

What is learning?

- "Learning denotes changes in a system that ... enable a system to do the same task more efficiently the next time" – <u>Herbert Simon</u>
- "Learning is constructing or modifying representations of what is being experienced"
 <u>Ryszard Michalski</u>
- "Learning is making useful changes in our minds" <u>Marvin Minsky</u>

Why study learning?

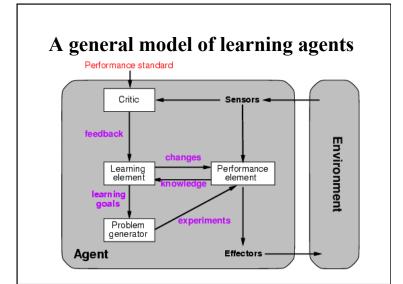
- Understand and improve efficiency of human learning
 - Use to improve methods for teaching and tutoring people (e.g., better computer-aided instruction)
- Discover new things or structure previously unknown
 - Examples: data mining, scientific discovery
- Fill in skeletal or incomplete specifications in a domain
- Large, complex systems can't be completely built by hand & require dynamic updating to incorporate new information
- Learning new characteristics expands the domain or expertise and lessens the "brittleness" of the system
- Build agents that can **adapt** to users, other agents, and their environment

AI & Learning Today

- Neural network learning was popular in the 60s
- In the 70s and 80s it was replaced with a paradigm based on manually encoding and using knowledge
- In the 90s, more data and the Web drove interest in new statistical machine learning (ML) techniques and new data mining applications
- Today, ML techniques and big data are behind almost all successful intelligent systems

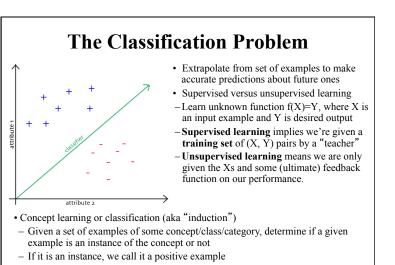
Machine Leaning Successes

- Sentiment analysis
- Spam detection
- Machine translation
- Spoken language understanding
- Named entity detection
- Self driving cars
- Motion recognition (Microsoft X-Box)
- Identifying paces in digital images
- Recommender systems (Netflix, Amazon)
- Credit card fraud detection

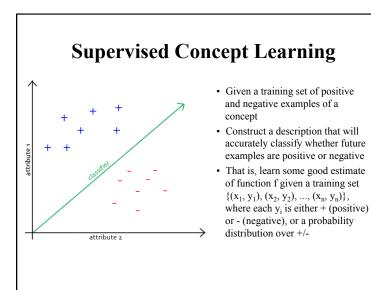


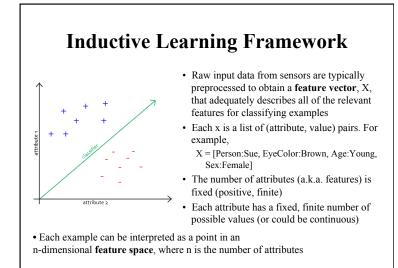
Major paradigms of machine learning

- **Rote learning** One-to-one mapping from inputs to stored representation. "Learning by memorization." Association-based storage and retrieval.
- Induction Use specific examples to reach general conclusions
- Clustering Unsupervised identification of natural groups in data
- Analogy Determine correspondence between two different representations
- Discovery Unsupervised, specific goal not given
- **Genetic algorithms** "Evolutionary" search techniques, based on an analogy to "survival of the fittest"
- **Reinforcement** Feedback (positive or negative reward) given at the end of a sequence of steps



- If it is not, it is called a negative example
- Or we can make a probabilistic prediction (e.g., using a Bayes net)





Measuring Model Quality

- How good is a model?
 - Predictive accuracy
 - False positives / false negatives for a given cutoff threshold
 - Loss function (accounts for cost of different types of errors)
 - Area under the (ROC) curve
 - Minimizing loss can lead to problems with overfitting
- · Training error
 - Train on all data; measure error on all data
 - Subject to overfitting (of course we'll make good predictions on the data on which we trained!)
- Regularization
 - Attempt to avoid overfitting
 - Explicitly minimize the complexity of the function while minimizing
 - loss. Tradeoff is modeled with a regularization parameter

Cross-Validation

- Holdout cross-validation:
 - Divide data into training set and test set
 - Train on training set; measure error on test set
 - Better than training error, since we are measuring generalization to new data
 - To get a good estimate, we need a reasonably large test set
 - But this gives less data to train on, reducing our model quality!

Cross-Validation, cont.

• k-fold cross-validation:

- Divide data into k folds
- Train on k-l folds, use the kth fold to measure error
- Repeat k times; use average error to measure generalization accuracy
- Statistically valid and gives good accuracy estimates
- Leave-one-out cross-validation (LOOCV)
 - *k*-fold cross validation where k=N (test data = 1 instance!)
 - Quite accurate, but also quite expensive, since it requires building N models

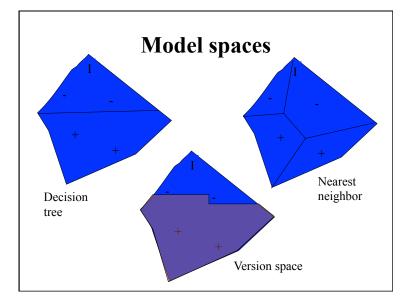
13

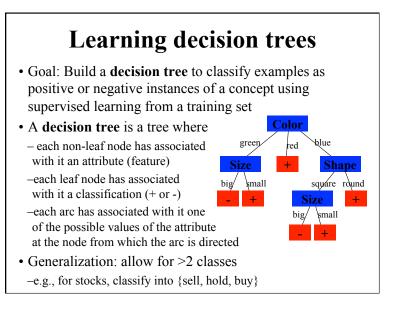
Inductive learning as search

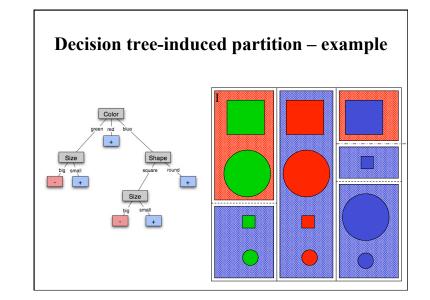
- Instance space I defines the language for the training and test instances
 - Typically, but not always, each instance i∈I is a feature vector
 - Features are sometimes called attributes or variables
 - $I: V_1 \times V_2 \times ... \times V_k, i = (v_1, v_2, ..., v_k)$
- Class variable C gives an instance's class (to be predicted)
- Model space M defines the possible classifiers
 - M: I \rightarrow C, M = {m1, ... mn} (possibly infinite)
 - Model space is sometimes, but not always, defined in terms of the same features as the instance space
- Training data can be used to direct the search for a good (consistent, complete, simple) hypothesis in the model space

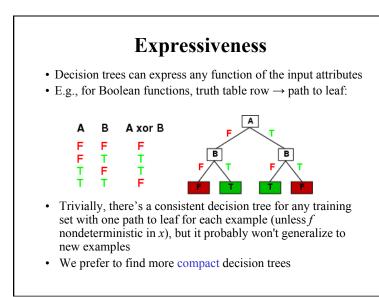
Model spaces

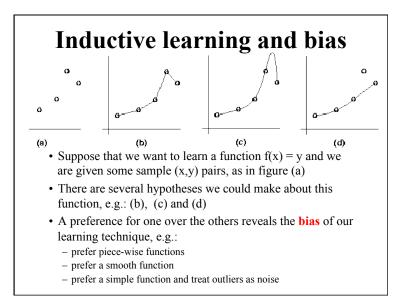
- Decision trees
 - Partition the instance space into axis-parallel regions, labeled with class value
- Version spaces
 - Search for necessary (lower-bound) and sufficient (upper-bound) partial instance descriptions for an instance to be in the class
- Nearest-neighbor classifiers
 - Partition the instance space into regions defined by the centroid instances (or cluster of k instances)
- Associative rules (feature values \rightarrow class)
- First-order logical rules
- Bayesian networks (probabilistic dependencies of class on attributes)
- · Neural networks











Preference bias: Ockham's Razor

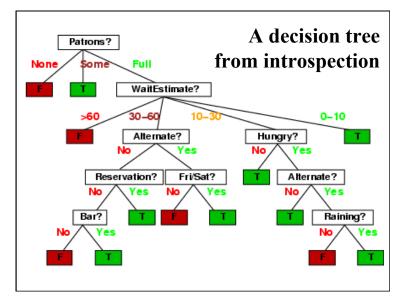
- AKA Occam's Razor, Law of Economy, or Law of Parsimony
- Principle stated by William of Ockham (1285-1347)
 "non sunt multiplicanda entia praeter necessitatem" entities are not to be multiplied beyond necessity
- The simplest consistent explanation is the best
- Therefore, the smallest decision tree that correctly classifies all of the training examples is best
- Finding the provably smallest decision tree is NPhard, so instead of constructing the absolute smallest tree consistent with the training examples, construct one that is pretty small

Hypothesis spaces

- How many distinct decision trees with *n* Boolean attributes?
 - = number of Boolean functions
 - = number of distinct truth tables with 2^{n} rows = $2^{2^{n}}$
 - e.g., with 6 Boolean attributes, 18,446,744,073,709,551,616 trees
- How many conjunctive hypotheses (e.g., *Hungry* ∧ ¬*Rain*)?
 - Each attribute can be in (positive), in (negative), or out $\Rightarrow 3^n$ distinct conjunctive hypotheses
 - e.g., with 6 Boolean attributes, 729 trees
- A more expressive hypothesis space
 - increases chance that target function can be expressed
 - increases number of hypotheses consistent with training set
 - \Rightarrow may get worse predictions in practice

R&N's restaurant domain

- Develop a decision tree to model decision a patron makes when deciding whether or not to wait for a table at a restaurant
- Two classes: wait, leave
- Ten attributes: Alternative available? Bar in restaurant? Is it Friday? Are we hungry? How full is the restaurant? How expensive? Is it raining? Do we have a reservation? What type of restaurant is it? What's the purported waiting time?
- Training set of 12 examples
- ~ 7000 possible cases



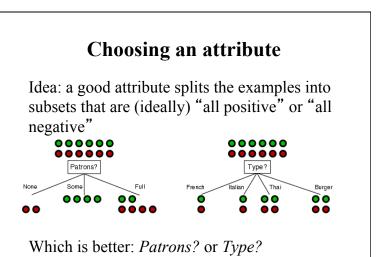
Example	Attributes								Target		
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т
Example e.g., situ								, disc	rete, co	ntinuou	ıs),

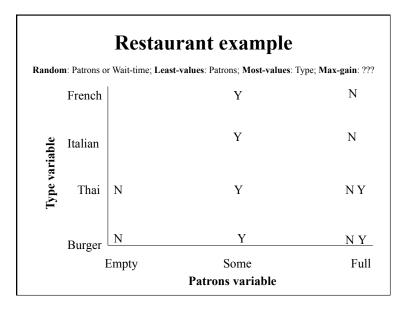
ID3/C4.5 Algorithm

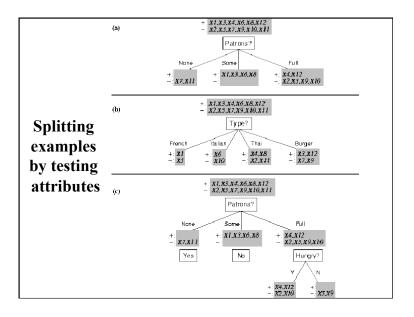
- A greedy algorithm for decision tree construction developed by Ross Quinlan circa 1987
- Top-down construction of decision tree by recursively selecting "best attribute" to use at the current node in tree
 - Once attribute is selected for current node, generate child nodes, one for each possible value of selected attribute
- Partition examples using the possible values of this attribute, and assign these subsets of the examples to the appropriate child node
- Repeat for each child node until all examples associated with a node are either all positive or all negative

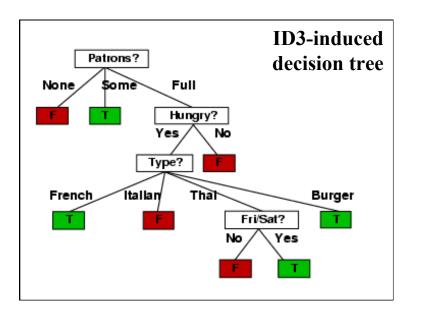
Choosing the best attribute

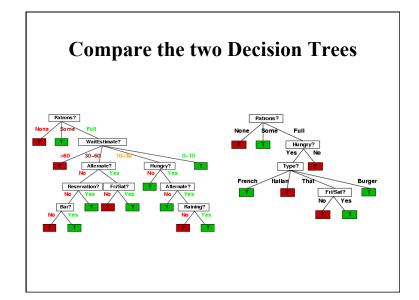
- Key problem: choosing which attribute to split a given set of examples
- Some possibilities are:
 - Random: Select any attribute at random
 - Least-Values: Choose the attribute with the smallest number of possible values
 - Most-Values: Choose the attribute with the largest number of possible values
 - Max-Gain: Choose the attribute that has the largest expected *information gain*—i.e., attribute that results in smallest expected size of subtrees rooted at its children
- The ID3 algorithm uses the Max-Gain method of selecting the best attribute











Information theory 101

• Information theory sprang almost fully formed from the seminal work of <u>Claude E. Shannon</u> at Bell Labs

A <u>Mathematical Theory of Communication</u>, *Bell System Technical Journal*, 1948.

- Intuitions
- Common words (a, the, dog) shorter than less common ones (parlimentarian, foreshadowing)
- Morse code: common (probable) letters have shorter encodings
- Information is measured in minimum number of bits needed to store or send some information
- Wikipedia: The measure of data, known as <u>information</u> <u>entropy</u>, is usually expressed by the average number of <u>bits</u> needed for storage or communication.

Information theory 101

- · Information is measured in bits
- Information conveyed by message depends on its probability
- For n equally probable possible *messages*, each has prob. 1/n
- Information conveyed by message is $-\log(p) = \log(n)$

e.g., with 16 messages, then log(16) = 4 and we need 4 bits to identify/send each message

• Given probability distribution for n messages $P = (p_1, p_2...p_n)$, the information conveyed by distribution (aka <u>*entropy*</u> of P) is:

 $I(P) = -(p_1 * log(p_1) + p_2 * log(p_2) + ... + p_n * log(p_n))$

probability of msg 2

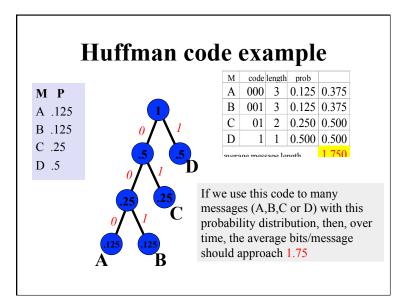
info in msg 2

Information theory II

- Information conveyed by distribution (aka *entropy* of P):
 I(P) = -(p₁*log(p₁) + p₂*log(p₂) + ... + p_n*log(p_n))
- Examples:
 - If P is (0.5, 0.5) then I(P) = .5*1 + 0.5*1 = 1
 - If P is (0.67, 0.33) then I(P) = $-(2/3*\log(2/3) + 1/3*\log(1/3)) = 0.92$
 - If P is (1, 0) then I(P) = $1*1 + 0*\log(0) = 0$
- The more uniform the probability distribution, the greater its information: more information is conveyed by a message telling you which event actually occurred
- Entropy is the average number of bits/message needed to represent a stream of messages

Example: Huffman code

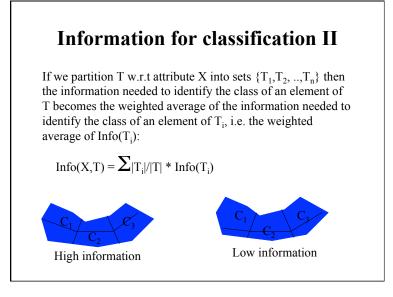
- In 1952 MIT student David Huffman devised, in the course of doing a homework assignment, an elegant coding scheme which is optimal in the case where all symbols' probabilities are integral powers of 1/2.
- A Huffman code can be built in the following manner:
- Rank all symbols in order of probability of occurrence
- Successively combine the two symbols of the lowest probability to form a new composite symbol; eventually we will build a binary tree where each node is the probability of all nodes beneath it
- Trace a path to each leaf, noticing direction at each node

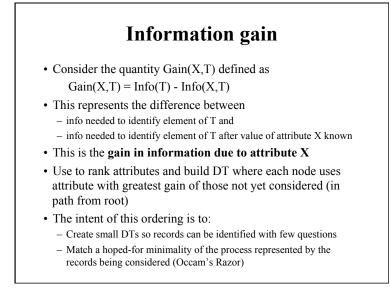


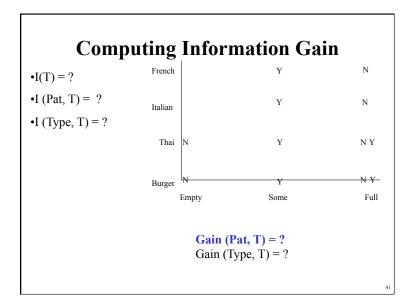
Information for classification

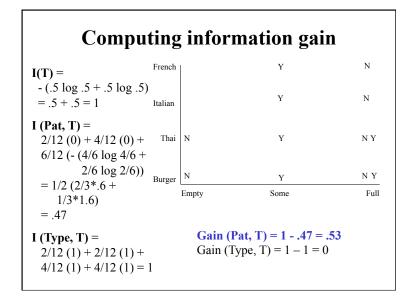
If a set T of records is partitioned into disjoint exhaustive classes $(C_1, C_2, .., C_k)$ on the basis of the value of the class attribute, then information needed to identify class of an element of T is:

Info(T) = I(P)where P is the probability distribution of partition (C₁,C₂,..,C_k): $P = (|C_1|/|T|, |C_2|/|T|, ..., |C_k|/|T|)$









The ID3 algorithm builds a decision tree, given a set of non-categorical attributes C1, C2, ..., Cn, the class attribute C, and a training set T of records function ID3(R:input attributes, C:class attribute, S:training set) returns decision tree; If S is empty, return single node with value Failure; If every example in S has same value for C, return single node with that value; If R is empty, then return a single node with most frequent of the values of C found in examples S; # causes errors -- improperly classified record Let D be attribute with largest Gain(D,S) among R; Let {dj| j=1,2, .., m} be values of attribute D; Let {Sj| j=1,2, ..., m} be subsets of S consisting of records with value dj for attribute D; Return tree with root labeled D and arcs labeled dl..dm going to the trees ID3(R-{D},C,S1). . . ID3(R-{D},C,Sm);

How well does it work?

Many case studies have shown that decision trees are at least as accurate as human experts.

- A study for diagnosing breast cancer had humans correctly classifying the examples 65% of the time; the decision tree classified 72% correct
- -British Petroleum designed a decision tree for gasoil separation for offshore oil platforms that replaced an earlier rule-based expert system
- -Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example

Extensions of ID3

- Using gain ratios
- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance
- C4.5 is an extension of ID3 that accounts for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, and so on

Using gain ratios

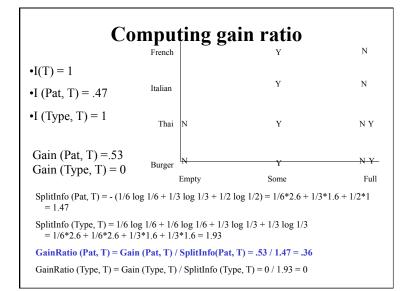
- The information gain criterion favors attributes that have a large number of values
 - If we have an attribute D that has a distinct value for each record, then Info(D,T) is 0, thus Gain(D,T) is maximal
- To compensate for this Quinlan suggests using the following ratio instead of Gain:

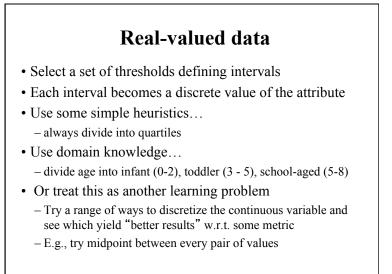
GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T)

• SplitInfo(D,T) is the information due to the split of T on the basis of value of categorical attribute D

SplitInfo(D,T) = I(|T1|/|T|, |T2|/|T|, ..., |Tm|/|T|)

where $\{T1, T2, ... Tm\}$ is the partition of T induced by value of D





Noisy data

- Many kinds of "noise" can occur in the examples:
- Two examples have same attribute/value pairs, but different classifications
- Some values of attributes are incorrect because of errors in the data acquisition process or the preprocessing phase
- The classification is wrong (e.g., + instead of -) because of some error
- Some attributes are irrelevant to the decision-making process, e.g., color of a die is irrelevant to its outcome

Overfitting

- Irrelevant attributes, can result in *overfitting* the training example data
- If hypothesis space has many dimensions (large number of attributes), we may find **meaningless regularity** in the data that is irrelevant to the true, important, distinguishing features
- If we have too little training data, even a reasonable hypothesis space will 'overfit'

Overfitting

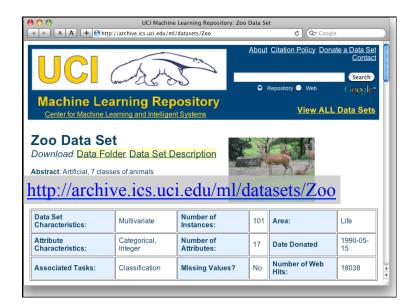
- Fix by by removing irrelevant features
 - E.g., remove 'year observed', 'month observed', 'day observed', 'observer name' from feature vector
- Fix by getting more training data
- Fix by pruning lower nodes in the decision tree
 - E.g., if gain of the best attribute at a node is below a threshold, stop and make this node a leaf rather than generating children nodes

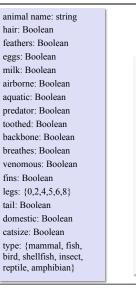
Pruning decision trees

- Pruning of the decision tree is done by replacing a whole subtree by a leaf node
- The replacement takes place if a decision rule establishes that the expected error rate in the subtree is greater than in the single leaf. E.g.,
 - Training: one training red success and two training blue failures
 - Test: three red failures and one blue success
 - Consider replacing this subtree by a single Failure node.
- After replacement we will have only two errors instead of five:

- It is easy to derive rules from a decision tree: write a rule for each path from the root to a leaf
- In that rule the left-hand side is built from the label of the nodes and the labels of the arcs
- The resulting rules set can be simplified:
 - Let LHS be the left hand side of a rule
 - LHS' obtained from LHS by eliminating some conditions
 - Replace LHS by LHS' in this rule if the subsets of the training set satisfying LHS and LHS' are equal
 - A rule may be eliminated by using meta-conditions such as "if no other rule applies"

OO ∫ UCI Machine Learning Repo: × C ← → C ff	http://archive				
UCI CARACTERISTICS		Abod Olation Delay Donale a Data See Context Complet Cution Name View ALL Data Sets			
	Welcome to the UC Irvine Machine Learning Repositor	yl			
We currently maintain 233 data sets as a service to the machine learn format. For a ganeral overview of the Repository, please visit our Abou our <u>docution policy</u> . For any other questions, feel feel to <u>contract the R</u>	t page. For information about citing data sets in publications, please rea	ad our citation policy. If you wish to donate a data set, please consult			
Latest News:	Newest Data Sets:	Most Popular Data Sets (hits since 2007):			
2010-03-01: <u>Note</u> from donor regarding Netflix data 2009-10-16: Two new data sets have been added. 2009-09-14: Several data sets have been added. 2008-07-23: <u>Repositiony mitror</u> has been set up. 2008-03-24: New data sets have been added!	2012-10-21: UCI GayT40110D100K 2012-10-19: UCI Legal Case Reports	386214: kis 272233: Adus			
2007-06-25: Two new data sets have been added: UII Pen Characters, MAGIC Gamma Telescope 2007-04-13: Research papers that cite the repository have been associated to specific data sets.	2012-09-29: UCI seeds 2012-09-30: UCI Individual household electric power	237503: Wine 1959-47: An Breast Cancer Wisconsin (Disgnostic)			
Featured Data Set: Yeani Task: Classification Data Type: Multivariate	consumption 2012-08-15: UCI Northix	182423: Car Evaluation			
# Attributes: 8 # Instance:: 1484	2012-08-06: UCI PAMAP2 Physical Activity Monitoring 2012-08-04: UCI Restaurant & consumer data	151635: Abaloon 135419: <u>Viker Hand</u>			
Predicting the Cellular Localization Sites of Proteins	2012-08-03: UCI <u>CNAE-9</u>	113024: Forest Fires			





Zoo data

101 examples

Zoo example

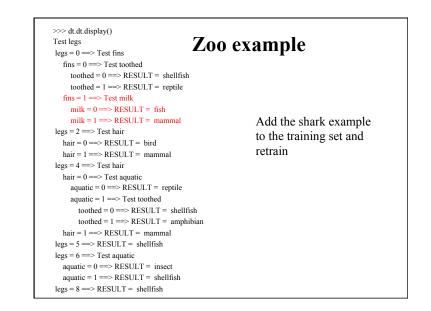
aima-python> python
>>> from learning import *
>>> zoo
<DataSet(zoo): 101 examples, 18 attributes>
>>> dt = DecisionTreeLearner()
>>> dt.train(zoo)
>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0])
'fish'
>>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0])
'mammal'

Zoo example

>> dt.dt

DecisionTree(13, 'legs', {0: DecisionTree(12, 'fins', {0: DecisionTree(8, 'toothed', {0: 'shellfish', 1: 'reptile'}), 1: DecisionTree(3, 'eggs', {0: 'mammal', 1: 'fish'})}), 2: DecisionTree(1, 'hair', {0: 'bird', 1: 'mammal'}), 4: DecisionTree(1, 'hair', {0: DecisionTree(6, 'aquatic', {0: 'reptile', 1: DecisionTree(8, 'toothed', {0: 'shellfish', 1: 'amphibian'})}), 1: 'mammal'}), 5: 'shellfish', 6: DecisionTree(6, 'aquatic', {0: 'insect', 1: 'shellfish'}), 8: 'shellfish'})

>>> dt.dt.display() Test legs	700 avamnla
legs = 0 ==> Test fins	Zoo example
fins = 0 ==> Test toothed	
toothed = 0 ==> RESULT =	shellfish
toothed = 1 ==> RESULT =	reptile
fins = 1 ==> Test eggs	
$eggs = 0 \implies RESULT = ma$	ammal
$eggs = 1 \implies RESULT = fisl$	h
legs = 2 ==> Test hair	
hair = 0 ==> RESULT = bird	
hair = 1 ==> RESULT = mamn	nal
legs = 4 ==> Test hair	
hair = 0 ==> Test aquatic	
aquatic = 0 ==> RESULT = 1	reptile
aquatic = 1 ==> Test toothed	
toothed = 0 ==> RESULT	= shellfish
toothed = $1 \implies \text{RESULT}$	= amphibian
hair = 1 ==> RESULT = mamn	nal
legs = 5 ==> RESULT = shellfish	1
legs = 6 ==> Test aquatic	
aquatic = 0 ==> RESULT = ins	sect
aquatic = 1 ==> RESULT = she	ellfish
legs = 8 ==> RESULT = shellfish	i la



Summary: Decision tree learning

- Widely used learning methods in practice
- Can out-perform human experts in many problems
- Strengths include
 - Fast and simple to implement
 - Can convert result to a set of easily interpretable rules
 - Empirically valid in many commercial products
 - Handles noisy data
- Weaknesses include
 - Univariate splits/partitioning using only one attribute at a time so limits types of possible trees
 - Large decision trees may be hard to understand
 - Requires fixed-length feature vectors
 - Non-incremental (i.e., batch method)