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First-Order 
Logic: Review 



First-order logic 
•  First-order logic (FOL) models the world in terms of  

– Objects, which are things with individual identities 
– Properties of objects that distinguish them from others 
– Relations that hold among sets of objects 
– Functions, which are a subset of relations where there is 

only one “value” for any given “input” 
•  Examples:  

– Objects: Students, lectures, companies, cars ...  
– Relations: Brother-of, bigger-than, outside, part-of, has-

color, occurs-after, owns, visits, precedes, ...  
– Properties: blue, oval, even, large, ...  
– Functions: father-of, best-friend, second-half, more-than ...  



User provides 
• Constant symbols representing individuals in the 

world 
– Mary, 3, green 

• Function symbols, map individuals to individuals 
– father_of(Mary) = John 
– color_of(Sky) = Blue  

• Predicate symbols, map individuals to truth values 
– greater(5,3) 
– green(Grass)  
– color(Grass, Green)  



FOL Provides 

• Variable symbols 
– E.g., x, y, foo 

• Connectives 
– Same as in propositional logic: not (¬), 

and (∧), or (∨), implies (→), iff (↔) 
• Quantifiers 

– Universal ∀x or  (Ax) 
– Existential ∃x or (Ex)  



Sentences: built from terms and atoms 
• A term (denoting a real-world individual) is a 

constant symbol, variable symbol, or n-place 
function of n terms, e.g.: 
– Constants: john, umbc 
– Variables: x, y, z 
– Functions: mother_of(john), phone(mother(x)) 

• Ground terms have no variables in them 
– Ground: john,  father_of(father_of(john)) 
– Not Ground: father_of(X) 



Sentences: built from terms and atoms 
• An atomic sentence (which has value true or 

false) is an n-place predicate of n terms, e.g.: 
– green(Kermit)) 
– between(Philadelphia, Baltimore, DC) 
– loves(X, mother(X)) 

• A complex sentence is formed from atomic 
sentences connected by logical connectives: 

¬P, P∨Q, P∧Q, P→Q, P↔Q 
where P and Q are sentences 



Sentences: built from terms and atoms 

• quantified sentences adds quantifiers ∀ and ∃ 
– ∀x loves(x, mother(x)) 
– ∃x number(x) ∧ greater(x, 100), prime(x) 

• A well-formed formula (wff) is a sentence 
containing no “free” variables, i.e., all 
variables are “bound” by either a universal or 
existential quantifiers  

(∀x)P(x,y) has x bound as a universally 
quantified variable, but y is free  



A BNF for FOL 
S := <Sentence> ;
<Sentence> := <AtomicSentence> | 
          <Sentence> <Connective> <Sentence> |
          <Quantifier> <Variable>,... <Sentence> |
          "NOT" <Sentence> |
          "(" <Sentence> ")"; 
<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
                    <Term> "=" <Term>;
<Term> := <Function> "(" <Term>, ... ")" |
          <Constant> |
          <Variable>;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ; 
<Function> := "Mother" | "LeftLegOf" | ... ;



Quantifiers 
• Universal quantification  

– (∀x)P(x) means P holds for all values of x 
in domain associated with variable 

– E.g., (∀x) dolphin(x) → mammal(x)  
• Existential quantification  

– (∃ x)P(x) means P holds for some value of 
x in domain associated with variable 

– E.g., (∃ x) mammal(x) ∧ lays_eggs(x) 
– This lets us make a statement about some 

object without naming it 



Quantifiers 
• Universal quantifiers often used with implies to form rules: 

(∀x) student(x) → smart(x) means “All students are smart” 

• Universal quantification rarely used to make blanket 
statements about every individual in the world:  
(∀x)student(x) ∧ smart(x) means “Everyone in the world is a 

student and is smart” 

• Existential quantifiers usually used with “and” to specify a 
list of properties about an individual: 
(∃x) student(x) ∧ smart(x) means “There is a student who is smart” 

• Common mistake: represent this sentence in FOL as: 
(∃x) student(x) → smart(x)  
– What does this sentence mean? 



Quantifier Scope 
• FOL sentences have structure, like programs 
•  In particular, the variables in a sentence have a scope 
• For example, suppose we want to say  

– “everyone who is alive loves someone” 
– (∀x) alive(x) → (∃y) loves(x,y)  

• Here’s how we scope the variables 

(∀x) alive(x) → (∃y) loves(x,y) 

Scope of x 
Scope of y 



Quantifier Scope 
• Switching order of universal quantifiers does not 

change the meaning 
–  (∀x)(∀y)P(x,y) ↔ (∀y)(∀x) P(x,y) 
– “Dogs hate cats” (i.e., “all dogs hate all cats”) 

• You can switch order of existential quantifiers 
–  (∃x)(∃y)P(x,y) ↔ (∃y)(∃x) P(x,y)  
– “A cat killed a dog” 

• Switching order of universals and existentials 
does change meaning:  
– Everyone likes someone: (∀x)(∃y) likes(x,y)  
– Someone is liked by everyone: (∃y)(∀x) likes(x,y) 



Connections between All and Exists 

• We can relate sentences involving ∀ and ∃ using 
extensions to  De Morgan’s laws: 
1. (∀x) ¬P(x) ↔ ¬(∃x) P(x) 
2. ¬(∀x) P ↔ (∃x) ¬P(x) 
3. (∀x) P(x) ↔ ¬ (∃x) ¬P(x) 
4. (∃x) P(x) ↔ ¬(∀x) ¬P(x) 

• Examples 
1.  All dogs don’t like cats ↔ No dogs like cats 
2.  Not all dogs dance ↔ There is a dog that doesn’t dance 
3.  All dogs sleep ↔ There is no dog that doesn’t sleep 
4.  There is a dog that talks ↔ Not all dogs can’t talk 



Quantified inference rules 

• Universal instantiation 
– ∀x P(x) ∴ P(A)    # where A is some constant 

• Universal generalization 
– P(A) ∧ P(B) … ∴ ∀x P(x) # if AB… enumerate all  

                                            #   individuals  
• Existential instantiation 

– ∃x P(x) ∴P(F) 
• Existential generalization 

– P(A) ∴ ∃x P(x) 

← Skolem* constant F 
     F must be a “new” constant not    
    appearing in the KB 

* After Thoralf Skolem 



Universal instantiation 
(a.k.a. universal elimination) 

• If (∀x) P(x) is true, then P(C) is true, where 
C is any constant in the domain of x, e.g.:  
(∀x) eats(John, x) ⇒ 

          eats(John, Cheese18) 
• Note that function applied to ground terms is 

also a constant 
(∀x) eats(John, x) ⇒ 

          eats(John, contents(Box42)) 



Existential instantiation 
(a.k.a. existential elimination) 

• From (∃x) P(x) infer P(c), e.g.: 
–  (∃x) eats(Mikey, x) → eats(Mikey, Stuff345) 

• The variable is replaced by a brand-new constant 
not occurring in this or any sentence in the KB 

• Also known as skolemization; constant is a skolem 
constant 

• We don’t want to accidentally draw other inferences 
about it by introducing the constant  

• Can use this to reason about unknown objects, rather 
than constantly manipulating existential quantifiers 



Existential generalization 
(a.k.a. existential introduction) 

• If P(c) is true, then (∃x) P(x) is inferred, e.g.: 
Eats(Mickey, Cheese18) ⇒ 

        (∃x) eats(Mickey, x) 
• All instances of the given constant symbol 

are replaced by the new variable symbol 
• Note that the variable symbol cannot already 

exist anywhere in the expression 



Translating English to FOL 
Every gardener likes the sun 
∀x gardener(x) → likes(x,Sun)  

You can fool some of the people all of the time 
∃x ∀t  person(x) ∧ time(t) → can-fool(x, t) 

You can fool all of the people some of the time 
 ∃t time(t) ∧ ∀x person(x) → can-fool(x, t) 
∀x person(x) → ∃t time(t) ∧can-fool(x, t) 

All purple mushrooms are poisonous 
∀x (mushroom(x) ∧ purple(x)) → poisonous(x)  

Note 2 possible 
readings of  
NL sentence 



Translating English to FOL 

No purple mushroom is poisonous (two ways) 
¬∃x purple(x) ∧ mushroom(x) ∧ poisonous(x)  
∀x  (mushroom(x) ∧ purple(x)) → ¬poisonous(x)  
 

There are exactly two purple mushrooms 
∃x ∃y mushroom(x) ∧ purple(x) ∧ mushroom(y) ∧ 
purple(y) ∧ ¬(x=y) ∧ ∀z (mushroom(z) ∧ purple(z)) 
→ ((x=z) ∨ (y=z))  
 

Obama is not short 
¬short(Obama)  
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Logic and People 

•  People can easily be confused by logic 
•  And are often suspicious of it, or give it too much weight 
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Monty Python example (Russell & Norvig) 

FIRST VILLAGER: We have found a witch. May we burn her? 
ALL: A witch! Burn her! 
BEDEVERE: Why do you think she is a witch? 
SECOND VILLAGER: She turned me into a newt. 
B: A newt? 
V2 (after looking at himself for some time): I got better. 
ALL: Burn her anyway. 
B: Quiet! Quiet! There are ways of telling whether she is a witch. 



22 

Monty Python cont. 

B: Tell me… what do you do with witches? 
ALL: Burn them! 
B: And what do you burn, apart from witches? 
V4: …wood? 
B: So why do witches burn? 
V2 (pianissimo): because they’re made of wood? 
B: Good. 
ALL: I see. Yes, of course. 
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B: So how can we tell if she is 
made of wood? 

V1: Make a bridge out of her. 
B: Ah… but can you not also make 

bridges out of stone? 
ALL: Yes, of course… um… er… 
B: Does wood sink in water? 
ALL: No, no, it floats. Throw her 

in the pond. 
B: Wait. Wait… tell me, what also 

floats on water? 
ALL: Bread? No, no no. Apples… 

gravy… very small rocks… 
B: No, no, no, 
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KING ARTHUR: A duck! 
(They all turn and look at Arthur. Bedevere looks up, very impressed.) 
B: Exactly. So… logically… 
V1 (beginning to pick up the thread): If she… weighs the same as a 

duck… she’s made of wood. 
B: And therefore? 
ALL: A witch! 
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Fallacy: Affirming the conclusion 
∀x witch(x) → burns(x) 
∀x wood(x) → burns(x) 
------------------------------- 
∴ ∀z witch(x) → wood(x) 
 
p → q 
r → q 
--------- 
p → r 
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Monty Python Near-Fallacy #2 

wood(x) → can-build-bridge(x) 
----------------------------------------- 
∴ can-build-bridge(x) → wood(x) 

• B: Ah… but can you not also make bridges out of 
stone? 
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Monty Python Fallacy #3 

∀x wood(x) → floats(x) 
∀x duck-weight (x) → floats(x) 
------------------------------- 
∴ ∀x duck-weight(x) → wood(x) 
 
p → q 
r → q 
----------- 
∴ r → p 
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Monty Python Fallacy #4 
∀z light(z) → wood(z) 
light(W) 
------------------------------ 
∴ wood(W)                       % ok………….. 
 
witch(W) → wood(W)      % applying universal instan. 

                                        % to fallacious conclusion #1 
wood(W) 
--------------------------------- 
∴ witch(z) 



Simple genealogy KB in FOL 

Design a knowledge base using FOL that 
–  Has facts of immediate family relations, 

e.g., spouses, parents, etc. 
–  Has definitions of more complex relations 

(ancestors, relatives) 
–  Can detect conflicts, e.g., you are your 

own parent 
–  Can infer relations, e.g., grandparernt from 

parent 
–  Can answer queries about relationships 

between people 



How do we approach this? 
• Design an initial ontology of types, e.g. 

– e.g., person, man, woman, gender 
• Add general individuals to ontology, e.g. 

– gender(male), gender(female) 
• Extend ontology be defining relations, e.g. 

–  spouse, has_child, has_parent 
• Add general constraints to relations, e.g. 

– spouse(X,Y) => ~ X = Y 
– spouse(X,Y) => person(X), person(Y) 

• Add FOL sentences for inference, e.g. 
– spouse(X,Y) ó spouse(Y,X) 
– man(X) ó person(X) ∧gender(X, male) 



Simple genealogy KB in FOL 

People knowledge base using FOL that 
–  Has facts of immediate family relations, 

e.g., spouses, parents, etc. 
–  Has definitions of more complex relations 

(ancestors, relatives) 
–  Can detect conflicts, e.g., you are your 

own parent 
–  Can infer relations, e.g., grandparernt from 

parent 
–  Can answer queries about relationships 

between people 



Example: A simple genealogy KB by FOL 
•  Build a small genealogy knowledge base using FOL that 

–  contains facts of immediate family relations (spouses, parents, etc.) 
–  contains definitions of more complex relations (ancestors, relatives) 
–  is able to answer queries about relationships between people 

•  Predicates: 
–  parent(x, y), child(x, y), father(x, y), daughter(x, y), etc. 
–  spouse(x, y), husband(x, y), wife(x,y) 
–  ancestor(x, y), descendant(x, y) 
– male(x), female(y) 
–  relative(x, y) 

•  Facts: 
–  husband(Joe, Mary), son(Fred, Joe) 
–  spouse(John, Nancy), male(John), son(Mark, Nancy) 
–  father(Jack, Nancy), daughter(Linda, Jack) 
–  daughter(Liz, Linda) 
–  etc. 



•  Rules for genealogical relations 
(∀x,y) parent(x, y) ↔ child (y, x) 
(∀x,y) father(x, y) ↔ parent(x, y) ∧ male(x) ;similarly for mother(x, y) 
(∀x,y) daughter(x, y) ↔ child(x, y) ∧ female(x) ;similarly for son(x, y) 
(∀x,y) husband(x, y) ↔ spouse(x, y) ∧ male(x) ;similarly for wife(x, y) 
(∀x,y) spouse(x, y) ↔ spouse(y, x)  ;spouse relation is symmetric 
(∀x,y) parent(x, y) → ancestor(x, y)  
(∀x,y)(∃z) parent(x, z) ∧ ancestor(z, y) → ancestor(x, y)  
(∀x,y) descendant(x, y) ↔ ancestor(y, x)  
(∀x,y)(∃z) ancestor(z, x) ∧ ancestor(z, y) → relative(x, y)  

           ;related by common ancestry 
(∀x,y) spouse(x, y) → relative(x, y)  ;related by marriage 
(∀x,y)(∃z) relative(z, x) ∧ relative(z, y) → relative(x, y)  ;transitive 
(∀x,y) relative(x, y) ↔ relative(y, x)   ;symmetric 

•  Queries 
–  ancestor(Jack, Fred)   ; the answer is yes 
–  relative(Liz, Joe)        ; the answer is yes  
–  relative(Nancy,  Matthew)   ;no answer, no under closed world assumption 
–  (∃z) ancestor(z, Fred) ∧ ancestor(z, Liz) 



Axioms for Set Theory in FOL 
1. The only sets are the empty set and those made by adjoining something to a set:  

∀s set(s) <=> (s=EmptySet) v (∃x,r Set(r) ^ s=Adjoin(s,r)) 
2. The empty set has no elements adjoined to it:  

~ ∃x,s Adjoin(x,s)=EmptySet 
3. Adjoining an element already in the set has no effect:  

∀x,s Member(x,s) <=> s=Adjoin(x,s) 
4. The only members of a set are the elements that were adjoined into it:  

∀x,s Member(x,s) <=>  ∃y,r (s=Adjoin(y,r) ^ (x=y ∨ Member(x,r))) 
5. A set is a subset of another iff all of the 1st set’s members are members of the 2nd: 

∀s,r Subset(s,r) <=> (∀x Member(x,s) => Member(x,r)) 
6. Two sets are equal iff each is a subset of the other:  

∀s,r (s=r) <=> (subset(s,r) ^ subset(r,s)) 
7. Intersection  

∀x,s1,s2 member(X,intersection(S1,S2)) <=> member(X,s1) ^ member(X,s2) 
8. Union  

∃x,s1,s2 member(X,union(s1,s2)) <=> member(X,s1) ∨ member(X,s2) 



Semantics of FOL 
•  Domain M: the set of all objects in the world (of interest) 
•  Interpretation I: includes 

– Assign each constant to an object in M 
– Define each function of n arguments as a mapping Mn => M 
– Define each predicate of n arguments as a mapping Mn => {T, F} 
– Therefore, every ground predicate with any instantiation will have a 

truth value 
–  In general there’s an infinite number of interpretations because |M| is 

infinite 
•  Define logical connectives:  ~, ^, v, =>, <=> as in PL 
•  Define semantics of (∀x) and (∃x) 

–  (∀x) P(x) is true iff P(x) is true under all interpretations  
–  (∃x) P(x) is true iff P(x) is true under some interpretation  



• Model: an interpretation of a set of sentences 
such that every sentence is True 

• A sentence is 
– satisfiable if it is true under some interpretation 
– valid if it is true under all possible interpretations 
– inconsistent if there does not exist any 

interpretation under which the sentence is true 
• Logical consequence: S |= X if all models of S 

are also models of X 



Axioms, definitions and theorems 
•  Axioms are facts and rules that attempt to capture the 

(important) facts and concepts about a domain; axioms 
can be used to prove theorems 

–  Mathematicians dislike unnecessary (dependent) axioms, i.e. 
ones that can be derived from others 

–  Dependent axioms can make reasoning faster, however 
–  Choosing a good set of axioms is a design problem 

•  A definition of a predicate is of the form “p(X) ↔ …” 
and can be decomposed into two parts 
– Necessary description: “p(x) → …”  
– Sufficient description “p(x) ← …” 
– Some concepts don’t have complete like … 



More on definitions 

Example: define father(x, y) by parent(x, y) and 
male(x) 
•  parent(x, y) is a necessary (but not sufficient) 

description of father(x, y) 
     father(x, y) → parent(x, y) 

•  parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but 
not necessary) description of father(x, y): 
     father(x, y) ← parent(x, y) ^ male(x) ^ age(x, 35)  

•  parent(x, y) ^ male(x) is a necessary and sufficient 
description of father(x, y)  

     parent(x, y) ^ male(x) ↔ father(x, y) 

 



More on definitions 

P(x) 

S(x) 

S(x) is a 
necessary 
condition of P(x) 

(∀x) P(x) => S(x) 

S(x) 

P(x) 

S(x) is a 
sufficient 
condition of P(x) 

(∀x) P(x) <= S(x) 

P(x) 

S(x) 

S(x) is a 
necessary and 
sufficient 
condition of P(x) 

(∀x) P(x) <=> S(x) 



Higher-order logic 

• FOL only lets us quantify over variables, and 
variables can only range over objects.  

• HOL allows us to quantify over relations, e.g. 
“two functions are equal iff they produce the same 

value for all arguments” 
∀f ∀g (f = g) ↔ (∀x f(x) = g(x)) 

• E.g.: (quantify over predicates) 
∀r transitive( r ) → (∀xyz) r(x,y) ∧ r(y,z) → r(x,z))  

• More expressive, but undecidable, in general 
 



Expressing uniqueness 
• Often want to say that there is a single, unique 

object that satisfies a condition 
• There exists a unique x such that king(x) is true  

– ∃x king(x) ∧ ∀y (king(y) → x=y) 
– ∃x king(x) ∧ ¬∃y (king(y) ∧ x≠y) 
– ∃! x king(x)  

• “Every country has exactly one ruler” 
– ∀c country(c) → ∃! r ruler(c,r)  

•  Iota operator: ι x P(x) means “the unique x such 
that p(x) is true” 
– “The unique ruler of Freedonia is dead” 
– dead(ι x ruler(freedonia,x)) 

syntactic 
sugar 
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Notational differences 
• Different symbols for and, or, not, implies, ... 

– ∀  ∃  ⇒  ⇔  ∧  ∨  ¬  •  ⊃ 
– p v (q ^ r)  
– p + (q * r) 

• Prolog 
cat(X) :- furry(X), meows (X), has(X, claws) 

• Lispy notations 
(forall ?x (implies (and (furry ?x)  
                                      (meows ?x)  
                                      (has ?x claws)) 
                               (cat ?x))) 



A example of FOL in use 

• Semantics of W3C’s semantic web stack 
(RDF, RDFS, OWL) is defined in FOL 

• OWL Full is equivalent to FOL 
• Other OWL profiles support a subset of FOL 

and are more efficient 
• However, the semantics of schema.org is 

only defined in natural language text 
• …And Google’s knowledge Graph probably 

(!) uses probabilities 
43 



FOL Summary 
• First order logic (FOL) introduces predicates, 

functions and quantifiers 
• More expressive, but reasoning is more complex 

– Reasoning in propositional logic is NP hard, FOL is semi-
decidable 

• A common AI knowledge representation language 
– Other KR languages (e.g., OWL) are often defined by 

mapping them to FOL 

• FOL variables range over objects 
– HOL variables can range over functions, predicates or 

sentences 


