the set has no effect:

∀x,s Member(x,s) <=> s=Adjoin(x,s)
4. The only members of a set are the elements that were adjoined into it:

∀x,s Member(x,s) <=> ∃y,r (s=Adjoin(y,r) ^ (x=y ∨ Member(x,r)))
5. A set is a subset of another iff all of the 1st set’s members are members of the 2nd:

∀s,r Subset(s,r) <=> (∀x Member(x,s) => Member(x,r))
6. Two sets are equal iff each is a subset of the other:

∀s,r (s=r) <=> (subset(s,r) ^ subset(r,s))
7. Intersection

∀x,s1,s2 member(X,intersection(S1,S2)) <=> member(X,s1) ^ member(X,s2)
8. Union

∃x,s1,s2 member(X,union(s1,s2)) <=> member(X,s1) ∨ member(X,s2)

Semantics of FOL
•  Domain M: the set of all objects in the world (of interest)
•  Interpretation I: includes

– Assign each constant to an object in M
– Define each function of n arguments as a mapping Mn => M
– Define each predicate of n arguments as a mapping Mn => {T, F}
– Therefore, every ground predicate with any instantiation will have a

truth value
–  In general there’s an infinite number of interpretations because |M| is

infinite
•  Define logical connectives: ~, ^, v, =>, <=> as in PL
•  Define semantics of (∀x) and (∃x)

–  (∀x) P(x) is true iff P(x) is true under all interpretations
–  (∃x) P(x) is true iff P(x) is true under some interpretation

• Model: an interpretation of a set of sentences
such that every sentence is True

• A sentence is
– satisfiable if it is true under some interpretation
– valid if it is true under all possible interpretations
– inconsistent if there does not exist any

interpretation under which the sentence is true
• Logical consequence: S |= X if all models of S

are also models of X

Axioms, definitions and theorems
•  Axioms are facts and rules that attempt to capture the

(important) facts and concepts about a domain; axioms
can be used to prove theorems

–  Mathematicians dislike unnecessary (dependent) axioms, i.e.
ones that can be derived from others

–  Dependent axioms can make reasoning faster, however
–  Choosing a good set of axioms is a design problem

•  A definition of a predicate is of the form “p(X) ↔ …”
and can be decomposed into two parts
– Necessary description: “p(x) → …”
– Sufficient description “p(x) ← …”
– Some concepts don’t have complete like …

More on definitions

Example: define father(x, y) by parent(x, y) and
male(x)
•  parent(x, y) is a necessary (but not sufficient)

description of father(x, y)
 father(x, y) → parent(x, y)

•  parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but
not necessary) description of father(x, y):
 father(x, y) ← parent(x, y) ^ male(x) ^ age(x, 35)

•  parent(x, y) ^ male(x) is a necessary and sufficient
description of father(x, y)

 parent(x, y) ^ male(x) ↔ father(x, y)

More on definitions

P(x)

S(x)

S(x) is a
necessary
condition of P(x)

(∀x) P(x) => S(x)

S(x)

P(x)

S(x) is a
sufficient
condition of P(x)

(∀x) P(x) <= S(x)

P(x)

S(x)

S(x) is a
necessary and
sufficient
condition of P(x)

(∀x) P(x) <=> S(x)

Higher-order logic

• FOL only lets us quantify over variables, and
variables can only range over objects.

• HOL allows us to quantify over relations, e.g.
“two functions are equal iff they produce the same

value for all arguments”
∀f ∀g (f = g) ↔ (∀x f(x) = g(x))

• E.g.: (quantify over predicates)
∀r transitive(r) → (∀xyz) r(x,y) ∧ r(y,z) → r(x,z))

• More expressive, but undecidable, in general

Expressing uniqueness
• Often want to say that there is a single, unique

object that satisfies a condition
• There exists a unique x such that king(x) is true

– ∃x king(x) ∧ ∀y (king(y) → x=y)
– ∃x king(x) ∧ ¬∃y (king(y) ∧ x≠y)
– ∃! x king(x)

• “Every country has exactly one ruler”
– ∀c country(c) → ∃! r ruler(c,r)

•  Iota operator: ι x P(x) means “the unique x such
that p(x) is true”
– “The unique ruler of Freedonia is dead”
– dead(ι x ruler(freedonia,x))

syntactic
sugar

42

Notational differences
• Different symbols for and, or, not, implies, ...

– ∀ ∃ ⇒ ⇔ ∧ ∨ ¬ • ⊃
– p v (q ^ r)
– p + (q * r)

• Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

• Lispy notations
(forall ?x (implies (and (furry ?x)
 (meows ?x)
 (has ?x claws))
 (cat ?x)))

A example of FOL in use

• Semantics of W3C’s semantic web stack
(RDF, RDFS, OWL) is defined in FOL

• OWL Full is equivalent to FOL
• Other OWL profiles support a subset of FOL

and are more efficient
• However, the semantics of schema.org is

only defined in natural language text
• …And Google’s knowledge Graph probably

(!) uses probabilities
43

FOL Summary
• First order logic (FOL) introduces predicates,

functions and quantifiers
• More expressive, but reasoning is more complex

– Reasoning in propositional logic is NP hard, FOL is semi-
decidable

• A common AI knowledge representation language
– Other KR languages (e.g., OWL) are often defined by

mapping them to FOL

• FOL variables range over objects
– HOL variables can range over functions, predicates or

sentences

