Russell \& Norvig Ch. 5

Overview

- Constraint satisfaction offers a powerful problemsolving paradigm
- View a problem as a set of variables to which we have to assign values that satisfy a number of problemspecific constraints.
- Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
- Algorithms for CSPs
- Backtracking (systematic search)
- Constraint propagation (k-consistency)
- Variable and value ordering heuristics
- Backjumping and dependency-directed backtracking

Motivating example: 8 Queens

Place 8 queens on a chess board such That none is attacking another.

Generate-and-test, with no redundancies \rightarrow "only" 8^{8} combinations

$$
8 * * 8 \text { is } 16,777,216
$$

Motivating example: 8-Queens

What more do we need for 8 queens?

- Not just a successor function and goal test
- But also
- a means to propagate constraints imposed by one queen on the others
- an early failure test
\rightarrow Explicit representation of constraints and constraint manipulation algorithms

Informal definition of CSP

- CSP = Constraint Satisfaction Problem, given
(1) a finite set of variables
(2) each with a domain of possible values (often finite)
(3) a set of constraints that limit the values the variables can take on
- A solution is an assignment of a value to each variable such that the constraints are all satisfied.
- Tasks might be to decide if a solution exists, to find a solution, to find all solutions, or to find the "best solution" according to some metric (objective function).

Example: 8-Queens Problem

- Eight variables $\mathrm{Xi}, \mathrm{i}=1 . .8$ where Xi is the row number of queen in column i
- Domain for each variable $\{1,2, \ldots, 8\}$
- Constraints are of the forms:
-Not on same row:
$\mathrm{Xi}=\mathrm{k} \rightarrow \mathrm{Xj} \neq \mathrm{k}$ for $\mathrm{j}=1 . .8, \mathrm{j} \neq \mathrm{i}$
- Not on same diagonal

$$
\mathrm{Xi}=\mathrm{ki}, \mathrm{Xj}=\mathrm{kj} \rightarrow|\mathrm{i}-\mathrm{j}| \neq|\mathrm{ki}-\mathrm{kj}| \text { for } \mathrm{j}=1 . .8, \mathrm{j} \neq \mathrm{i}
$$

Example: Task Scheduling

Examples of scheduling constraints:
-T1 must be done during T3

- T 2 must be achieved before T 1 starts
-T2 must overlap with T3
-T4 must start after T1 is complete

Example: Map coloring

Color the following map using three colors (red, green, blue) such that no two adjacent regions have the same color.

Map coloring

- Variables: A, B, C, D, E all of domain RGB
- Domains: $\mathrm{RGB}=\{$ red, green, blue $\}$
- Constraints: $A \neq B, A \neq C, A \neq E, A \neq D, B \neq C, C \neq$ D, $\mathrm{D} \neq \mathrm{E}$
- A solution: $\mathrm{A}=$ red, $\mathrm{B}=$ green, $\mathrm{C}=$ blue, $\mathrm{D}=$ green, $\mathrm{E}=$ blue

Brute Force methods

- Finding a solution by a brute force search is easy
-Generate and test is a weak method
-Just generate potential combinations and test each
- Potentially very inefficient
-With n variables where each can have one of 3 values, there are 3^{n} possible solutions to check
- There are ~ 190 countries in the world, which we can color using four colors

```
solve(A,B,C,D,E) :-
    color(A),
    color(B),
    color(C),
    color(D),
    color(E),
    not(A=B),
    not(A=B),
    not(B=C),
    not(A=C),
    not(C=D),
    not(A=E),
    not(C=D).
```

color(red).
color(green).
color(blue).

- 4^{190} is a big number!

Example: SATisfiability

- Given a set of propositions containing variables, find an assignment of the variables to \{false, true\} that satisfies them.
- For example, the clauses:
$-(\mathrm{A} \vee \mathrm{B} \vee \neg \mathrm{C}) \wedge(\neg \mathrm{A} \vee \mathrm{D})$
- (equivalent to $(C \rightarrow A) \vee(B \wedge D \rightarrow A)$
are satisfied by

$$
\mathrm{A}=\text { false }, \mathrm{B}=\text { true }, \mathrm{C}=\text { false }, \mathrm{D}=\text { false }
$$

- Satisfiability is known to be NP-complete, so in the worst case, solving CSP problems requires exponential time

Real-world problems

CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision
- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design

Definition of a constraint network (CN)

A constraint network (CN) consists of

- a set of variables $X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$
- each with associated domain of values $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots \mathrm{~d}_{\mathrm{n}}\right\}$
- the domains are typically finite
- a set of constraints $\left\{\mathrm{c}_{1}, \mathrm{c}_{2} \ldots \mathrm{c}_{\mathrm{m}}\right\}$ where
- each defines a predicate which is a relation over a particular subset of variables (X)
-e.g., C_{i} involves variables $\left\{\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \ldots \mathrm{X}_{\mathrm{ik}}\right\}$ and defines the relation $R_{i} \subseteq D_{i 1} \times D_{i 2} \times \ldots D_{i k}$

Unary and binary constraints most common

Binary constraints

T

- Two variables are adjacent or neighbors if they are connected by an edge or an arc
- It' s possible to rewrite problems with higher-order constraints as ones with just binary constraints

Formal definition of a CN

- Instantiations
-An instantiation of a subset of variables S is an assignment of a value in its domain to each variable in S
-An instantiation is legal if and only if it does not violate any constraints.
- A solution is an instantiation of all of the variables in the network.

Typical tasks for CSP

- Solutions:
-Does a solution exist?
-Find one solution
-Find all solutions
-Given a metric on solutions, find the best one
-Given a partial instantiation, do any of the above
- Transform the CN into an equivalent CN that is easier to solve.

Binary CSP

- A binary CSP is a CSP where all constraints are binary or unary
- Any non-binary CSP can be converted into a binary CSP by introducing additional variables
- A binary CSP can be represented as a constraint graph, which has a node for each variable and an arc between two nodes if and only there is a constraint involving the two variables
- Unary constraints appear as self-referential arcs

A running example: coloring Australia

- Seven variables: \{WA,NT,SA,Q,NSW,V,T\}
- Each variable has the same domain: \{red, green, blue\}
- No two adjacent variables have the same value: WA $\neq N T, W A \neq S A, N T \neq S A, N T \neq Q, S A \neq Q, S A \neq N S W$, $S A \neq V, Q \neq N S W, N S W \neq V$

A running example: coloring Australia

T

Tasmania

- Solutions are complete and consistent assignments
- One of several solutions
- Note that for generality, constraints can be expressed as relations, e.g., $\mathrm{WA} \neq \mathrm{NT}$ is
(WA,NT) in $\{($ red, green), (red,blue), (green,red), (green, blue), (blue,red),(blue,green) \}

Backtracking example

Backtracking example

Backtracking example

Backtracking example

Basic Backtracking Algorithm

CSP-BACKTRACKING(PartialAssignment a)

- If a is complete then return a
$-\mathrm{X} \leqslant$ select an unassigned variable
- $\mathrm{D} \leftarrow$ select an ordering for the domain of X
- For each value vin D do

If v is consistent with a then

- Add (X=v) to a
- result \leftarrow CSP-BACKTRACKING(a)
- If result \neq failure then return result
- Remove ($\mathrm{X}=\mathrm{v}$) from a
- Return failure

Start with CSP-BACKTRACKING($\}$)
Note: this is depth first search; can solve n-queens problems for $\mathrm{n} \sim 25$

Problems with backtracking

- Thrashing: keep repeating the same failed variable assignments
-Consistency checking can help
-Intelligent backtracking schemes can also help
- Inefficiency: can explore areas of the search space that aren't likely to succeed -Variable ordering can help

Improving backtracking efficiency

Here are some standard techniques to improve the efficiency of backtracking -Can we detect inevitable failure early?
-Which variable should be assigned next?
-In what order should its values be tried?

Forward Checking

After a variable X is assigned a value v , look at each unassigned variable Y connected to X by a constraint and delete from Y's domain values inconsistent with v

Using forward checking and backward checking roughly doubles the size of N -queens problems that can be practically solved

Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward checking

Tasmania

Forward checking

Forward checking

Constraint propagation

- Forward checking propagates info. from assigned to unassigned variables, but

Tasmania doesn't provide early detection for all failures.

- NT and SA cannot both be blue!

Definition: Arc consistency

- A constraint C_xy is said to be arc consistent wrt x if for each value v of x there is an allowed value of y
- Similarly, we define that C_xy is arc consistent wrt y
- A binary CSP is arc consistent iff every constraint C_xy is arc consistent wrt x as well as y
- When a CSP is not arc consistent, we can make it arc consistent, e.g., by using AC3
-This is also called "enforcing arc consistency"

Arc Consistency Example

- Domains

$$
\begin{aligned}
& -\mathrm{D}-\mathrm{x}=\{1,2,3\} \\
& -\mathrm{D} y=\{3,4,5,6\}
\end{aligned}
$$

- Constraint

$$
-C_{-} \mathrm{xy}=\{(1,3),(1,5),(3,3),(3,6)\}
$$

- C_xy is not arc consistent wrt x, neither wrt y. By enforcing arc consistency, we get reduced domains
$-D_{-}^{\prime} \mathrm{x}=\{1,3\}$
$-D^{\prime} _y=\{3,5,6\}$

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

Arc consistency

If X loses a value, neighbors of X need to be rechecked

Arc consistency

- Arc consistency detects failure earlier than simple forward checking
- Can be run as a preprocessor or after each assignment

General CP for Binary Constraints

Algorithm AC3
contradiction \leftarrow false
$\mathrm{Q} \leftarrow$ stack of all variables
while Q is not empty and not contradiction do $\mathrm{X} \leftarrow \operatorname{UNSTACK}(\mathrm{Q})$
For every variable Y adjacent to X do
If REMOVE-ARC-INCONSISTENCIES(X,Y) If domain (Y) is non-empty then $\operatorname{STACK}(\mathrm{Y}, \mathrm{Q})$ else return false

Complexity of AC3

- $\mathrm{e}=$ number of constraints (edges)
- $d=$ number of values per variable
- Each variable is inserted in Q up to d times
- REMOVE-ARC-INCONSISTENCY takes $\mathrm{O}\left(\mathrm{d}^{2}\right)$ time
- CP takes $\mathrm{O}\left(\mathrm{ed}^{3}\right)$ time

Improving backtracking efficiency

- Here are some standard techniques to improve the efficiency of backtracking
- Can we detect inevitable failure early?
- Which variable should be assigned next?
- In what order should its values be tried?
- Combining constraint propagation with these heuristics makes 1000 N -queen puzzles feasible

Most constrained variable

- Most constrained variable:
choose the variable with the fewest legal values

- a.k.a. minimum remaining values (MRV) heuristic
- After assigning a value to WA, NT and SA have only two values in their domains - choose one of them rather than $\mathrm{Q}, \mathrm{NSW}, \mathrm{V}$ or T

Most constraining variable

- Tie-breaker among most constrained variables
- Choose variable involved in largest \# of constraints on remaining variables

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q and NSW

Least constraining value

- Given a variable, choose least constraining value:
- the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

- Combining these heuristics makes 1000 queens feasible

Is AC3 Alone Sufficient?

Consider the four queens problem

Solving a CSP still requires search

- Search:
-can find good solutions, but must examine non-solutions along the way
- Constraint Propagation:
-can rule out non-solutions, but this is not the same as finding solutions
- Interweave constraint propagation \& search:
-Perform constraint propagation at each search step

4-Queens Problem

4-Queens Problem

4-Queens Problem

X2=3 eliminates $\{X 3=2, X 3=3, X 3=4\}$ \Rightarrow inconsistent!

4-Queens Problem

X2 $=4 \Rightarrow \mathrm{X} 3=2$, which eliminates $\{\mathrm{X} 4=2, \mathrm{X} 4=3\}$ \Rightarrow inconsistent!

4-Queens Problem

X3=2 eliminates $\{\mathrm{X} 4=2, \mathrm{X} 4=3\}$
 \Rightarrow inconsistent!

4-Queens Problem

Sudoku Example

		8	3	9	2	1		6	5	7
		6	7	3	4	5	8	8	2	1
		5	1	8	7	6		4	9	3
		4	8	1	3	2	9	9	7	6
		2	9	5	6	4	1	1	3	8
		3	6	7	9	8	2	2	4	5
		7	2	6	8	9	5	5	1	4
		1	4	2	5	3	7		6	9
		9	5	4	1	7			8	2

How can we set this up as a CSP?

Sudoku

- Digit placement puzzle on $9 x 9$ grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3×3 sub-grids must contain all nine digits

| | 1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | A

- Some initial configurations are easy to solve and some very difficult
def sudoku(initValue):
p = Problem()
\# Define a variable for each cell: $11,12,13 \ldots 21,22,23 \ldots 98,99$
for i in range $(1,10)$:
p.addVariables(range(i*10+1, $\left.\mathrm{i}^{*} 10+10\right)$, range(1,10))
\# Each row has different values
for i in range $(1,10)$:
p.addConstraint(AllDifferentConstraint(), range(i*10+1, $\left.\mathrm{i}^{*} 10+10\right)$)
\# Each colum has different values
for i in range $(1,10)$:
p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
\# Each 3×3 box has different values
p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
\# add unary constraints for cells with initial non-zero values
for i in range $(1,10)$:
for j in range $(1,10)$:
value $=$ initValue $[i-1][j-1]$
if value: p.addConstraint(lambda var, val=value: var $==$ val, ($\mathrm{i}^{*} 10+\mathrm{j}$,))
return p.getSolution()
\# Sample problems easy $=$ [
[$0,9,0,7,0,0,8,6,0]$,
[$0,3,1,0,0,5,0,2,0]$,
[$8,0,6,0,0,0,0,0,0]$,
[$0,0,7,0,5,0,0,0,6]$,
[$0,0,0,3,0,7,0,0,0]$,
[$5,0,0,0,1,0,7,0,0]$,
[$0,0,0,0,0,0,1,0,9]$,
[0,2,0,6,0,0,0,5,0],
[$0,5,4,0,0,8,0,7,0]]$
hard $=[$
[$0,0,3,0,0,0,4,0,0]$,
[$0,0,0,0,7,0,0,0,0]$,
[5,0,0,4,0,6,0,0,2],
[$0,0,4,0,0,0,8,0,0]$,
[$0,9,0,0,3,0,0,2,0]$,
[$0,0,7,0,0,0,5,0,0]$,
[$6,0,0,5,0,2,0,0,1]$,
[$0,0,0,0,9,0,0,0,0]$,
[$0,0,9,0,0,0,3,0,0]]$
very_hard $=[$
[$0,0,0,0,0,0,0,0,0]$,
[$0,0,9,0,6,0,3,0,0]$,
[$0,7,0,3,0,4,0,9,0]$,
[$0,0,7,2,0,8,6,0,0]$,
[$0,4,0,0,0,0,0,7,0]$,
[$0,0,2,1,0,6,5,0,0]$,
[$0,1,0,9,0,5,0,4,0]$,
[$0,0,8,0,2,0,7,0,0]$,
[$0,0,0,0,0,0,0,0,0]$]

Local search for constraint problems

- Remember local search?
- A version of local search exists for constraint problems
- Basic idea:
- generate a random "solution"
- Use metric of "number of conflicts"
-Modifying solution by reassigning one variable at a time to decrease metric until a solution is found or no modification improves it
- Has all the features and problems of local search

Min Conflict Example

-States: 4 Queens, 1 per column

- Operators: Move queen in its column
-Goal test: No attacks
-Evaluation metric: Total number of attacks

Basic Local Search Algorithm

Assign a domain value d_{i} to each variable v_{i} while no solution \& not stuck \& not timed out:
bestCost $\leftarrow \infty$; bestList $\leftarrow \varnothing$;
for each variable $v_{i} \mid \operatorname{Cost}\left(\operatorname{Value}\left(v_{i}\right)>0\right.$ for each domain value d_{i} of v_{i} if $\operatorname{Cost}\left(d_{i}\right)<$ bestCost bestCost $\leftarrow \operatorname{Cost}\left(d_{i}\right)$; bestList $\leftarrow d_{i}$; else if $\operatorname{Cost}\left(d_{i}\right)=$ bestCost bestList \leftarrow bestList $\cup d_{i}$
Take a randomly selected move from bestList

Eight Queens using Backtracking

Undo move

 for Queen 7 and so on...

Eight Queens using Local Search

Backtracking Performance

Local Search Performance

Min Conflict Performance

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
- Min Conflict often has astounding performance
- For example, it's been shown to solve arbitrary size (in the millions) N -Queens problems in constant time.
- This appears to hold for arbitrary CSPs with the caveat...

Min Conflict Performance

Except in a certain critical range of the ratio constraints to variables.

Famous example: labeling line drawings

- Waltz labeling algorithm - earliest AI CSP application
- Convex interior lines are labeled as +
- Concave interior lines are labeled as -
- Boundary lines are labeled as
- There are 208 labeling ($\underset{\rightarrow}{\text { most }}$ of which are impossible)
- Here are the 18 legal labeling:

Labeling line drawings II

- Here are some illegal labelings:

Labeling line drawings

Waltz labeling algorithm: propagate constraints repeatedly until a solution is found

A solution for one labeling problem

A labeling problem with no solution

K-consistency

- K-consistency generalizes arc consistency to sets of more than two variables.
- A graph is K-consistent if, for legal values of any K-1 variables in the graph, and for any Kth variable V_{k}, there is a legal value for V_{k}
- Strong K-consistency $=\mathrm{J}$-consistency for all $\mathrm{J}<=\mathrm{K}$
- Node consistency = strong 1-consistency
- Arc consistency = strong 2-consistency
- Path consistency $=$ strong 3-consistency

Why do we care?

1. If we have a CSP with N variables that is known to be strongly \mathbf{N}-consistent, we can solve it without backtracking
2. For any CSP that is strongly Kconsistent, if we find an appropriate variable ordering (one with "small enough" branching factor), we can solve the CSP without backtracking

Intelligent backtracking

- Backjumping: if V_{j} fails, jump back to the variable V_{i} with greatest i such that the constraint $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ fails (i.e., most recently instantiated variable in conflict with V_{i})
- Backchecking: keep track of incompatible value assignments computed during backjumping
- Backmarking: keep track of which variables led to the incompatible variable assignments for improved backchecking

Challenges for constraint reasoning

- What if not all constraints can be satisfied?
-Hard vs. soft constraints
- Degree of constraint satisfaction
- Cost of violating constraints
- What if constraints are of different forms?
- Symbolic constraints
- Numerical constraints [constraint solving]
- Temporal constraints
- Mixed constraints

Challenges for constraint reasoning

-What if constraints are represented intensionally?

- Cost of evaluating constraints (time, memory, resources)
- What if constraints, variables, and/or values change over time?
- Dynamic constraint networks
- Temporal constraint networks
- Constraint repair
- What if you have multiple agents or systems involved in constraint satisfaction?
- Distributed CSPs
- Localization techniques

