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Overview 

• Game playing 
– State of the art and resources 
– Framework 

• Game trees 
– Minimax 
– Alpha-beta pruning 
– Adding randomness 



Why study games? 
•  Interesting, hard problems which require minimal 
“initial structure” 

• Clear criteria for success 
• Offer an opportunity to study problems involving 

{hostile, adversarial, competing} agents and the 
uncertainty of interacting with the natural world 

• Historical reasons: For centuries humans have used 
them to exert their intelligence 

• Fun, good, easy to understand PR potential 
• Games often define very large search spaces 

– chess 35100 nodes in search tree, 1040 legal states 



State of the art 
• Chess:  

– Deep Blue beat Gary Kasparov in 1997 
– Garry Kasparav vs. Deep Junior (Feb 2003): tie!   
– Kasparov vs. X3D Fritz (November 2003): tie!  

• Checkers: Chinook is the world champion 
• Checkers: has been solved exactly – it’s a draw! 
• Go: Computer players are decent, at best 
• Bridge: “Expert” computer players exist, but no world 

champions yet 
• Poker: CPRG regularly beats human experts 

• Check out: http://www.cs.ualberta.ca/~games/ 



Chinook 
• Chinook is the World Man-Machine Checkers 

Champion, developed by researchers at the 
University of Alberta 

• It earned this title by competing in human 
tournaments, winning the right to play for the 
(human) world championship, and eventually 
defeating the best players in the world 

• Visit http://www.cs.ualberta.ca/~chinook/  to 
play a version of Chinook over the Internet. 

• “One Jump Ahead: Challenging Human 
Supremacy in Checkers”, Jonathan Schaeffer, 
1998 

• See Checkers Is Solved, J. Schaeffer, et al., 
Science, v317, n5844, pp1518-22, AAAS, 
2007. 



Chess early days 
•  1948: Norbert Wiener's book Cybernetics describes how a 

chess program could be developed using a depth-limited 
minimax search with an evaluation function 

•  1950: Claude Shannon publishes one of first papers on playing 
chess “Programming a Computer for Playing Chess”  

•  1951: Alan Turing develops on paper the first program 
capable of playing a full game of chess 

•  1962: Kotok and McCarthy (MIT) develop first program to 
play credibly 

•  1967: Mac Hack Six, by Richard Greenblatt et al. (MIT) 
idefeats a person in regular tournament play 



Ratings of human & computer chess champions 



1997 



1997 



Othello: Murakami vs. Logistello 

Takeshi Murakami 
World Othello Champion 

•  1997: The Logistello software crushed Murakami, 6 to 0 
•  Humans can not win against it 
•  Othello, with 1028 states, is still not solved 

open sourced 



Go: Goemate vs. a young player 

Name: Chen Zhixing 
Profession: Retired 
Computer skills:  

 self-taught programmer 
Author of Goemate (arguably the 

 best Go program available today) 
 
Gave Goemate a 9 stone 
handicap and still easily 
beat the program, 
thereby winning $15,000 

Jonathan Schaeffer 



Go: Goemate vs. ?? 
Name: Chen Zhixing 
Profession: Retired 
Computer skills:  

 self-taught programmer 
Author of Goemate (arguably the 

 strongest Go programs) 
 
Gave Goemate a 9 stone 
handicap and still easily 
beat the program, 
thereby winning $15,000 

Jonathan Schaeffer 

Go has too high a branching factor 
for existing search techniques 
 

Current and future software must 
rely on huge databases and pattern-
recognition techniques 



Typical simple case for a game 
• 2-person game 
• Players alternate moves  
• Zero-sum: one player’s loss is the other’s gain 
• Perfect information: both players have access to 

complete information about the state of the game.  
No information is hidden from either player. 

• No chance (e.g., using dice) involved  
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,  

Othello 
• But not: Bridge,  Solitaire, Backgammon, Poker, 

Rock-Paper-Scissors, ... 



Can we use … 

• Uninformed serch? 
• Heuristic Search? 
• Local Search? 
• Constraint based search? 



How to play a game 
• A way to play such a game is to: 

– Consider all the legal moves you can make 
– Compute new position resulting from each move 
– Evaluate each to determine which is best 
– Make that move 
– Wait for your opponent to move and repeat 

• Key problems are: 
– Representing the “board” (i.e., game state) 
– Generating all legal next boards 
– Evaluating a position 



Evaluation function 
• Evaluation function or static evaluator is used to 

evaluate the “goodness” of a game position 
– Contrast with heuristic search where evaluation function 

was a non-negative estimate of the cost from the start node 
to a goal and passing through the given node 

•  Zero-sum assumption lets us use a single evaluation 
function to describe goodness of a board wrt both players 
– f(n)  >> 0: position n good for me and bad for you 
– f(n) << 0:  position n bad for me and good for you 
– f(n) near 0: position n is a neutral position 
– f(n) = +infinity: win for  me 
– f(n) = -infinity: win for you   



Evaluation function examples 
• Example of an evaluation function for Tic-Tac-Toe  

f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]  
where a 3-length is a complete row, column, or diagonal 

• Alan Turing’s function for chess 
–  f(n) = w(n)/b(n) where w(n) = sum of the point value of 

white’s pieces and b(n) = sum of black’s 
• Most evaluation functions specified as a weighted 

sum of position features 
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)  

• Example features for chess are piece count,  piece 
placement, squares controlled, etc.  

• Deep Blue had >8K features in its evaluation function 



That’s not how people play 
• People use “look ahead” 
• i.e. enumerate actions, consider opponent’s 

possible responses, REPEAT 
• Producing a complete game tree is only 

possible for simple games 
• So, generate a partial game tree for some 

number of plys 
– Move = each player takes a turn 
– Ply = one player’s turn 

• What do we do with the game tree? 





Game trees 
•  Problem spaces for typical games are trees 
• Root node represents the current board configuration; 

player must decide the best single move to make next 
•  Static evaluator function rates a board position 

f(board) a real,  >0 for me <0 for opponent 
• Arcs represent the possible legal moves for a player  
•  If it is my turn to move, then the root is labeled a 

"MAX" node; otherwise it is labeled a "MIN" node, 
indicating my opponent's turn.  

•  Each level of the tree has nodes that are all MAX or 
all MIN; nodes at level i are of the opposite kind from 
those at level i+1  



Game Tree for Tic-Tac-Toe 

MAX’s play → 

MIN’s play → 

Terminal state 
(win for MAX) → 

Here, symmetries have been 
used to reduce the branching 
factor 

MIN nodes 

MAX nodes 



Minimax procedure 
• Create start node as a MAX node  with current board 

configuration  
•  Expand nodes down to some depth (a.k.a. ply) of 

lookahead in the game 
• Apply the evaluation function at each of the leaf nodes  
•  “Back up” values for each of the non-leaf nodes until a 

value is computed for the root node 
– At MIN nodes, the backed-up value is the minimum of 

the values associated with its children.  
– At MAX nodes, the backed-up value is the maximum of 

the values associated with its children.  
•  Pick the operator associated with the child node whose 

backed-up value determined the value at the root  



Minimax theorem 
•  Intuition: assume your opponent is at least as smart 

as you are and play accordingly.  If he’s not, you 
can only do better. 

• Von Neumann, J: Zur Theorie der Gesellschafts-
spiele Math. Annalen. 100 (1928) 295-320 
For every two-person, zero-sum game with finite strategies, 
there exists a value V and a mixed strategy for each player, 
such that (a) given player 2's strategy, the best payoff 
possible for player 1 is V, and (b) given player 1's strategy, 
the best payoff possible for player 2 is –V. 

• You can think of this as: 
– Minimizing your maximum possible loss 
– Maximizing your minimum possible gain 



Minimax Algorithm 

2 7 1 8 

MAX 
MIN 

2 7 1 8 

2 1 

2 7 1 8 

2 1 

2 

2 7 1 8 

2 1 

2 This is the move 
selected by minimax Static evaluator  

value 



Partial Game Tree for Tic-Tac-Toe 

•  f(n) = +1 if the position is a 
win for X. 

•  f(n) = -1 if the position is a 
win for O. 

•  f(n) = 0 if the position is a 
draw. 



Why use backed-up values? 
§ Intuition: if our evaluation function is good, doing 

look ahead and backing up the values with 
Minimax should do better 

§ At each non-leaf node N, the backed-up value is 
the value of the best state that MAX can reach at 
depth h if MIN plays well (by the same criterion as 
MAX applies to itself) 

§ If e is to be trusted in the first place, then the 
backed-up value is a better estimate of how 
favorable STATE(N) is than e(STATE(N))  

§ We use a horizon h because in general, our time to 
compute a move is limited 



Minimax Tree 

MAX node 

MIN node 

f value 
value computed  

by minimax 



Alpha-beta pruning 
• We can improve on the performance of the 

minimax algorithm through alpha-beta pruning 
• Basic idea: “If you have an idea that is surely bad, 

don't take the time to see how truly awful it is.” -- 
Pat Winston  

2 7 1 

=2 

>=2 

<=1 

? 

•  We don’t need to compute 
the value at this node. 

•  No matter what it is, it can’t 
affect the value of the root 
node. 

MAX 

MAX 

MIN 



Alpha-beta pruning 
•  Traverse the search tree in depth-first order  
• At each MAX node n, alpha(n) =  maximum value found 

so far 
• At each MIN node n, beta(n) =  minimum value found so 

far 
– The alpha values start at -∞ and only increase, while beta 

values start at +∞ and only decrease 
• Beta cutoff: Given MAX node n, cut off search below n 

(i.e., don’t generate/examine any more of n’s children) if 
alpha(n) >= beta(i) for some MIN node ancestor i of n.  

• Alpha cutoff: stop searching below MIN node n if beta(n) 
<= alpha(i) for some MAX node ancestor i of n.  



Alpha-Beta Tic-Tac-Toe Example 



Alpha-Beta Tic-Tac-Toe Example 

β = 2 

2 

The beta value of a MIN 
node is an upper bound on 
the final backed-up value. 
It can never increase 



Alpha-Beta Tic-Tac-Toe Example 

The beta value of a MIN 
node is an upper bound on 
the final backed-up value. 
It can never increase 

1 

β = 1 

2 



Alpha-Beta Tic-Tac-Toe Example 

α = 1 

The alpha value of a MAX 
node is a lower bound on 
the final backed-up value. 
It can never decrease 

1 

β = 1 

2 



Alpha-Beta Tic-Tac-Toe Example 

α = 1 

1 

β = 1 

2 -1 

β = -1  



Alpha-Beta Tic-Tac-Toe Example 

α = 1 

1 

β = 1 

2 -1 

β = -1  

Search can be discontinued below 
any MIN node whose beta value is  
less than or equal to the alpha value 
of one of its MAX ancestors 



Alpha-beta general example 

3 12 8 2 14 1 

3 MIN 

MAX 3 

2 - prune 14 1 - prune 



Alpha-Beta Tic-Tac-Toe Example 2 

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 -3 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 -3 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 -3 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 -3 3 

3 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 -3 3 

3 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

5 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

5 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

1 

1 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

1 

1 

-5 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

1 

1 

-5 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

1 

1 

-5 

-5 

-5 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

1 

1 

-5 

-5 

-5 

0 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

1 

1 

-5 

-5 

-5 

1 

1 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

1 

1 

-5 

-5 

-5 

2 

2 

2 

2 

1 

1 



0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5 

 0 

0 

0 

0 -3 3 

3 

0 

2 

2 

2 

2 

1 

1 

-3 

1 

1 

-5 

-5 

-5 

1 

2 

2 

2 

2 

1 



Alpha-beta algorithm 
function MAX-VALUE (state, α, β) 
    ;; α = best MAX so far; β = best MIN 
if TERMINAL-TEST (state) then return UTILITY(state) 
v := -∞ 
for each s in SUCCESSORS (state) do 
    v := MAX (v, MIN-VALUE (s, α, β)) 
    if v >= β then return v 
    α := MAX (α, v) 
end 
return v 
 
function MIN-VALUE (state, α, β) 
if TERMINAL-TEST (state) then return UTILITY(state) 
v := ∞ 
for each s in SUCCESSORS (state) do 
    v := MIN (v, MAX-VALUE (s, α, β)) 
    if v <= α then return v 
    β := MIN (β, v) 
end 
return v 



Effectiveness of alpha-beta 
•  Alpha-beta is guaranteed to compute the same value for the 

root node as computed by minimax, with less or equal 
computation 

•  Worst case:  no pruning, examining bd leaf nodes, where 
each node has b children and a d-ply search is performed  

•  Best case: examine only (2b)d/2 leaf nodes.  
– Result is you can search twice as deep as minimax!  

•  Best case is when each player’s best move is the first 
alternative generated   

•  In Deep Blue, they found empirically that alpha-beta 
pruning meant that the average branching factor at each 
node was about 6 instead of about 35! 



Other Improvements 

§  Adaptive horizon + iterative deepening 
§  Extended search: Retain k>1 best paths (not just 

one) extend the tree at greater depth below their leaf 
nodes to help dealing with the “horizon effect” 

§  Singular extension: If a move is obviously better 
than the others in a node at horizon h, then expand it 

§  Use transposition tables to deal with repeated 
states 

§  Null-move search: assume player forfeits move; do 
a shallow analysis of tree; result must surely be 
worse than if player had moved.  Can be used to 
recognize moves that should be explored fully. 



Stochastic Games 
• In real life, unpredictable external events can 

put us into unforeseen situations 
• Many games introduce unpredictability 

through a random element, such as the 
throwing of dice 

• These offer simple scenarios for problem 
solving with adversaries and uncertainty 



Example: Backgammon 
•  Backgammon is a two-player 
game with uncertainty. 

• Players roll dice to determine 
what moves to make. 

• White has just rolled 5 and 6 
and has four legal moves: 
•  5-10, 5-11 
•  5-11, 19-24 
•  5-10, 10-16 
•  5-11, 11-16 

• Such games are good for 
exploring decision making in 
adversarial problems 
involving skill and luck 



Why can’t we use MiniMax? 

• Before a player chooses her move, she rolls 
dice and then knows exactly what they are 

• And the immediate outcome of each move is 
also known 

• But she does not know what moves her 
opponent will have available to choose from 

• We need to adapt MiniMax to handle this 



MiniMax trees with Chance Nodes 



Understanding the notation 

Max’s move 1 Max’s move 2 

Board state includes the chance outcome determining 
what moves are available 

Min flips coin 

Min knows 
possible moves 



Game trees with chance nodes 
•  Chance nodes (shown as circles) represent random events 
•  For a random event with N outcomes, a chance node has N 

children; a probability is associated with each 
•  2 dice: 21 distinct outcomes 
•  Use minimax to compute values 

for MAX and MIN nodes 
•  Use  expected values for 

chance nodes 
•  For chance nodes over a max 

node: 
expectimax(C) = ∑i(P(di) * maxvalue(i)) 

•  For chance nodes over a min node: 
expectimin(C) = ∑i(P(di) * minvalue(i)) 

Max 
Rolls 

Min 
Rolls 



Impact on Lookahead 
• Dice rolls increase branching factor 

– 21 possible rolls with 2 dice 

• Backgammon has ~20 legal moves for a given roll  
~6K with 1-1 roll 

• At depth 4 there are 20 * (21 * 20)**3 ≈ 1.2B boards 
• As depth increases, probability of reaching a given 

node shrinks 
– value of lookahead is diminished 
– alpha-beta pruning is much less effective 

• TDGammon used depth-2 search + very good static 
evaluator to achieve world-champion level 



Meaning of the evaluation function 

• With probabilities and expected values we must be careful 
about the “meaning” of values returned by static evaluator 

• A “relative-order preserving” change of the values doesn’t 
change decision of minimax, but could with chance nodes 

•  Linear transformations are OK 

A1 is best 
move A2 is best 

move 2 outcomes with 
probabilities  {.9, .1} 



Games of imperfect information 
•  Example: card games, where opponent's initial cards are 

unknown 
– We can calculate a probability for each possible deal 
– Like having one big dice roll at the beginning of the game 

•  Possible approach: compute minimax value of each 
action in each deal, then choose the action with highest 
expected value over all deals 

•  Special case: if action is optimal for all deals, it's optimal 
• GIB, a top bridge program, approximates this idea by 

1) generating 100 deals consistent with bidding information 
2) picking the action that wins most tricks on average 



High-Performance Game Programs 
§  Many game programs are based on alpha-beta + 

iterative deepening + extended/singular search + 
transposition tables + huge databases + ... 
 

§  For instance, Chinook searched all checkers 
configurations with 8 pieces or less and created an 
endgame database of 444 billion board configurations 

§  The methods are general, but their implementation is 
dramatically improved by many specifically tuned-up 
enhancements (e.g., the evaluation functions) like an 
F1 racing car 



Other Issues 

§  Multi-player games 
§  E.g., many card games like Hearts 

§  Multiplayer games with alliances 
§  E.g., Risk 
§ More on this when we discuss “game theory” 
§ Good model for a social animal like humans, 

where we are always balancing cooperation and 
competition 



AI and Games II 
• AI is also of interest to the video game industry 
• Many games include ‘agents’ controlled by the 

game program that could be 
– Adversaries, e.g. in a first person shooter game 
– Collaborators, e.g., in a virtual reality game 

• Some game environments are used as AI challenges 
– 2009 Mario AI Competition 
– Unreal Tournament bots 



Perspective on Games: Con and Pro 

“Chess is the Drosophila of 
artificial intelligence. However, 
computer chess has developed 
much as genetics might have if 
the geneticists had concentrated 
their efforts starting in 1910 on 
breeding racing Drosophila. We 
would have some science, but 
mainly we would have very fast 
fruit flies.”    

 John McCarthy, Stanford 

“Saying Deep Blue doesn’t really 
think about chess is like saying an 
airplane doesn't really fly because 

it doesn't flap its wings.” 
   
 Drew McDermott, Yale 



General Game Playing 
• General Game Playing is an idea 

developed by Professor Michael 
Genesereth of Stanford 

• See his site for more information 
• Goal: don’t develop specialized systems to 

play specific games (e.g., Checkers) very well 
• Goal: design AI programs to be able to play 

more than one game successfully 
• Work from a description of a novel game 



General Game Playing 
•  Stanford’s GGP is a Web-based system 
• Complete, logical specification of many 

different games in terms of: 
-  relational descriptions of states 

-  legal moves and their effects 
-  goal relations and their payoffs 

• Management of matches between automated 
players and of competitions involving many 
players and games 



GGP 
• Input: logical description of a game in a 

custom game description language 
• Game bots must 

• Learn how to play legally from description 
• Play well using general problem solving strategies 
•  Improve using general machine learning techniques  

• Yearly completions since 2005, $10K prize 
• Java General Game Playing Base Package 



GGP Peg Jumping Game 
; http://games.stanford.edu/gamemaster/games-debug/peg.kif 
(init (hole a c3 peg)) 
(init (hole a c4 peg))  
… 
(init (hole d c4 empty))  
… 
(<= (next (pegs ?x)) (does jumper (jump ?sr ?sc ?dr ?dc)) (true (pegs ?y)) 
       (succ ?x ?y)) (<= (next (hole ?sr ?sc empty)) (does jumper (jump ?sr ?sc ?dr ?dc)))  
… 
(<= (legal jumper (jump ?sr ?sc ?dr ?dc)) (true (hole ?sr ?sc peg)) 
       (true (hole ?dr ?dc empty)) (middle ?sr ?sc ?or ?oc ?dr ?dc) (true (hole ?or ?oc peg)))  
… 
(<= (goal jumper 100) (true (hole a c3 empty)) (true (hole a c4 empty))  
       (true (hole a c5 empty))  
… 
(succ s1 s2) 
(succ s2 s3)  
… 



Tic-Tac-Toe in GDL 
(role xplayer) 
(role oplayer) 
;; Initial State 
(init (cell 1 1 b)) 
(init (cell 1 2 b)) 
... 
(init (control xplayer)) 
;; Dynamic Components 
(<= (next (cell ?m ?n x)) 
  (does xplayer (mark ?m ?n)) 
  (true (cell ?m ?n b))) 
 
(<= (next (cell ?m ?n o)) 
  (does oplayer (mark ?m ?n)) 
  (true (cell ?m ?n b))) 

… 
... 
(<= (next (control xplayer)) 
  (true (control oplayer))) 
(<= (legal ?w (mark ?x ?y)) 
  (true (cell ?x ?y b)) 
  (true (control ?w))) 
(<= (legal xplayer noop) 
  (true (control oplayer))) 
(<= (legal oplayer noop) 
  (true (control xplayer))) 
... 
(<= (goal xplayer 100) (line x)) 
... 
(<= (goal oplayer 0) (line x)) 
... 
 

See ggp-base repository: http://bit.ly/RB49q5 



A example of General Intelligence 
• “Artificial General Intelligence describes 

research that aims to create machines 
capable of general intelligent action” 

• Harkens back to early visions of AI, like 
McCarthy’s Advise Taker 
– See Programs with Common Sense (1959) 

• A response to frustration with narrow 
specialists, often seen as “hacks” 
– See On Chomsky and the Two Cultures 

of Statistical Learning 


