
Adversarial Search
Aka Games

Chapter 6

Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison

Overview

• Game playing
– State of the art and resources
– Framework

• Game trees
– Minimax
– Alpha-beta pruning
– Adding randomness

Why study games?
•  Interesting, hard problems which require minimal
“initial structure”

• Clear criteria for success
• Offer an opportunity to study problems involving

{hostile, adversarial, competing} agents and the
uncertainty of interacting with the natural world

• Historical reasons: For centuries humans have used
them to exert their intelligence

• Fun, good, easy to understand PR potential
• Games often define very large search spaces

– chess 35100 nodes in search tree, 1040 legal states

State of the art
• Chess:

– Deep Blue beat Gary Kasparov in 1997
– Garry Kasparav vs. Deep Junior (Feb 2003): tie!
– Kasparov vs. X3D Fritz (November 2003): tie!

• Checkers: Chinook is the world champion
• Checkers: has been solved exactly – it’s a draw!
• Go: Computer players are decent, at best
• Bridge: “Expert” computer players exist, but no world

champions yet
• Poker: CPRG regularly beats human experts

• Check out: http://www.cs.ualberta.ca/~games/

Chinook
• Chinook is the World Man-Machine Checkers

Champion, developed by researchers at the
University of Alberta

• It earned this title by competing in human
tournaments, winning the right to play for the
(human) world championship, and eventually
defeating the best players in the world

• Visit http://www.cs.ualberta.ca/~chinook/ to
play a version of Chinook over the Internet.

• “One Jump Ahead: Challenging Human
Supremacy in Checkers”, Jonathan Schaeffer,
1998

• See Checkers Is Solved, J. Schaeffer, et al.,
Science, v317, n5844, pp1518-22, AAAS,
2007.

Chess early days
•  1948: Norbert Wiener's book Cybernetics describes how a

chess program could be developed using a depth-limited
minimax search with an evaluation function

•  1950: Claude Shannon publishes one of first papers on playing
chess “Programming a Computer for Playing Chess”

•  1951: Alan Turing develops on paper the first program
capable of playing a full game of chess

•  1962: Kotok and McCarthy (MIT) develop first program to
play credibly

•  1967: Mac Hack Six, by Richard Greenblatt et al. (MIT)
idefeats a person in regular tournament play

Ratings of human & computer chess champions

1997

1997

Othello: Murakami vs. Logistello

Takeshi Murakami
World Othello Champion

•  1997: The Logistello software crushed Murakami, 6 to 0
•  Humans can not win against it
•  Othello, with 1028 states, is still not solved

open sourced

Go: Goemate vs. a young player

Name: Chen Zhixing
Profession: Retired
Computer skills:

 self-taught programmer
Author of Goemate (arguably the

 best Go program available today)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer

Go: Goemate vs. ??
Name: Chen Zhixing
Profession: Retired
Computer skills:

 self-taught programmer
Author of Goemate (arguably the

 strongest Go programs)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer

Go has too high a branching factor
for existing search techniques

Current and future software must
rely on huge databases and pattern-
recognition techniques

Typical simple case for a game
• 2-person game
• Players alternate moves
• Zero-sum: one player’s loss is the other’s gain
• Perfect information: both players have access to

complete information about the state of the game.
No information is hidden from either player.

• No chance (e.g., using dice) involved
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,

Othello
• But not: Bridge, Solitaire, Backgammon, Poker,

Rock-Paper-Scissors, ...

Can we use …

• Uninformed serch?
• Heuristic Search?
• Local Search?
• Constraint based search?

How to play a game
• A way to play such a game is to:

– Consider all the legal moves you can make
– Compute new position resulting from each move
– Evaluate each to determine which is best
– Make that move
– Wait for your opponent to move and repeat

• Key problems are:
– Representing the “board” (i.e., game state)
– Generating all legal next boards
– Evaluating a position

Evaluation function
• Evaluation function or static evaluator is used to

evaluate the “goodness” of a game position
– Contrast with heuristic search where evaluation function

was a non-negative estimate of the cost from the start node
to a goal and passing through the given node

•  Zero-sum assumption lets us use a single evaluation
function to describe goodness of a board wrt both players
– f(n) >> 0: position n good for me and bad for you
– f(n) << 0: position n bad for me and good for you
– f(n) near 0: position n is a neutral position
– f(n) = +infinity: win for me
– f(n) = -infinity: win for you

Evaluation function examples
• Example of an evaluation function for Tic-Tac-Toe

f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]
where a 3-length is a complete row, column, or diagonal

• Alan Turing’s function for chess
–  f(n) = w(n)/b(n) where w(n) = sum of the point value of

white’s pieces and b(n) = sum of black’s
• Most evaluation functions specified as a weighted

sum of position features
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)

• Example features for chess are piece count, piece
placement, squares controlled, etc.

• Deep Blue had >8K features in its evaluation function

That’s not how people play
• People use “look ahead”
• i.e. enumerate actions, consider opponent’s

possible responses, REPEAT
• Producing a complete game tree is only

possible for simple games
• So, generate a partial game tree for some

number of plys
– Move = each player takes a turn
– Ply = one player’s turn

• What do we do with the game tree?

Game trees
•  Problem spaces for typical games are trees
• Root node represents the current board configuration;

player must decide the best single move to make next
•  Static evaluator function rates a board position

f(board) a real, >0 for me <0 for opponent
• Arcs represent the possible legal moves for a player
•  If it is my turn to move, then the root is labeled a

"MAX" node; otherwise it is labeled a "MIN" node,
indicating my opponent's turn.

•  Each level of the tree has nodes that are all MAX or
all MIN; nodes at level i are of the opposite kind from
those at level i+1

Game Tree for Tic-Tac-Toe

MAX’s play →

MIN’s play →

Terminal state
(win for MAX) →

Here, symmetries have been
used to reduce the branching
factor

MIN nodes

MAX nodes

Minimax procedure
• Create start node as a MAX node with current board

configuration
•  Expand nodes down to some depth (a.k.a. ply) of

lookahead in the game
• Apply the evaluation function at each of the leaf nodes
•  “Back up” values for each of the non-leaf nodes until a

value is computed for the root node
– At MIN nodes, the backed-up value is the minimum of

the values associated with its children.
– At MAX nodes, the backed-up value is the maximum of

the values associated with its children.
•  Pick the operator associated with the child node whose

backed-up value determined the value at the root

Minimax theorem
•  Intuition: assume your opponent is at least as smart

as you are and play accordingly. If he’s not, you
can only do better.

• Von Neumann, J: Zur Theorie der Gesellschafts-
spiele Math. Annalen. 100 (1928) 295-320
For every two-person, zero-sum game with finite strategies,
there exists a value V and a mixed strategy for each player,
such that (a) given player 2's strategy, the best payoff
possible for player 1 is V, and (b) given player 1's strategy,
the best payoff possible for player 2 is –V.

• You can think of this as:
– Minimizing your maximum possible loss
– Maximizing your minimum possible gain

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

2 7 1 8

2 1

2 This is the move
selected by minimax Static evaluator

value

Partial Game Tree for Tic-Tac-Toe

•  f(n) = +1 if the position is a
win for X.

•  f(n) = -1 if the position is a
win for O.

•  f(n) = 0 if the position is a
draw.

Why use backed-up values?
§ Intuition: if our evaluation function is good, doing

look ahead and backing up the values with
Minimax should do better

§ At each non-leaf node N, the backed-up value is
the value of the best state that MAX can reach at
depth h if MIN plays well (by the same criterion as
MAX applies to itself)

§ If e is to be trusted in the first place, then the
backed-up value is a better estimate of how
favorable STATE(N) is than e(STATE(N))

§ We use a horizon h because in general, our time to
compute a move is limited

Minimax Tree

MAX node

MIN node

f value
value computed

by minimax

Alpha-beta pruning
• We can improve on the performance of the

minimax algorithm through alpha-beta pruning
• Basic idea: “If you have an idea that is surely bad,

don't take the time to see how truly awful it is.” --
Pat Winston

2 7 1

=2

>=2

<=1

?

•  We don’t need to compute
the value at this node.

•  No matter what it is, it can’t
affect the value of the root
node.

MAX

MAX

MIN

Alpha-beta pruning
•  Traverse the search tree in depth-first order
• At each MAX node n, alpha(n) = maximum value found

so far
• At each MIN node n, beta(n) = minimum value found so

far
– The alpha values start at -∞ and only increase, while beta

values start at +∞ and only decrease
• Beta cutoff: Given MAX node n, cut off search below n

(i.e., don’t generate/examine any more of n’s children) if
alpha(n) >= beta(i) for some MIN node ancestor i of n.

• Alpha cutoff: stop searching below MIN node n if beta(n)
<= alpha(i) for some MAX node ancestor i of n.

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

β = 2

2

The beta value of a MIN
node is an upper bound on
the final backed-up value.
It can never increase

Alpha-Beta Tic-Tac-Toe Example

The beta value of a MIN
node is an upper bound on
the final backed-up value.
It can never increase

1

β = 1

2

Alpha-Beta Tic-Tac-Toe Example

α = 1

The alpha value of a MAX
node is a lower bound on
the final backed-up value.
It can never decrease

1

β = 1

2

Alpha-Beta Tic-Tac-Toe Example

α = 1

1

β = 1

2 -1

β = -1

Alpha-Beta Tic-Tac-Toe Example

α = 1

1

β = 1

2 -1

β = -1

Search can be discontinued below
any MIN node whose beta value is
less than or equal to the alpha value
of one of its MAX ancestors

Alpha-beta general example

3 12 8 2 14 1

3 MIN

MAX 3

2 - prune 14 1 - prune

Alpha-Beta Tic-Tac-Toe Example 2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0 -3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0 -3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0 -3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0 -3 3

3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0 -3 3

3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

5

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

1

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

2

2

2

2

1

1

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

2

2

2

2

1

Alpha-beta algorithm
function MAX-VALUE (state, α, β)
 ;; α = best MAX so far; β = best MIN
if TERMINAL-TEST (state) then return UTILITY(state)
v := -∞
for each s in SUCCESSORS (state) do
 v := MAX (v, MIN-VALUE (s, α, β))
 if v >= β then return v
 α := MAX (α, v)
end
return v

function MIN-VALUE (state, α, β)
if TERMINAL-TEST (state) then return UTILITY(state)
v := ∞
for each s in SUCCESSORS (state) do
 v := MIN (v, MAX-VALUE (s, α, β))
 if v <= α then return v
 β := MIN (β, v)
end
return v

Effectiveness of alpha-beta
•  Alpha-beta is guaranteed to compute the same value for the

root node as computed by minimax, with less or equal
computation

•  Worst case: no pruning, examining bd leaf nodes, where
each node has b children and a d-ply search is performed

•  Best case: examine only (2b)d/2 leaf nodes.
– Result is you can search twice as deep as minimax!

•  Best case is when each player’s best move is the first
alternative generated

•  In Deep Blue, they found empirically that alpha-beta
pruning meant that the average branching factor at each
node was about 6 instead of about 35!

Other Improvements

§  Adaptive horizon + iterative deepening
§  Extended search: Retain k>1 best paths (not just

one) extend the tree at greater depth below their leaf
nodes to help dealing with the “horizon effect”

§  Singular extension: If a move is obviously better
than the others in a node at horizon h, then expand it

§  Use transposition tables to deal with repeated
states

§  Null-move search: assume player forfeits move; do
a shallow analysis of tree; result must surely be
worse than if player had moved. Can be used to
recognize moves that should be explored fully.

Stochastic Games
• In real life, unpredictable external events can

put us into unforeseen situations
• Many games introduce unpredictability

through a random element, such as the
throwing of dice

• These offer simple scenarios for problem
solving with adversaries and uncertainty

Example: Backgammon
•  Backgammon is a two-player
game with uncertainty.

• Players roll dice to determine
what moves to make.

• White has just rolled 5 and 6
and has four legal moves:
•  5-10, 5-11
•  5-11, 19-24
•  5-10, 10-16
•  5-11, 11-16

• Such games are good for
exploring decision making in
adversarial problems
involving skill and luck

Why can’t we use MiniMax?

• Before a player chooses her move, she rolls
dice and then knows exactly what they are

• And the immediate outcome of each move is
also known

• But she does not know what moves her
opponent will have available to choose from

• We need to adapt MiniMax to handle this

MiniMax trees with Chance Nodes

Understanding the notation

Max’s move 1 Max’s move 2

Board state includes the chance outcome determining
what moves are available

Min flips coin

Min knows
possible moves

Game trees with chance nodes
•  Chance nodes (shown as circles) represent random events
•  For a random event with N outcomes, a chance node has N

children; a probability is associated with each
•  2 dice: 21 distinct outcomes
•  Use minimax to compute values

for MAX and MIN nodes
•  Use expected values for

chance nodes
•  For chance nodes over a max

node:
expectimax(C) = ∑i(P(di) * maxvalue(i))

•  For chance nodes over a min node:
expectimin(C) = ∑i(P(di) * minvalue(i))

Max
Rolls

Min
Rolls

Impact on Lookahead
• Dice rolls increase branching factor

– 21 possible rolls with 2 dice

• Backgammon has ~20 legal moves for a given roll
~6K with 1-1 roll

• At depth 4 there are 20 * (21 * 20)**3 ≈ 1.2B boards
• As depth increases, probability of reaching a given

node shrinks
– value of lookahead is diminished
– alpha-beta pruning is much less effective

• TDGammon used depth-2 search + very good static
evaluator to achieve world-champion level

Meaning of the evaluation function

• With probabilities and expected values we must be careful
about the “meaning” of values returned by static evaluator

• A “relative-order preserving” change of the values doesn’t
change decision of minimax, but could with chance nodes

•  Linear transformations are OK

A1 is best
move A2 is best

move 2 outcomes with
probabilities {.9, .1}

Games of imperfect information
•  Example: card games, where opponent's initial cards are

unknown
– We can calculate a probability for each possible deal
– Like having one big dice roll at the beginning of the game

•  Possible approach: compute minimax value of each
action in each deal, then choose the action with highest
expected value over all deals

•  Special case: if action is optimal for all deals, it's optimal
• GIB, a top bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

High-Performance Game Programs
§  Many game programs are based on alpha-beta +

iterative deepening + extended/singular search +
transposition tables + huge databases + ...

§  For instance, Chinook searched all checkers
configurations with 8 pieces or less and created an
endgame database of 444 billion board configurations

§  The methods are general, but their implementation is
dramatically improved by many specifically tuned-up
enhancements (e.g., the evaluation functions) like an
F1 racing car

Other Issues

§  Multi-player games
§  E.g., many card games like Hearts

§  Multiplayer games with alliances
§  E.g., Risk
§ More on this when we discuss “game theory”
§ Good model for a social animal like humans,

where we are always balancing cooperation and
competition

AI and Games II
• AI is also of interest to the video game industry
• Many games include ‘agents’ controlled by the

game program that could be
– Adversaries, e.g. in a first person shooter game
– Collaborators, e.g., in a virtual reality game

• Some game environments are used as AI challenges
– 2009 Mario AI Competition
– Unreal Tournament bots

Perspective on Games: Con and Pro

“Chess is the Drosophila of
artificial intelligence. However,
computer chess has developed
much as genetics might have if
the geneticists had concentrated
their efforts starting in 1910 on
breeding racing Drosophila. We
would have some science, but
mainly we would have very fast
fruit flies.”

 John McCarthy, Stanford

“Saying Deep Blue doesn’t really
think about chess is like saying an
airplane doesn't really fly because

it doesn't flap its wings.”

 Drew McDermott, Yale

General Game Playing
• General Game Playing is an idea

developed by Professor Michael
Genesereth of Stanford

• See his site for more information
• Goal: don’t develop specialized systems to

play specific games (e.g., Checkers) very well
• Goal: design AI programs to be able to play

more than one game successfully
• Work from a description of a novel game

General Game Playing
•  Stanford’s GGP is a Web-based system
• Complete, logical specification of many

different games in terms of:
-  relational descriptions of states

-  legal moves and their effects
-  goal relations and their payoffs

• Management of matches between automated
players and of competitions involving many
players and games

GGP
• Input: logical description of a game in a

custom game description language
• Game bots must

• Learn how to play legally from description
• Play well using general problem solving strategies
•  Improve using general machine learning techniques

• Yearly completions since 2005, $10K prize
• Java General Game Playing Base Package

GGP Peg Jumping Game
; http://games.stanford.edu/gamemaster/games-debug/peg.kif
(init (hole a c3 peg))
(init (hole a c4 peg))
…
(init (hole d c4 empty))
…
(<= (next (pegs ?x)) (does jumper (jump ?sr ?sc ?dr ?dc)) (true (pegs ?y))
 (succ ?x ?y)) (<= (next (hole ?sr ?sc empty)) (does jumper (jump ?sr ?sc ?dr ?dc)))
…
(<= (legal jumper (jump ?sr ?sc ?dr ?dc)) (true (hole ?sr ?sc peg))
 (true (hole ?dr ?dc empty)) (middle ?sr ?sc ?or ?oc ?dr ?dc) (true (hole ?or ?oc peg)))
…
(<= (goal jumper 100) (true (hole a c3 empty)) (true (hole a c4 empty))
 (true (hole a c5 empty))
…
(succ s1 s2)
(succ s2 s3)
…

Tic-Tac-Toe in GDL
(role xplayer)
(role oplayer)
;; Initial State
(init (cell 1 1 b))
(init (cell 1 2 b))
...
(init (control xplayer))
;; Dynamic Components
(<= (next (cell ?m ?n x))
 (does xplayer (mark ?m ?n))
 (true (cell ?m ?n b)))

(<= (next (cell ?m ?n o))
 (does oplayer (mark ?m ?n))
 (true (cell ?m ?n b)))

…
...
(<= (next (control xplayer))
 (true (control oplayer)))
(<= (legal ?w (mark ?x ?y))
 (true (cell ?x ?y b))
 (true (control ?w)))
(<= (legal xplayer noop)
 (true (control oplayer)))
(<= (legal oplayer noop)
 (true (control xplayer)))
...
(<= (goal xplayer 100) (line x))
...
(<= (goal oplayer 0) (line x))
...

See ggp-base repository: http://bit.ly/RB49q5

A example of General Intelligence
• “Artificial General Intelligence describes

research that aims to create machines
capable of general intelligent action”

• Harkens back to early visions of AI, like
McCarthy’s Advise Taker
– See Programs with Common Sense (1959)

• A response to frustration with narrow
specialists, often seen as “hacks”
– See On Chomsky and the Two Cultures

of Statistical Learning

