
1

Python 0
Some material adapted
from Upenn cmpe391
slides and other sources

Overview

•  History
•  Significance
•  Installing & Running Python
•  Simple script examples

Brief History of Python
•  Invented in the Netherlands, early 90s

by Guido van Rossum
•  Named after Monty Python
•  Open sourced from the beginning, man-

aged by Python Software Foundation
•  Considered a scripting language, but is

much more
•  Scalable, object oriented and functional

from the beginning
•  Used by Google from the beginning

Python’s Benevolent Dictator For Life

“Python is an experiment in
how much freedom program-
mers need. Too much freedom
and nobody can read another's
code; too little and expressive-
ness is endangered.”
 - Guido van Rossum

2

Python’s place in the Market
• TIOBE has been collecting

data on programming language
“popularity” for many years

• Counts results for a query like
"<language> programming” on
popular search engines

09/12 TIOBE Programming Community Index

http://python.org/

http://docs.python.org/ The Python tutorial is good!

3

Running
Python

The Python Interpreter
•  Typical Python implementations offer

both an interpreter and compiler
•  Interactive interface to Python with a

read-eval-print loop

[finin@linux2 ~]$ python
Python 2.4.3 (#1, Jan 14 2008, 18:32:40)
[GCC 4.1.2 20070626 (Red Hat 4.1.2-14)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> def square(x): return x * x
>>> map(square, [1, 2, 3, 4])
[1, 4, 9, 16]
>>>

Installing
•  Python (Cpython) is pre-installed on most Unix

systems, including Linux and OS X
•  Pre-installed version may not be most recent
•  Two “latest versions” of Cpython:

•  v2.7.3 released April 2012 and v3.2.3
•  Python 3 is a non-backward compatible

version which you should not use for 671
•  Download from http://python.org/download/
•  Python comes with a large library of standard

modules

Python IDEs and Shells
•  There are many Integrated Development

Environments
•  IDLE
•  Eclipse + PyDev
•  Emacs

•  As well as enhanced shells
•  iPython

•  Most expert Python programmers I know
use emacs

4

IDLE Development Environment
• IDLE is the “official” IDE distributed with Python
• Preinstalled on MAC OS X
• Written in Python with the Tkinter GUI package
• Multi-window text editor with syntax highlighting,

auto-completion, smart indent and other features
• Python shell with syntax highlighting, line recall, …
• Integrated debugger

with stepping, persis-
tent breakpoints,
and call stack visi-
bility

Eclipse + Pydev

•  Pydev is an Eclipse plugin for
Python

•  Download from http://pydev.org/
•  Syntax highlighting, code completion,

goto function, debugger, …

Editing Python in Emacs
•  Emacs python-mode.el has good support for editing

Python, enabled enabled by default for .py files
•  Features: completion, symbol help, eldoc, and inferior

interpreter shell, etc.

Emacs as a Python IDE

•  You can fire up a shell in emacs via M-x
python-shell

•  You can also set up a more powerful Python
IDE environment in EMACS
•  Pymacs allows two-way communication

between Emacs Lisp and Python
•  Ropemacs provides advanced features

such as completion, refactoring, etc

5

Running Interactively on UNIX
On Unix…

% python

>>> 3+3

6

•  Python prompts with ‘>>>’.
•  To exit Python (not Idle):

•  In Unix, type CONTROL-D
•  In Windows, type CONTROL-Z + <Enter>
•  Evaluate exit()

Running Programs on UNIX
•  Call python program via the python interpreter

% python fact.py

•  Make a python file directly executable by
•  Adding the appropriate path to your python

interpreter as the first line of your file
#!/usr/bin/python

•  Making the file executable
% chmod a+x fact.py

•  Invoking file from Unix command line
% fact.py

Example ‘script’: fact.py
#! /usr/bin/python

def fact(x):
 if x == 0:
 return 1
 return x * fact(x - 1)

print "\nN fact(N)"
print "---------”

for n in range(10):
 print n, fact(n)
 fact.py

Python Scripts

•  When you call a python program from the
command line the interpreter evaluates each
expression in the file

•  For output, call print or write explicitly
•  Familiar mechanisms provide command line

arguments and/or redirect input and output
•  Python has a convention to allow a python

program to act both as a script and as a
module to be imported and used by another
python program

6

Another Script Example
#! /usr/bin/python"
"

""” Reads text from stdin and outputs any email  
 addresses it finds, one to a line """"

"

import re"
from sys import stdin"
"

a regular expression for a valid email address"
pat = re.compile(r'[-\w][-.\w]*@[-\w][-\w.]+[a-zA-Z]{2,4}')"
"

for line in stdin:"
 for address in pat.findall(line):"
 print address"
" email0.py

results

python> python email0.py <email.txt"
bill@msft.com"
gates@microsoft.com"
steve@apple.com"
bill@msft.com"
python> "
"

Getting a unique, sorted list
import re"
from sys import stdin"
"

pat = re.compile(r'[-\w][-.\w]*@[-\w][-\w.]+[a-zA-Z]{2,4}’)"

found is an initially empty set (a list w/o duplicates)"
found = set()"
for line in stdin:"
 for address in pat.findall(line):"
 found.add(address)"
"

sorted() takes a sequence, returns a sorted list of its elements"
for address in sorted(found):"
 print address"
" email1.py

results

python> python email2.py <email.txt"
bill@msft.com"
gates@microsoft.com"
steve@apple.com"
python> "
"

7

Conclusion: Python is ..

•  Popular as a scripting language"
•  Popular as a general purpose language"
•  Open sourced"
•  Fast enough for most purposes"
•  Interesting from a program language

perspective"
•  Easy to learn and use, so being used in

many CS 101 courses"

"

