

Chapter 9

Automated inference for FOL

- Automated inference for FOL is harder than PL
- Variables can potentially take on an infinite number of possible values from their domains
-Hence there are potentially an infinite number of ways to apply the Universal Elimination rule
- Godel's Completeness Theorem says that FOL entailment is only semi-decidable
- If a sentence is true given a set of axioms, there is a procedure that will determine this
- If the sentence is false, there's no guarantee a procedure will ever determine this - it may never halt

Generalized Modus Ponens

- Modus Ponens
$-\mathrm{P}, \mathrm{P} \Rightarrow \mathrm{Q} \mid=\mathrm{Q}$
- Generalized Modus Ponens (GMP) extends this to rules in FOL
- Combines And-Introduction, Universal-Elimination, and Modus Ponens, e.g.
- from $P(c)$ and $Q(c)$ and $\forall x P(x) \wedge Q(x) \rightarrow R(x)$ derive $R(c)$
- Need to deal with
- more than one condition on left side of rule
- variables

Generalized Modus Ponens

- General case: Given
- atomic sentences $P_{1}, P_{2}, \ldots, P_{N}$
- implication sentence $\left(Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{N}\right) \rightarrow R$
- $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{N}}$ and R are atomic sentences
$-\operatorname{substitution} \operatorname{subst}\left(\theta, P_{i}\right)=\operatorname{subst}\left(\theta, \mathrm{Q}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$
$-\operatorname{Derive}$ new sentence: $\operatorname{subst}(\theta, R)$
- Substitutions
$-\operatorname{subst}(\theta, \alpha)$ denotes the result of applying a set of substitutions defined by θ to the sentence α
- A substitution list $\theta=\left\{\mathrm{v}_{1} / \mathrm{t}_{1}, \mathrm{v}_{2} / \mathrm{t}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} / \mathrm{t}_{\mathrm{n}}\right\}$ means to replace all occurrences of variable symbol v_{i} by term t_{i}
- Substitutions made in left-to-right order in the list
$-\operatorname{subst}(\{x /$ Cheese, $y /$ Mickey $\}$, eats $(y, x))=$ eats(Mickey, Cheese)

Our rules are Horn clauses

- A Horn clause is a sentence of the form:
$\mathrm{P}_{1}(\mathrm{x}) \wedge \mathrm{P}_{2}(\mathrm{x}) \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})$
where
$-\geq 0 P_{i} s$ and 0 or 1 Q
$-\mathrm{P}_{\mathrm{i}} \mathrm{s}$ and Q are positive (i.e., non-negated) literals
- Equivalently: $P_{1}(x) \vee P_{2}(x) \ldots \vee P_{n}(x)$ where the P_{i} are all atomic and at most one is positive
- Prolog is based on Horn clauses
- Horn clauses represent a subset of the set of sentences representable in FOL

Horn clauses II

- Special cases
- Typical rule: $\mathrm{P}_{1} \wedge \mathrm{P}_{2} \wedge \ldots \mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}$
- Constraint: $\mathrm{P}_{1} \wedge \mathrm{P}_{2} \wedge \ldots \mathrm{P}_{\mathrm{n}} \rightarrow$ false
- A fact: true $\rightarrow \mathrm{Q}$
- These are not Horn clauses:
$-\operatorname{dead}(x) \vee \operatorname{alive}(x)$
$-\operatorname{married}(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{loves}(\mathrm{x}, \mathrm{y}) \vee$ hates (x, y)
- \neg likes(john, mary)
$-\neg$ likes $(\mathrm{x}, \mathrm{y}) \rightarrow$ hates (x, y)
- Can't assert or conclude disjunctions, no negation
- No wonder reasoning over Horn clauses is easier

Horn clauses III

- Where are the quantifiers?
- Variables in conclusion are universally quantified
- Variables only in premises are existentially quantified
- Examples:
- parent $(\mathrm{P}, \mathrm{X}) \rightarrow$ isParent (P) $\forall \mathrm{P} \exists \mathrm{X}$ parent $(\mathrm{P}, \mathrm{X}) \rightarrow$ isParent (P)
$-\operatorname{parent}(\mathrm{P} 1, \mathrm{X}) \wedge \operatorname{parent}(\mathrm{X}, \mathrm{P} 2) \rightarrow \operatorname{grandParent}(\mathrm{P} 1, \mathrm{P} 2)$ $\forall \mathrm{P} 1, \mathrm{P} 2 \exists \mathrm{X} \operatorname{parent}(\mathrm{P} 1, \mathrm{X}) \wedge \operatorname{parent}(\mathrm{X}, \mathrm{P} 2) \rightarrow$ grandParent(P1, P2)
- Prolog: grandParent(P1,P2) :- parent(P1,X), parent(X,P2)

Forward \& Backward Reasoning

- We usually talk about two reasoning strategies: forward and backward 'chaining'
- Both are equally powerful
- You can also have a mixed strategy

Forward chaining

- Proofs start with the given axioms/premises in KB, deriving new sentences using GMP until the goal/query sentence is derived
- This defines a forward-chaining inference procedure because it moves "forward" from the KB to the goal [eventually]
- Inference using GMP is sound and complete for KBs containing only Horn clauses

Forward chaining algorithm

procedure Forward-Chain ($K B, p$)
if there is a sentence in $K B$ that is a renaming of p then return
Add p to $K B$
for each $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$ in $K B$ such that for some $i, \operatorname{UNiFY}\left(p_{i}, p\right)=\theta$ succeeds do
$\operatorname{Find}-\operatorname{And}-\operatorname{Infer}\left(K B,\left[p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n}\right], q, \theta\right)$
end
procedure Find-AND-INFER(KB, premises, conclusion, θ)
if premises $=[]$ then
Forward-Chain($K B, \operatorname{Subst}(\theta$, conclusion $)$)
else for each p^{\prime} in $K B$ such that $\operatorname{UNIFY}\left(p^{\prime}, \operatorname{SUBST}(\theta, \operatorname{FIRST}(\right.$ premises $\left.))\right)=\theta_{2}$ do
Find-And-Infer($K B, \operatorname{Rest}($ premises $)$, conclusion, $\left.\operatorname{Compose}\left(\theta, \theta_{2}\right)\right)$
end

Forward chaining example

- KB:
- allergies $(\mathrm{X}) \rightarrow$ sneeze (X)
$-\operatorname{cat}(\mathrm{Y}) \wedge$ allergicToCats $(\mathrm{X}) \rightarrow$ allergies (X)
- cat(felix)
- allergicToCats(mary)
- Goal:
- sneeze(mary)

Backward chaining

- Backward-chaining deduction using GMP is also complete for KBs containing only Horn clauses
- Proofs start with the goal query, find rules with that conclusion, and then prove each of the antecedents in the implication
- Keep going until you reach premises
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
- Has already been proved true
- Has already failed

Backward chaining algorithm

function $\mathrm{BACK}-\mathrm{Chain}(K B, q)$ returns a set of substitutions
Back-Chain-List($K B,[q],\{ \})$
function Back-Chain-List $(K B, q$ list, $\theta)$ returns a set of substitutions
inputs: $K B$, a knowledge base
qlist, a list of conjuncts forming a query (θ already applied)
θ, the current substitution
static: answers, a set of substitutions, initially empty
if q list is empty then return $\{\theta\}$
$q \leftarrow \operatorname{FiRST}($ qlist $)$
for each q_{i}^{\prime} in $K B$ such that $\theta_{i} \leftarrow \operatorname{UNIFY}\left(q, q_{i}^{\prime}\right)$ succeeds do
Add $\operatorname{Compose}\left(\theta, \theta_{i}\right)$ to answers
end
for each sentence $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q_{i}^{\prime}\right)$ in $K B$ such that $\theta_{i} \leftarrow \operatorname{UNIFY}\left(q, q_{i}^{\prime}\right)$ succeeds do answers $\leftarrow \operatorname{BACK}-\operatorname{Chain}-\operatorname{List}\left(K B, \operatorname{SubSt}\left(\theta_{i},\left[p_{1} \ldots p_{n}\right]\right), \operatorname{Compose}\left(\theta, \theta_{i}\right)\right) \cup$ answers end
return the union of $\operatorname{BACK}-\operatorname{Chain}-\operatorname{Lis} \mathrm{T}(K B, \operatorname{ReS} \mathrm{~T}(q$ list $), \theta)$ for each $\theta \in$ answers

Backward chaining example

- KB:
- allergies $(\mathrm{X}) \rightarrow$ sneeze (X)
$-\operatorname{cat}(\mathrm{Y}) \wedge$ allergicToCats $(\mathrm{X}) \rightarrow$ allergies (X)
- cat(felix)
- allergicToCats(mary)
- Goal:
- sneeze(mary)

Forward vs. backward chaining

- Forward chaining is data-driven
- Automatic, unconscious processing
-E.g., object recognition, routine decisions
-May do lots of work that is irrelevant to the goal
-Efficient when you want to compute all conclusions
- Backward chaining is goal-driven, better for problem-solving
- Where are my keys? How do I get to my next class?
-Complexity of BC can be much less than linear in the size of the KB
-Efficient when you want one or a few decisions

Mixed strategy

- Many practical reasoning systems do both forward and backward chaining
- The way you encode a rule determines how it is used, as in
$\%$ this is a forward chaining rule spouse (X,Y) => spouse(Y,X).
\% this is a backward chaining rule wife(X,Y) <= spouse(X,Y), female(X).
- Given a model of the rules you have and the kind of reason you need to do, it's possible to decide which to encode as FC and which as BC rules.

Completeness of GMP

- GMP (using forward or backward chaining) is complete for KBs that contain only Horn clauses
- not complete for simple KBs with non-Horn clauses
- The following entail that $S(A)$ is true:

$$
\begin{aligned}
& \text { 1. }(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x}) \\
& \text { 2. }(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{R}(\mathrm{x}) \\
& \text { 3. }(\forall \mathrm{x}) \mathrm{Q}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x}) \\
& \text { 4. }(\forall \mathrm{x}) \mathrm{R}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x})
\end{aligned}
$$

- If we want to conclude $S(A)$, with GMP we cannot, since the second one is not a Horn clause
- It is equivalent to $\mathrm{P}(\mathrm{x}) \vee \mathrm{R}(\mathrm{x})$

How about in Prolog?

- Let's try encoding this in Prolog

$$
\begin{aligned}
& \text { 1. } q(X):-p(X) . \\
& \text { 2. } r(X):-\operatorname{neg}(p(X)) \text {. } \\
& \text { 3. } s(X):-q(X) . \\
& \text { 4. } s(X):-r(X) .
\end{aligned}
$$

1. $(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})$
2. $(\forall x) \neg P(x) \rightarrow R(x)$
3. $(\forall x) Q(x) \rightarrow S(x)$
4. $(\forall x) R(x) \rightarrow S(x)$

- We should not use $\backslash+$ or not (in SWI) for negation since it means "negation as failure"
- Prolog explores possible proofs independently
- It can't take a larger view and realize that one branch must be true since $\mathbf{p}(\mathbf{x}) \mathbf{v} \sim \mathbf{p}(\mathbf{x})$ is always true

