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What is learning? 
• “Learning denotes changes in a system that ... 

enable a system to do the same task more 
efficiently the next time” – Herbert Simon 

• “Learning is constructing or modifying 
representations of what is being experienced”  
– Ryszard Michalski 

• “Learning is making useful changes in our 
minds” – Marvin Minsky 



Why study learning? 
• Understand and improve efficiency of human learning 

– Use to improve methods for teaching and tutoring people 
(e.g., better computer-aided instruction) 

• Discover new things or structure previously unknown 
– Examples: data mining, scientific discovery 

•  Fill in skeletal or incomplete specifications in a domain 
– Large, complex systems can’t be completely built by hand & 

require dynamic updating to incorporate new information 
– Learning new characteristics expands the domain or 

expertise and lessens the “brittleness” of the system  
• Build agents that can adapt to users, other agents, and 

their environment 



AI & Learning Today 
• Neural network learning was popular in the 60s 
•  In the 70s and 80s it was replaced with a paradigm 

based on manually encoding and using knowledge 
•  In the 90s, more data and the Web drove interest in 

new statistical machine learning (ML) techniques 
and new data mining applications 

• Today, ML techniques and big data are behind 
almost all successful intelligent systems 

http://bit.ly/U2ZAC8 



Machine Leaning Successes 
• Sentiment analysis 
• Spam detection 
• Machine translation 
• Spoken language understanding 
• Named entity detection 
• Self driving cars 
• Motion recognition (Microsoft X-Box) 
•  Identifying paces in digital images 
• Recommender systems (Netflix, Amazon) 
• Credit card fraud detection 



A general model of learning agents  



Major paradigms of machine learning 
•  Rote learning  – One-to-one mapping from inputs to stored 

representation. “Learning by memorization.” Association-based 
storage and retrieval.  

•  Induction – Use specific examples to reach general conclusions  
•  Clustering – Unsupervised identification of natural groups in data 
•  Analogy – Determine correspondence between two different 

representations  
•  Discovery – Unsupervised, specific goal not given  
•  Genetic algorithms – “Evolutionary” search techniques, based 

on an analogy to “survival of the fittest” 
•  Reinforcement – Feedback (positive or negative reward) given at 

the end of a sequence of steps 
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The Classification Problem 
•  Extrapolate from set of examples to make 

accurate predictions about future ones 
•  Supervised versus unsupervised learning 
– Learn unknown function f(X)=Y, where X is 

an input example and Y is desired output 
– Supervised learning implies we’re given a 

training set of (X, Y) pairs by a “teacher” 
– Unsupervised learning means we are only 

given the Xs and some (ultimate) feedback 
function on our performance.  

•  Concept learning or classification (aka “induction”) 
–  Given a set of examples of some concept/class/category, determine if a given 

example is an instance of the concept or not 
–  If it is an instance, we call it a positive example 
–  If it is not, it is called a negative example 
–  Or we can make a probabilistic prediction (e.g., using a Bayes net) 
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Supervised Concept Learning 

•  Given a training set of positive 
and negative examples of a 
concept 

•  Construct a description that will 
accurately classify whether future 
examples are positive or negative 

•  That is, learn some good estimate 
of function f given a training set 
{(x1, y1), (x2, y2), ..., (xn, yn)}, 
where each yi is either + (positive) 
or - (negative), or a probability 
distribution over +/- 
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Inductive Learning Framework 
•  Raw input data from sensors are typically 

preprocessed to obtain a feature vector, X, 
that adequately describes all of the relevant 
features for classifying examples 

•  Each x is a list of (attribute, value) pairs. For 
example,  
X = [Person:Sue, EyeColor:Brown, Age:Young, 

Sex:Female]  
•  The number of attributes (a.k.a. features) is 

fixed (positive, finite) 
•  Each attribute has a fixed, finite number of 

possible values (or could be continuous) 

•  Each example can be interpreted as a point in an  
n-dimensional feature space, where n is the number of attributes 



Measuring Model Quality 
•  How good is a model? 

–  Predictive accuracy 
–  False positives / false negatives for a given cutoff threshold 

•  Loss function (accounts for cost of different types of errors) 
–  Area under the (ROC) curve 
–  Minimizing loss can lead to problems with overfitting 

•  Training error 
–  Train on all data; measure error on all data 
–  Subject to overfitting (of course we’ll make good predictions on the 

data on which we trained!) 

•  Regularization 
–  Attempt to avoid overfitting 
–  Explicitly minimize the complexity of the function while minimizing 

loss.  Tradeoff is modeled with a regularization parameter 
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Cross-Validation 

•  Holdout cross-validation: 
–  Divide data into training set and test set 
–  Train on training set; measure error on test set 
–  Better than training error, since we are measuring generalization to 

new data 
–  To get a good estimate, we need a reasonably large test set 
–  But this gives less data to train on, reducing our model quality! 
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Cross-Validation, cont. 

•  k-fold cross-validation: 
–  Divide data into k folds 
–  Train on k-1 folds, use the kth fold to measure error 
–  Repeat k times; use average error to measure generalization accuracy 
–  Statistically valid and gives good accuracy estimates 

•  Leave-one-out cross-validation (LOOCV) 
–  k-fold cross validation where k=N (test data = 1 instance!) 
–  Quite accurate, but also quite expensive, since it requires building N 

models 
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Inductive learning as search 
•  Instance space I defines the language for the training and 

test instances 
–  Typically, but not always, each instance i∈I is a feature vector 
–  Features are sometimes called attributes or variables 
–  I: V1 x V2 x … x Vk, i = (v1, v2, …, vk) 

•  Class variable C gives an instance’s class (to be predicted) 
•  Model space M defines the possible classifiers 

–  M: I → C, M = {m1, … mn} (possibly infinite) 
–  Model space is sometimes, but not always, defined in terms of the 

same features as the instance space 
•  Training data can be used to direct the search for a good 

(consistent, complete, simple) hypothesis in the model 
space 



Model spaces 
•  Decision trees 

–  Partition the instance space into axis-parallel regions, labeled with 
class value 

•  Version spaces 
–  Search for necessary (lower-bound) and sufficient (upper-bound) 

partial instance descriptions for an instance to be in the class 
•  Nearest-neighbor classifiers 

–  Partition the instance space into regions defined by the centroid 
instances (or cluster of k instances) 

•  Associative rules (feature values → class) 
•  First-order logical rules 
•  Bayesian networks (probabilistic dependencies of class on 

attributes) 
•  Neural networks 
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Learning decision trees 
• Goal: Build a decision tree to classify examples as 

positive or negative instances of a concept using 
supervised learning from a training set 

• A decision tree is a tree where 
–  each non-leaf node has associated 
with it an attribute (feature) 

– each leaf node has associated 
with it a classification (+ or -) 

– each arc has associated with it one 
of the possible values of the attribute 
at the node from which the arc is directed  

• Generalization: allow for >2 classes 
– e.g., for stocks, classify into {sell, hold, buy} 

Color 

Shape Size + 

+ - Size 

+ - 

+ 
big 

big small 

small 

round square 

red green blue 



Decision tree-induced partition – example 

I 



Expressiveness 
•  Decision trees can express any function of the input attributes 
•  E.g., for Boolean functions, truth table row → path to leaf: 

 
•  Trivially, there’s a consistent decision tree for any training 

set with one path to leaf for each example (unless f 
nondeterministic in x), but it probably won't generalize to 
new examples 

•  We prefer to find more compact decision trees 



Inductive learning and bias 

•  Suppose that we want to learn a function f(x) = y and we 
are given some sample (x,y) pairs, as in figure (a) 

•  There are several hypotheses we could make about this 
function, e.g.: (b),  (c) and (d) 

•  A preference for one over the others reveals the bias of our 
learning technique, e.g.: 
–  prefer piece-wise functions 
–  prefer a smooth function 
–  prefer a simple function and treat outliers as noise 



Preference bias: Ockham’s Razor 
• AKA Occam’s Razor, Law of Economy, or Law of 

Parsimony 
• Principle stated by William of Ockham (1285-1347) 

– “non sunt multiplicanda entia praeter necessitatem”  
– entities are not to be  multiplied beyond necessity  

• The simplest consistent explanation is the best 
• Therefore, the smallest decision tree that correctly 

classifies all of the training examples is best 
• Finding the provably smallest decision tree is NP-

hard, so instead of constructing the absolute smallest 
tree consistent with the training examples, construct 
one that is pretty small 



Hypothesis spaces 
•  How many distinct decision trees with n Boolean 

attributes? 
–  = number of Boolean functions 
–  = number of distinct truth tables with 2n rows = 22n 
–  e.g., with 6 Boolean attributes, 18,446,744,073,709,551,616 trees 

•  How many conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)? 
–  Each attribute can be in (positive), in (negative), or out 

⇒ 3n distinct conjunctive hypotheses 
–  e.g., with 6 Boolean attributes, 729 trees 

•  A more expressive hypothesis space 
–  increases chance that target function can be expressed 
–  increases number of hypotheses consistent with training set 

 ⇒ may get worse predictions in practice 



R&N’s restaurant domain 
• Develop a decision tree to model decision a patron 

makes when deciding whether or not to wait for a 
table at a restaurant 

• Two classes: wait, leave 
• Ten attributes: Alternative available? Bar in 

restaurant? Is it Friday? Are we hungry? How full 
is the restaurant? How expensive? Is it raining? Do 
we have a reservation? What type of restaurant is 
it? What’s the purported waiting time? 

• Training set of 12 examples 
• ~ 7000 possible cases  



A decision tree 
from introspection 



Attribute-based representations 

• Examples described by attribute values (Boolean, discrete, continuous), 
e.g., situations where I will/won't wait for a table 

• Classification of examples is positive (T) or negative (F) 
• Serves as a training set 



ID3/C4.5 Algorithm 
•  A greedy algorithm for decision tree construction 

developed by Ross Quinlan circa 1987  
•  Top-down construction of decision tree by recursively 

selecting “best attribute” to use at the current node in tree 
– Once attribute is selected for current node, generate 

child nodes, one for each possible value of selected 
attribute 

– Partition examples using the possible values of this 
attribute, and assign these subsets of the examples to the 
appropriate child node 

– Repeat for each child node until all examples associated 
with a node are either all positive or all negative 



Choosing the best attribute 
• Key problem: choosing which attribute to split a 

given set of examples 
• Some possibilities are: 

– Random: Select any attribute at random  
– Least-Values: Choose the attribute with the smallest 

number of possible values  
– Most-Values: Choose the attribute with the largest 

number of possible values  
– Max-Gain: Choose the attribute that has the largest 

expected information gain–i.e., attribute that results in 
smallest expected size of subtrees rooted at its children 

• The ID3 algorithm uses the Max-Gain method of 
selecting the best attribute 



Choosing an attribute 

Idea: a good attribute splits the examples into 
subsets that are (ideally) “all positive” or “all 
negative” 

 
 
 
Which is better: Patrons? or Type? 



Restaurant example 

French 

Italian 

Thai 

Burger 
Empty Some Full 

Y 

Y 

Y 

Y 

Y 

Y N 

N 

N 

N 

N 

N 

Random: Patrons or Wait-time; Least-values: Patrons; Most-values: Type; Max-gain: ??? 
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Splitting 
examples  
by testing 
attributes 



ID3-induced  
decision tree 



Compare the two Decision Trees 



Information theory 101 
•  Information theory sprang almost fully formed from the 

seminal work of Claude E. Shannon at Bell Labs 
A Mathematical Theory of Communication, Bell System 
Technical Journal, 1948.  

•  Intuitions 
– Common words (a, the, dog) shorter than less common ones 

(parlimentarian, foreshadowing) 
– Morse code: common (probable) letters have shorter encodings 

•  Information is measured in minimum number of bits 
needed to store or send some information 

• Wikipedia: The measure of data, known as information 
entropy, is usually expressed by the average number of 
bits needed for storage or communication.  



Information theory 101 
•  Information is measured in bits 
•  Information conveyed by message depends on its probability 
•  For n equally probable possible messages, each has prob. 1/n 
•  Information conveyed by message is -log(p) = log(n) 

e.g., with 16 messages, then log(16) = 4 and we need 4 bits to 
identify/send each message 

•  Given probability distribution for n messages  P = (p1,p2…pn), 
the information conveyed by distribution (aka entropy of P) is:  
I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn)) 

info in msg 2 probability of msg 2 



Information theory II 
•  Information conveyed by distribution (aka entropy of P):  

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn)) 

•  Examples: 
–  If P is (0.5, 0.5) then I(P) = .5*1 + 0.5*1 = 1 
–  If P is (0.67, 0.33) then I(P) = -(2/3*log(2/3) + 

1/3*log(1/3)) = 0.92 
–  If P is (1, 0) then I(P) = 1*1 + 0*log(0) = 0 

•  The more uniform the probability distribution, the greater 
its information: more information is conveyed by a 
message telling you which event actually occurred 

•  Entropy is the average number of bits/message needed to 
represent a stream of messages 



Example: Huffman code 
•  In 1952 MIT student David Huffman devised, in the course 

of doing a homework assignment, an elegant coding scheme 
which is optimal in the case where all symbols’ probabilities 
are integral powers of 1/2.  

•  A Huffman code can be built in the following manner: 
– Rank all symbols in order of probability of occurrence 
– Successively combine the two symbols of the lowest 

probability to form a new composite symbol; eventually we 
will build a binary tree where each node is the probability 
of all nodes beneath it 

– Trace a path to each leaf, noticing direction at each node 



Huffman code example 
M   P 
A  .125 
B  .125 
C  .25 
D  .5 

.5 .5 

1 

.125 .125 

.25 

A 

C 

B 

D 
.25 

0 1 

0 

0 1 

1 

M code length prob

A 000 3 0.125 0.375
B 001 3 0.125 0.375
C 01 2 0.250 0.500
D 1 1 0.500 0.500

average message length 1.750

If we use this code to many 
messages (A,B,C or D) with this 
probability distribution, then, over 
time, the average bits/message 
should approach 1.75 



Information for classification 
If a set T of records is partitioned into disjoint exhaustive 
classes (C1,C2,..,Ck) on the basis of the value of the class 
attribute, then information needed to identify class of an 
element of T is:   

 Info(T) = I(P) 
where P is the probability distribution of partition (C1,C2,..,Ck):  

P = (|C1|/|T|, |C2|/|T|, ..., |Ck|/|T|) 

C1 
C2 

C3 

C1 
C2 

C3 

High information 
Low information 



Information for classification II 

If we partition T w.r.t attribute X into sets {T1,T2, ..,Tn} then 
the information needed to identify the class of an element of 
T becomes the weighted average of the information needed to 
identify the class of an element of Ti, i.e. the weighted 
average of Info(Ti):  

Info(X,T) = Σ|Ti|/|T| * Info(Ti) 

C1 
C2 

C3 
C1 

C2 

C3 

High information Low information 



Information gain 
•  Consider the quantity Gain(X,T) defined as 
        Gain(X,T) = Info(T) - Info(X,T) 
•  This represents the difference between  

–  info needed to identify element of T and  
–  info needed to identify element of T after value of attribute X known 

•  This is the gain in information due to attribute X 
•  Use to rank attributes and build DT where each node uses 

attribute with greatest gain of those not yet considered (in 
path from root) 

•  The intent of this ordering is to: 
–  Create small DTs so records can be identified with few questions 
–  Match a hoped-for minimality of the process represented by the 

records being considered (Occam’s Razor) 
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Computing Information Gain 
French 

Italian 

Thai 

Burger 

Empty Some Full 

Y 

Y 

Y 

Y 

Y 

Y N 

N 

N 

N 

N 

N 

• I(T) = ? 

• I (Pat, T) =  ? 

• I (Type, T) = ? 

Gain (Pat, T) = ? 
Gain (Type, T) = ? 



Computing information gain 
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I(T) =  
  - (.5 log .5 + .5 log .5) 
  = .5 + .5 = 1 

I (Pat, T) =  
   2/12 (0) + 4/12 (0) +  
   6/12 (- (4/6 log 4/6 +  
                2/6 log 2/6))  
   = 1/2 (2/3*.6 +  
        1/3*1.6)  
   = .47 

I (Type, T) =  
   2/12 (1) + 2/12 (1) +  
   4/12 (1) + 4/12 (1) = 1 

Gain (Pat, T) = 1 - .47 = .53 
Gain (Type, T) = 1 – 1 = 0 



The ID3 algorithm builds a decision tree, given a set of non-categorical attributes C1, C2, .., 
Cn, the class attribute C, and a training set T of records 
 

function ID3(R:input attributes, C:class attribute, 
S:training set) returns decision tree; 

   If S is empty, return single node with value Failure; 

   If every example in S has same value for C, return  
   single node with that value; 

   If R is empty, then return a single node with most 
   frequent of the values of C found in examples S;  
   # causes errors -- improperly classified record 

   Let D be attribute with largest Gain(D,S) among R;  

   Let {dj| j=1,2, .., m} be values of attribute D; 

   Let {Sj| j=1,2, .., m} be subsets of S consisting of     
             records with value dj for attribute D; 

   Return tree with root labeled D and arcs labeled  
     d1..dm going to the trees ID3(R-{D},C,S1). . . 
     ID3(R-{D},C,Sm); 



How well does it work? 

Many case studies have shown that decision trees are 
at least as accurate as human experts.  
– A study for diagnosing breast cancer had humans 

correctly classifying the examples 65% of the 
time; the decision tree classified 72% correct 

– British Petroleum designed a decision tree for gas-
oil separation for offshore oil platforms that  
replaced an earlier  rule-based expert system 

– Cessna designed an airplane flight controller using 
90,000 examples and 20 attributes per example 



Extensions of ID3 
• Using gain ratios 
• Real-valued data 
• Noisy data and overfitting 
• Generation of rules 
• Setting parameters 
• Cross-validation for experimental validation of 

performance 
• C4.5 is an extension of ID3 that accounts for  

unavailable values, continuous attribute value 
ranges, pruning of decision trees, rule derivation, 
and so on 



Using gain ratios 
•  The information gain criterion favors attributes that have a large 

number of values 
–  If we have an attribute D that has a distinct value for each 

record, then Info(D,T) is 0, thus Gain(D,T) is maximal 
•  To compensate for this Quinlan suggests using the following 

ratio instead of Gain: 
GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T) 

•  SplitInfo(D,T) is the information due to the split of T on the 
basis of value of categorical attribute D 

SplitInfo(D,T)  =  I(|T1|/|T|, |T2|/|T|, .., |Tm|/|T|) 

where {T1, T2, .. Tm} is the partition of T induced by value of D 



Computing gain ratio 
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• I(T) = 1 

• I (Pat, T) = .47 

• I (Type, T) = 1 

Gain (Pat, T) =.53 
Gain (Type, T) = 0 
 
SplitInfo (Pat, T) = - (1/6 log 1/6 + 1/3 log 1/3 + 1/2 log 1/2) = 1/6*2.6 + 1/3*1.6 + 1/2*1 
    = 1.47 

SplitInfo (Type, T) = 1/6 log 1/6 + 1/6 log 1/6 + 1/3 log 1/3 + 1/3 log 1/3 
    = 1/6*2.6 + 1/6*2.6 + 1/3*1.6 + 1/3*1.6 = 1.93 

GainRatio (Pat, T) = Gain (Pat, T) / SplitInfo(Pat, T) = .53 / 1.47 = .36 

GainRatio (Type, T) = Gain (Type, T) / SplitInfo (Type, T) = 0 / 1.93 = 0 



Real-valued data 
• Select a set of thresholds defining intervals 
• Each interval becomes a discrete value of the attribute 
• Use some simple heuristics… 

– always divide into quartiles 
• Use domain knowledge… 

– divide age into infant (0-2), toddler (3 - 5), school-aged (5-8) 
•   Or treat this as another learning problem  

– Try a range of ways to discretize the continuous variable and 
see which yield “better results” w.r.t. some metric 

– E.g., try midpoint between every pair of values 



Noisy data 
• Many kinds of “noise” can occur in the examples: 
• Two examples have same attribute/value pairs, but 

different classifications  
• Some values of attributes are incorrect because of 

errors in the data acquisition process or the 
preprocessing phase  

• The classification is wrong (e.g., + instead of -) because 
of some error  

• Some attributes are irrelevant to the decision-making 
process, e.g., color of a die is irrelevant to its outcome 



Overfitting 

• Irrelevant attributes, can result in overfitting the 
training example data  

• If  hypothesis space has many dimensions (large 
number of attributes), we may find meaningless 
regularity in the data that is irrelevant to the 
true, important, distinguishing features 

• If we have too little training data, even a 
reasonable hypothesis space will ‘overfit’ 



Overfitting 

• Fix by by removing irrelevant features 
–  E.g., remove ‘year observed’, ‘month 

observed’, ‘day observed’, ‘observer name’ 
from feature vector 

• Fix by getting more training data 
• Fix by pruning lower nodes in the decision tree 

–  E.g., if gain of the best attribute at a node is 
below a threshold, stop and make this node a 
leaf rather than generating children nodes 



Pruning decision trees 
•  Pruning of the decision tree is done by replacing a whole 

subtree by a leaf node 
•  The replacement takes place if a decision rule establishes 

that the expected error rate in the subtree is greater than in 
the single leaf. E.g., 
–  Training: one training red success and two training blue failures 
–  Test: three red failures and one blue success 
–  Consider replacing this subtree by a single Failure node.  

•  After replacement we will have only two errors instead of 
five: 

Color 

1 success 
0 failure 

0 success 
2 failures 

red blue 

Color 

1 success 
3 failure 

1 success 
1 failure 

red blue 2 success 
4 failure 

FAILURE Training Test Pruned 



Converting decision trees to rules 
•  It is easy to derive rules from a decision tree: write a 

rule for each path from the root to a leaf 
•  In that rule the left-hand side is built from the label 

of the nodes and the labels of the arcs 
• The resulting rules set can be simplified: 

– Let LHS be the left hand side of a rule 
– LHS’ obtained from LHS by eliminating some conditions  
– Replace LHS by LHS' in this rule if the subsets of the 

training set satisfying LHS and LHS' are equal 
– A rule may be eliminated by using meta-conditions such as 

“if no other rule applies” 



http://archive.ics.uci.edu/ml 

233 data sets 



http://archive.ics.uci.edu/ml/datasets/Zoo 



Zoo data 
animal name: string 
hair: Boolean  
feathers: Boolean  
eggs: Boolean  
milk: Boolean  
airborne: Boolean  
aquatic: Boolean  
predator: Boolean  
toothed: Boolean  
backbone: Boolean  
breathes: Boolean  
venomous: Boolean  
fins: Boolean  
legs: {0,2,4,5,6,8} 
tail: Boolean  
domestic: Boolean  
catsize: Boolean  
type: {mammal, fish, 
bird, shellfish, insect, 
reptile, amphibian} 

101 examples 
aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal 
antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal 
bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish 
bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal 
boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal 
buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal 
calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal 
carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish 
catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish 
cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal 
cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal 
chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird 
chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish 
clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,shellfish 
crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish 
… 



Zoo example 
aima-python> python 
>>> from learning import * 
>>> zoo 
<DataSet(zoo): 101 examples, 18 attributes> 
>>> dt = DecisionTreeLearner() 
>>> dt.train(zoo) 
>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0]) 
'fish' 
>>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0]) 
'mammal’ 



Zoo example 
>> dt.dt 
DecisionTree(13, 'legs', {0: DecisionTree(12, 'fins', {0: 
DecisionTree(8, 'toothed', {0: 'shellfish', 1: 'reptile'}), 1: 
DecisionTree(3, 'eggs', {0: 'mammal', 1: 'fish'})}), 2: 
DecisionTree(1, 'hair', {0: 'bird', 1: 'mammal'}), 4: 
DecisionTree(1, 'hair', {0: DecisionTree(6, 'aquatic', {0: 
'reptile', 1: DecisionTree(8, 'toothed', {0: 'shellfish', 1: 
'amphibian'})}), 1: 'mammal'}), 5: 'shellfish', 6: 
DecisionTree(6, 'aquatic', {0: 'insect', 1: 'shellfish'}), 8: 
'shellfish'}) 



Zoo example 
>>> dt.dt.display() 
Test legs 
 legs = 0 ==> Test fins 
     fins = 0 ==> Test toothed 
         toothed = 0 ==> RESULT =  shellfish 
         toothed = 1 ==> RESULT =  reptile 
     fins = 1 ==> Test eggs 
         eggs = 0 ==> RESULT =  mammal 
         eggs = 1 ==> RESULT =  fish 
 legs = 2 ==> Test hair 
     hair = 0 ==> RESULT =  bird 
     hair = 1 ==> RESULT =  mammal 
 legs = 4 ==> Test hair 
     hair = 0 ==> Test aquatic 
         aquatic = 0 ==> RESULT =  reptile 
         aquatic = 1 ==> Test toothed 
             toothed = 0 ==> RESULT =  shellfish 
             toothed = 1 ==> RESULT =  amphibian 
     hair = 1 ==> RESULT =  mammal 
 legs = 5 ==> RESULT =  shellfish 
 legs = 6 ==> Test aquatic 
     aquatic = 0 ==> RESULT =  insect 
     aquatic = 1 ==> RESULT =  shellfish 
 legs = 8 ==> RESULT =  shellfish 
 
 



Zoo example 
>>> dt.dt.display() 
Test legs 
 legs = 0 ==> Test fins 
     fins = 0 ==> Test toothed 
         toothed = 0 ==> RESULT =  shellfish 
         toothed = 1 ==> RESULT =  reptile 
     fins = 1 ==> Test milk 
         milk = 0 ==> RESULT =  fish 
         milk = 1 ==> RESULT =  mammal 
 legs = 2 ==> Test hair 
     hair = 0 ==> RESULT =  bird 
     hair = 1 ==> RESULT =  mammal 
 legs = 4 ==> Test hair 
     hair = 0 ==> Test aquatic 
         aquatic = 0 ==> RESULT =  reptile 
         aquatic = 1 ==> Test toothed 
             toothed = 0 ==> RESULT =  shellfish 
             toothed = 1 ==> RESULT =  amphibian 
     hair = 1 ==> RESULT =  mammal 
 legs = 5 ==> RESULT =  shellfish 
 legs = 6 ==> Test aquatic 
     aquatic = 0 ==> RESULT =  insect 
     aquatic = 1 ==> RESULT =  shellfish 
 legs = 8 ==> RESULT =  shellfish 
 

Add the shark example 
to the training set and 
retrain 



Summary: Decision tree learning 
• Widely used learning methods in practice  
• Can out-perform human experts in many problems  
• Strengths include 

– Fast and simple to implement 
– Can convert result to a set of easily interpretable rules 
– Empirically valid in many commercial products 
– Handles noisy data  

• Weaknesses include 
– Univariate splits/partitioning using only one attribute at a 

time so limits types of possible trees 
– Large decision trees may be hard to understand 
– Requires fixed-length feature vectors  
– Non-incremental (i.e., batch method) 


