

Logical Inference 3 resolution

Chapter 9

Some material adopted from notes by Andreas Geyer-Schulz,, Chuck Dyer, and Mary Getoor

Resolution

- Resolution is a **sound** and **complete** inference procedure for unrestricted FOL
- Reminder: Resolution rule for propositional logic:

$$\begin{aligned} &-P_1 \vee P_2 \vee ... \vee P_n \\ &-\neg P_1 \vee Q_2 \vee ... \vee Q_m \\ &-Resolvent: P_2 \vee ... \vee P_n \vee Q_2 \vee ... \vee Q_m \end{aligned}$$

• We'll need to extend this to handle quantifiers and variables

Two Common Normal Forms for a KB

Implicative normal form

- Set of sentences where each is expressed as an implication
- Left hand side of implication is a conjunction of 0 or more literals
- $P, Q, P \land Q \Rightarrow R$

Conjunctive normal form

- Set of sentences where each is a disjunction of atomic literals
- P, O, ~P v ~O v R

Resolution covers many cases

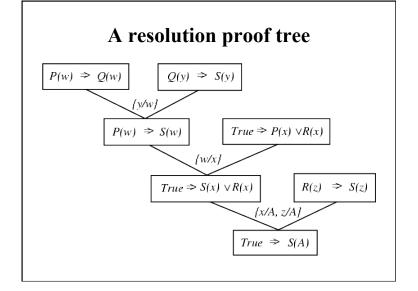
- Modes Ponens
 - from P and $P \rightarrow Q$ derive Q
 - from P and ¬ P v Q derive Q
- Chaining
 - from $P \rightarrow Q$ and $Q \rightarrow R$ derive $P \rightarrow R$
 - from (¬ P v Q) and (¬ Q v R) derive ¬ P v R
- Contradiction detection
 - from P and ¬ P derive false
 - from P and \neg P derive the empty clause (=false)

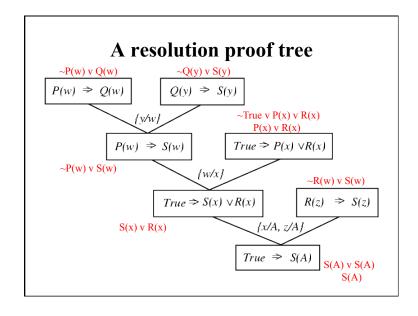
Resolution in first-order logic

- Given sentences in *conjunctive normal form*:
- $-P_1 \vee ... \vee P_n$ and $Q_1 \vee ... \vee Q_m$
- $-\,P_{i}$ and Q_{i} are literals, i.e., positive or negated predicate symbol with its terms
- if P_j and $\neg Q_k$ unify with substitution list θ , then derive the resolvent sentence:

$$subst(\theta, P_1 \vee \ldots \vee P_{j-1} \vee P_{j+1} \ldots P_n \vee \ Q_1 \vee \ldots Q_{k-1} \vee Q_{k+1} \vee \ldots \vee Q_m)$$

- Example
- from clause $P(x, f(a)) \vee P(x, f(y)) \vee Q(y)$
- and clause $\neg P(z, f(a)) \lor \neg Q(z)$
- derive resolvent $P(z, f(y)) \vee Q(y) \vee \neg Q(z)$
- $-\operatorname{Using} \theta = \{x/z\}$





Resolution refutation (1)

- Given a consistent set of axioms KB and goal sentence Q, show that KB |= Q
- **Proof by contradiction:** Add ¬Q to KB and try to prove false, i.e.:

$$(KB \mid -Q) \leftrightarrow (KB \land \neg Q \mid -False)$$

Resolution refutation (2)

- Resolution is **refutation complete:** it can establish that a given sentence Q is entailed by KB, but can't always generate all consequences of a set of sentences
- It cannot be used to prove that Q is **not entailed** by KB
- Resolution won't always give an answer since entailment is only semi-decidable
 - -And you can't just run two proofs in parallel, one trying to prove Q and the other trying to prove $\neg Q$, since KB might not entail either one

Resolution example

- KB:
 - $allergies(X) \rightarrow sneeze(X)$
 - $cat(Y) \land allergicToCats(X) \rightarrow allergies(X)$
 - cat(felix)
 - allergicToCats(mary)
- Goal:
 - sneeze(mary)

Refutation resolution proof tree ¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergicToCats(z) v allergies(z) ¬cat(y) v sneeze(z) v ¬allergicToCats(z) cat(felix) y/felix sneeze(z) v ¬allergicToCats(z) allergicToCats(mary) z/mary sneeze(mary) ¬sneeze(mary) Notation old/new

Questions to be answered

- How to convert FOL sentences to conjunctive normal form (a.k.a. CNF, clause form): normalization and skolemization
- How to unify two argument lists, i.e., how to find their most general unifier (**mgu**) q: **unification**
- How to determine which two clauses in KB should be resolved next (among all resolvable pairs of clauses) : resolution (search) strategy

Converting to CNF

Converting sentences to clausal form Skolem constants and functions

5. Eliminate existential quantification by introducing Skolem constants/functions

$$(\exists x)P(x) \Rightarrow P(C)$$

C is a Skolem constant (a brand-new constant symbol that is not used in any other sentence)

$$(\forall x)(\exists y)P(x,y) \Rightarrow (\forall x)P(x, f(x))$$

since \exists is within scope of a universally quantified variable, use a **Skolem function f** to construct a new value that **depends on** the universally quantified variable

f must be a brand-new function name not occurring in any other sentence in the KB

E.g., $(\forall x)(\exists y)loves(x,y) \Rightarrow (\forall x)loves(x,f(x))$

In this case, f(x) specifies the person that x loves

a better name might be **oneWhoIsLovedBy**(x)

Converting sentences to CNF

1. Eliminate all \leftrightarrow connectives

$$(P \leftrightarrow Q) \Rightarrow ((P \rightarrow Q) \land (Q \rightarrow P))$$

See the function to cnf() in logic.pv

2. Eliminate all \rightarrow connectives

$$(P \rightarrow Q) \Rightarrow (\neg P \lor Q)$$

3. Reduce the scope of each negation symbol to a single predicate

$$\neg \neg P \Rightarrow P$$

$$\neg (P \lor Q) \Rightarrow \neg P \land \neg Q$$

$$\neg (P \land Q) \Rightarrow \neg P \lor \neg Q$$

$$\neg (\forall x)P \Rightarrow (\exists x)\neg P$$

$$\neg(\exists x)P \Rightarrow (\forall x)\neg P$$

4. Standardize variables: rename all variables so that each quantifier has its own unique variable name

Converting sentences to clausal form

6. Remove universal quantifiers by (1) moving them all to the left end; (2) making the scope of each the entire sentence; and (3) dropping the "prefix" part

Ex:
$$(\forall x)P(x) \Rightarrow P(x)$$

7. Put into conjunctive normal form (conjunction of disjunctions) using distributive and associative laws

$$(P \land Q) \lor R \Rightarrow (P \lor R) \land (Q \lor R)$$

$$(P \lor Q) \lor R \Rightarrow (P \lor Q \lor R)$$

- 8. Split conjuncts into separate clauses
- 9. Standardize variables so each clause contains only variable names that do not occur in any other clause

An example

 $(\forall x)(P(x) \to ((\forall y)(P(y) \to P(f(x,y))) \land \neg(\forall y)(Q(x,y) \to P(y))))$

2. Eliminate →

$$(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land \neg(\forall y)(\neg Q(x,y) \lor P(y))))$$

3. Reduce scope of negation

$$(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land (\exists y)(Q(x,y) \land \neg P(y))))$$

4. Standardize variables

$$(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land (\exists z)(Q(x,z) \land \neg P(z))))$$

5. Eliminate existential quantification

$$(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \neg P(g(x)))))$$

6. Drop universal quantification symbols

$$(\neg P(x) \lor ((\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \neg P(g(x)))))$$

Unification

Example

7. Convert to conjunction of disjunctions

$$(\neg P(x) \lor \neg P(y) \lor P(f(x,y))) \land (\neg P(x) \lor Q(x,g(x))) \land (\neg P(x) \lor \neg P(g(x)))$$

$$\neg P(x) \lor \neg P(y) \lor P(f(x,y))$$

$$\neg P(x) \lor Q(x,g(x))$$

$$\neg P(x) \lor \neg P(g(x))$$

9. Standardize variables

$$\neg P(x) \lor \neg P(y) \lor P(f(x,y))$$

$$\neg P(z) \lor Q(z,g(z))$$

$$\neg P(w) \lor \neg P(g(w))$$

Unification

- Unification is a "pattern-matching" procedure
 - -Takes two atomic sentences (i.e., literals) as input
 - -Returns "failure" if they do not match and a substitution list, θ , if they do
- That is, $unify(p,q) = \theta$ means $subst(\theta, p) = subst(\theta, q)$ for two atomic sentences, p and q
- θ is called the **most general unifier** (mgu)
- All variables in the given two literals are implicitly universally quantified
- To make literals match, replace (universally quantified) variables by terms

Unification algorithm

```
procedure unify(p, q, \theta)
     Scan p and q left-to-right and find the first corresponding
      terms where p and q "disagree" (i.e., p and q not equal)
     If there is no disagreement, return \theta (success!)
     Let r and s be the terms in p and q, respectively,
       where disagreement first occurs
     If variable(r) then {
      Let \theta = \text{union}(\theta, \{r/s\})
                                                            See the function
       Return unify(subst(\theta, p), subst(\theta, q), \theta)
                                                            unify() in logic.py
     } else if variable(s) then {
      Let \theta = \text{union}(\theta, \{s/r\})
       Return unify(subst(\theta, p), subst(\theta, q), \theta)
     } else return "Failure"
   end
```

Unification: Remarks

- *Unify* is a linear-time algorithm that returns the most general unifier (mgu), i.e., the shortest-length substitution list that makes the two literals match
- In general, there isn't a **unique** minimum-length substitution list, but unify returns one of minimum length
- Common constraint: A variable can never be replaced by a term containing that variable Example: x/f(x) is illegal.
 - This "occurs check" should be done in the above pseudo-code before making the recursive calls

Unification examples

- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(Bill), y)
- {x/Bill,y/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill))
- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(y), z)
- {x/Bill,y/Bill,z/mother(Bill)} yields parents(Bill,father(Bill), mother(Bill))
- Example:
- parents(x, father(x), mother(Jane))
- parents(Bill, father(y), mother(y))
- Failure

Resolution example

Practice example

Did Curiosity kill the cat

- · Jack owns a dog
- Every dog owner is an animal lover
- No animal lover kills an animal
- Either Jack or Curiosity killed the cat, who is named Tuna.
- Did Curiosity kill the cat?

A. (∃x) D B. (∀x) ((

• These can be represented as follows: A. (∃x) Dog(x) ∧ Owns(Jack,x)

B. $(\forall x) ((\exists y) Dog(y) \land Owns(x, y)) \rightarrow AnimalLover(x)$

Practice example

Did Curiosity kill the cat

 Jack owns a dog. Every dog owner is an animal lover. No animal lover kills an animal. Either Jack or Curiosity killed

the cat, who is named Tuna. Did Curiosity kill the cat?

C. $(\forall x)$ AnimalLover $(x) \rightarrow ((\forall y) \text{ Animal}(y) \rightarrow \neg \text{Kills}(x,y))$

D. Kills(Jack,Tuna) v Kills(Curiosity,Tuna)

E. Cat(Tuna)

 $F. (\forall x) Cat(x) \rightarrow Animal(x)$

GOAL

G. Kills(Curiosity, Tuna)

• Convert to clause form

A1.(Dog(D))

A2. (Owns(Jack,D))

B. $(\neg Dog(y), \neg Owns(x, y), AnimalLover(x))$

C. $(\neg AnimalLover(a), \neg Animal(b), \neg Kills(a,b))$

 $\exists x \text{ Dog}(x) \land \text{Owns}(\text{Jack}, x)$ $\forall x (\exists y) \text{ Dog}(y) \land \text{Owns}(x, y) \rightarrow$

 $\forall x \text{ AnimalLover}(x) \rightarrow (\forall y \text{ Animal}(y) \rightarrow$

Kills(Jack,Tuna) v Kills(Curiosity,Tuna)

AnimalLover(x)

 $\forall x \ Cat(x) \rightarrow Animal(x)$ Kills(Curiosity, Tuna)

 $\neg Kills(x,y)$

Cat(Tuna)

D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))

E. Cat(Tuna)

F. $(\neg Cat(z), Animal(z))$

• Add the negation of query:

¬G: ¬Kills(Curiosity, Tuna)

The resolution refutation proof

(~Cat(Tuna))

R1: ¬G, D, {}

R2: R1, C, {a/Jack, b/Tuna}

R3: R2, B, {x/Jack}

(~AnimalLover(Jack),
 ~Animal(Tuna))

R4: R3, A1, {y/D}

R5: R4, A2, {}

(~Animal(Tuna))

(~Owns(Jack, D),
 ~Animal(Tuna))

(~Animal(Tuna))

R7: R6, E, {} FALSE

R6: R5, F, {z/Tuna}

7

Resolution search strategies

Resolution TP as search

- Resolution can be thought of as the **bottom-up construction of a search tree**, where the leaves are the clauses produced by KB and the negation of the goal
- When a pair of clauses generates a new resolvent clause, add a new node to the tree with arcs directed from the resolvent to the two parent clauses
- Resolution succeeds when a node containing the False clause is produced, becoming the root node of the tree
- A strategy is **complete** if its use guarantees that the empty clause (i.e., false) can be derived whenever it is entailed

Strategies

- There are a number of general (domain-independent) strategies that are useful in controlling a resolution theorem prover
- Well briefly look at the following:
 - -Breadth-first
 - -Length heuristics
 - -Set of support
 - $-Input\ resolution$
 - -Subsumption
 - -Ordered resolution

Example

- 1. Battery-OK ∧ Bulbs-OK → Headlights-Work
- 2. Battery-OK ∧ Starter-OK → Empty-Gas-Tank v Engine-Starts
- 3. Engine-Starts → Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. Goal: Flat-Tire?

Breadth-first search

- Level 0 clauses are the original axioms and the negation of the goal
- Level k clauses are the resolvents computed from two clauses, one of which must be from level k-1 and the other from any earlier level
- Compute all possible level 1 clauses, then all possible level 2 clauses, etc.
- Complete, but very inefficient

Example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire negated goal

BFS example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire
- 1,4 10. ¬Battery-OK v ¬Bulbs-OK
- 1,5 11. ¬Bulbs-OK v Headlights-Work
- 2,3 12. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Flat-Tire v Car-OK
- 2.5 13. ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 2,6 14. ¬Battery-OK v Empty-Gas-Tank v Engine-Starts
- 2,7 15. ¬Battery-OK ¬ Starter-OK v Engine-Starts
 - 16. ... [and we' re still only at Level 1!]

Length heuristics

- Shortest-clause heuristic:
- Generate a clause with the fewest literals first
- Unit resolution:
- Prefer resolution steps in which at least one parent clause is a "unit clause," i.e., a clause containing a single literal
- -Not complete in general, but complete for Horn clause KBs

Set of support

- At least one parent clause must be the negation of the goal *or* a "descendant" of such a goal clause (i.e., derived from a goal clause)
- When there's a choice, take the most recent descendant
- Complete, assuming all possible set-of-support clauses are derived
- Gives a goal-directed character to the search (e.g., like backward chaining)

Unit resolution example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire
- 1.5 10. ¬Bulbs-OK v Headlights-Work
- 2.5 11. ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 2,6 12. ¬Battery-OK v Empty-Gas-Tank v Engine-Starts
- 2.7 13. ¬Battery-OK ¬ Starter-OK v Engine-Starts
- 3,8 14. ¬Engine-Starts v Flat-Tire
- 9 15. ¬Engine-Starts ¬ Car-OK
 - 16. ... [this doesn't seem to be headed anywhere either!]

Set of support example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire
- 3 10. ¬Engine-Starts v Car-OK
- 10,2 11. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Car-OK
- 10,8 12. ¬Engine-Starts
- 11.5 13. ¬Starter-OK v Empty-Gas-Tank v Car-OK
- 11,6 14. ¬Battery-OK v Empty-Gas-Tank v Car-OK
- 11.7 15. ¬Battery-OK v ¬Starter-OK v Car-OK
 - 16. ... [a bit more focused, but we still seem to be wandering]

Unit resolution + set of support example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire
- 9,3 10. ¬Engine-Starts v Car-OK
- 10,8 11. ¬Engine-Starts
- 11,2 12. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank
- 12.5 13. ¬Starter-OK v Empty-Gas-Tank
- 13,6 14. Empty-Gas-Tank
- 14,7 15. FALSE

[Hooray! Now that's more like it!]

Example (Pure Symbol)

- 1. Pattory OK v. Bulbe OK v Hoadlighte Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights Work
- 5. Battery-OK
- Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire

Simplification heuristics

• Subsumption:

Eliminate sentences that are subsumed by (more specific than) an existing sentence to keep KB small

- If P(x) is already in the KB, adding P(A) makes no sense P(x) is a superset of P(A)
- Likewise adding P(A) v Q(B) would add nothing to the KB

• Tautology:

Remove any clause containing two complementary literals (tautology)

• Pure symbol:

If a symbol always appears with the same "sign," remove all the clauses that contain it

Input resolution

- At least one parent must be one of the input sentences (i.e., either a sentence in the original KB or the negation of the goal)
- Not complete in general, but complete for Horn clause KBs
- Linear resolution
 - Extension of input resolution
 - One of the parent sentences must be an input sentence or an ancestor of the other sentence
 - Complete

Ordered resolution

- Search for resolvable sentences in order (left to right)
- This is how Prolog operates
- Resolve the first element in the sentence first
- This forces the user to define what is important in generating the "code"
- The way the sentences are written controls the resolution