
Prolog and Logic
Programming

The Rule-Based Paradigm
• An important programming paradigm is to

express a program as a set of rules
• The rules are independent and often

unordered
• CFGs can be thought of as a rule based

system
• We’ll take a brief look at a particular sub-

paradigm, Logic Programming
• And at Prolog, the most successful of the

logic programming languages

History
• Logic Programming has roots going back to early

AI researchers like John McCarthy in the 50s & 60s
• Alain Colmerauer (France) designed Prolog as the

first LP language in the early 1970s
• Bob Kowalski and colleagues in the UK evolved the

language to its current form in the late 70s
•  It’s been widely used for many AI systems, but also

for systems that need a fast, efficient and clean rule
based engine

• The prolog model has also influenced the database
community – see datalog

Computation as Deduction
• Logic programming offers a slightly different

paradigm for computation: computation is logical
deduction

•  It uses the language of logic to express data and
programs.

Forall X,Y: X is the father of Y if X is a parent of Y and X is
male

• Current logic programming languages use FOL
• Prolog and other LP languages include extra features

that enable programmers to go beyond FOL (e.g.,
calling procedures, negation as failure, constraints)

Theorem Proving

• Logic Programming uses the notion of an automatic
theorem prover as an interpreter.

• The theorem prover derives a desired solution from
an initial set of axioms.

• The proof must be a "constructive" one so that more
than a true/false answer can be obtained

• E.G. The answer to ∃ X X = sqrt(16) should be
X = 4 or X = -4 rather than true

A Declarative Example
• Here’s a simple way to specify what

has to be true if X is the smallest number in a
list of numbers L

1. X has to be a member of the list L
2. There can’t be list member X2 such that X2<X

• We need to say how we determine that some
X is a member of a list

1. No X is a member of the empty list
2. X is a member of list L if it is equal to L’s head
3. X is a member of list L if it is a member of L’s

tail.

A Simple Prolog Model
Think of Prolog as a system which has a database
composed of two components:
•  facts: statements about true relations which hold

between particular objects in the world, e.g.:
parent(adam, able). % adam is a parent of able
parent(eve, able). % eve is a parent of able
male(adam). % adam is male.

•  rules: statements about relations between objects in
the world using variables to express generalizations

% X is the father of Y if X is a parent of Y and X is male
father(X,Y) :- parent(X, Y), male(X).
% X is a sibling of Y if X and Y share a parent
sibling(X,Y) :- parent(P,X), parent(P,Y)

Nomenclature and Syntax
• A prolog rule is called a clause
• A clause has a head, a neck and a body:

father(X,Y) :- parent(X,Y) , male(X) .
 head neck body

•  the head is a single predicate -- the rule's conclusion
• The body is a a sequence of zero or more predicates

that are the rule's premise or condition
• An empty body means the rule’s head is a fact.
• note:

–  read :- as IF
–  read , as AND between predicates
–  a . marks the end of input

Prolog Database

father(X,Y) :- parent(X,Y),
 male(X).
sibling(X,Y) :- ...

parent(adam,able)
parent(adam,cain)
male(adam)
...

Rules comprising the
“intensional database”

Facts comprising the
“extensional database”

Queries
• We also have queries in addition to having

facts and rules
• The Prolog REPL interprets input as queries
• A simple query is just a predicate that might

have variables in it:
–  parent(adam, cain)
–  parent(adam, X)

Extensional vs. Intensional

father(X,Y) :- parent(X,Y),
 male(X).
sibling(X,Y) :- ...

parent(adam,able)
parent(adam,cain)
male(adam)
...

Rules comprising the
“intensional database”

Facts comprising the
“extensional database”

Prolog Database The terms extensional and
intensional are borrowed from
the language philosophers use
for epistemology.

•  Extension refers to whatever extends, i.e., “is
quantifiable in space as well as in time”.

•  Intension is an antonym of extension,
referring to “that class of existence which may
be quantifiable in time but not in space.”

•  NOT intentional with a “t”, which has to do
with “will, volition, desire, plan, …”

For KBs and DBs we use
•  extensional to refer to that which is explicitly

represented (e.g., a fact), and

•  intensional to refer to that which is
represented abstractly, e.g., by a rule of
inference.

Epistemology is “a branch of philosophy
that investigates the origin, nature,
methods, and limits of knowledge”

Running prolog
• A good free version of prolog is swi-prolog
• GL has a commercial version (sicstus prolog)

you can invoke with the command “sicstus”
[finin@linux2 ~]$ sicstus
SICStus 3.7.1 (Linux-2.2.5-15-i686): Wed Aug 11 16:30:39 CEST 1999
Licensed to umbc.edu
| ?- assert(parent(adam,able)).

yes

| ?- parent(adam,P).

P = able ?

yes

| ?-

A Simple Prolog Session

| ?- assert(parent(adam,able)).
yes
| ?- assert(parent(eve,able)).
yes
| ?- assert(male(adam)).
yes
| ?- parent(adam,able).
yes
| ?- parent(adam,X).
X = able
yes

| ?- parent(X,able).
X = adam ;
X = eve ;
no
| ?- parent(X,able) , male(X).
X = adam ;
no

A Prolog Session
| ?- [user].
| female(eve).
| parent(adam,cain).
| parent(eve,cain).
| father(X,Y) :- parent(X,Y), male(X).
| mother(X,Y) :- parent(X,Y), female(X).
| ^Zuser consulted 356 bytes 0.0666673

sec.
yes
| ?- mother(Who,cain).
Who = eve
yes

| ?- mother(eve,Who).
Who = cain
yes
| ?- trace, mother(Who,cain).
 (2) 1 Call: mother(_0,cain) ?
 (3) 2 Call: parent(_0,cain) ?
 (3) 2 Exit: parent(adam,cain)
 (4) 2 Call: female(adam) ?
 (4) 2 Fail: female(adam)
 (3) 2 Back to: parent(_0,cain) ?
 (3) 2 Exit: parent(eve,cain)
 (5) 2 Call: female(eve) ?
 (5) 2 Exit: female(eve)
 (2) 1 Exit: mother(eve,cain)
Who = eve
yes

| ?- [user].
| sibling(X,Y) :-
| father(Pa,X),
| father(Pa,Y),
| mother(Ma,X),
| mother(Ma,Y),
| X \= Y.
^Zuser consulted 152 bytes 0.0500008 sec.
yes
| ?- sibling(X,Y).
X = able
Y = cain ;
X = cain
Y = able ;

trace,sibling(X,Y).
(2) 1 Call: sibling(_0,_1) ?
(3) 2 Call: father(_65643,_0) ?
(4) 3 Call: parent(_65643,_0) ?
(4) 3 Exit: parent(adam,able)
(5) 3 Call: male(adam) ?
(5) 3 Exit: male(adam)
(3) 2 Exit: father(adam,able)
(6) 2 Call: father(adam,_1) ?
(7) 3 Call: parent(adam,_1) ?
(7) 3 Exit: parent(adam,able)
(8) 3 Call: male(adam) ?
(8) 3 Exit: male(adam)
(6) 2 Exit: father(adam,able)
(9) 2 Call: mother(_65644,able) ?
(10) 3 Call: parent(_65644,able) ?
(10) 3 Exit: parent(adam,able)
(11) 3 Call: female(adam) ?
(11) 3 Fail: female(adam)
(10) 3 Back to: parent(_65644,able) ?
(10) 3 Exit: parent(eve,able)
(12) 3 Call: female(eve) ?
(12) 3 Exit: female(eve)
(9) 2 Exit: mother(eve,able)
(13) 2 Call: mother(eve,able) ?
(14) 3 Call: parent(eve,able) ?
(14) 3 Exit: parent(eve,able)
(15) 3 Call: female(eve) ?
(15) 3 Exit: female(eve)
(13) 2 Exit: mother(eve,able)
(16) 2 Call: not able=able ?
(17) 3 Call: able=able ?
(17) 3 exit: able=able
(16) 2 Back to: not able=able ?
(16) 2 Fail: not able=able
(15) 3 Back to: female(eve) ?
(15) 3 Fail: female(eve)

(14) 3 Back to: parent(eve,able) ?
(14) 3 Fail: parent(eve,able)
(13) 2 Back to: mother(eve,able) ?
(13) 2 Fail: mother(eve,able)
(12) 3 Back to: female(eve) ?
(12) 3 Fail: female(eve)
(10) 3 Back to: parent(_65644,able) ?
(10) 3 Fail: parent(_65644,able)
(9) 2 Back to: mother(_65644,able) ?
(9) 2 Fail: mother(_65644,able)
(8) 3 Back to: male(adam) ?
(8) 3 Fail: male(adam)
(7) 3 Back to: parent(adam,_1) ?
(7) 3 Exit: parent(adam,cain)
(18) 3 Call: male(adam) ?
(18) 3 Exit: male(adam)
(6) 2 Exit: father(adam,cain)
(19) 2 Call: mother(_65644,able) ?
(20) 3 Call: parent(_65644,able) ?
(20) 3 Exit: parent(adam,able)
(21) 3 Call: female(adam) ?
(21) 3 Fail: female(adam)
(20) 3 Back to: parent(_65644,able) ?
(20) 3 Exit: parent(eve,able)
(22) 3 Call: female(eve) ?
(22) 3 Exit: female(eve)
(19) 2 Exit: mother(eve,able)
(23) 2 Call: mother(eve,cain) ?
(24) 3 Call: parent(eve,cain) ?
(24) 3 Exit: parent(eve,cain)
(25) 3 Call: female(eve) ?
(25) 3 Exit: female(eve)
(23) 2 Exit: mother(eve,cain)
(26) 2 Call: not able=cain ?
(27) 3 Call: able=cain ?
(27) 3 Fail: able=cain
(26) 2 Exit: not able=cain
(2) 1 Exit: sibling(able,cain)
X = able
Y = cain
yes no
| ?-

Program files
Typically you put your assertions (fact
and rules) into a file and load it
| ?- [genesis].
{consulting /afs/umbc.edu/users/f/i/finin/home/genesis.pl...}
{/afs/umbc.edu/users/f/i/finin/home/genesis.pl consulted, 0 msec 2720 bytes}
yes
| ?- male(adam).
yes
| ?- sibling(P1, P2).
P1 = cain,
P2 = cain ? ;
P1 = cain,
P2 = able ? ;
P1 = cain,
P2 = cain ? ;
P1 = cain,
P2 = able ? ;
P1 = able,
P2 = cain ? ;
P1 = able,
P2 = able ? ;
P1 = able,
P2 = cain ? ;
P1 = able,
P2 = able ? ;
no
| ?-

[finin@linux2 ~]$ more genesis.pl

% prolog example

% facts
male(adam).
female(eve).
parent(adam,cain).
parent(eve,cain).
parent(adam,able).
parent(eve,able).

% rules
father(X,Y) :-
 parent(X,Y),
 male(X).
mother(X,Y) :-
 parent(X,Y),
 female(X).
sibling(X,Y) :-
 parent(P, X),
 parent(P, Y).
child(X, Y) :- parent(Y, X).

How to Satisfy a Goal
Here is an informal description of how Prolog
satisfies a goal (like father(adam,X)). Suppose
the goal is G:

– if G = P,Q then first satisfy P, carry any variable
bindings forward to Q, and then satiety Q.

– if G = P;Q then satisfy P. If that fails, then try to
satisfy Q.

– if G = \+ (P) then try to satisfy P. If this succeeds, then
fail and if it fails, then succeed.

– if G is a simple goal, then look for a fact in the DB that
unifies with G look for a rule whose conclusion unifies
with G and try to satisfy its body

Note
• Two basic conditions are true, which always

succeeds, and fail, which always fails.
• Comma (,) represents conjunction (i.e., and).
• Semi-colon represents disjunction (i.e., or):

grandParent(X,Y) :-
 grandFather(X,Y);
 grandMother(X,Y).

• No real distinction between rules and facts. A
fact is just a rule whose body is the trivial
condition true. These are equivalent:
– parent(adam,cain).
– parent(adam,cain) :- true.

Note
• Goals can usually be posed with any of several

combination of variables and constants:
– parent(cain,able) - is Cain Able's parent?
– parent(cain,X) - Who is a child of Cain?
– parent(X,cain) - Who is Cain a child of?
– parent(X,Y) - What two people have a

parent/child relationship?

Terms
• The term is the basic data structure in

Prolog.
• The term is to Prolog what the s-expression

is to Lisp.
• A term is either:

– a constant - e.g.
•  john , 13, 3.1415, +, 'a constant'

– a variable - e.g.
• X, Var, _, _foo

– a compound term - e.g.
•  part(arm,body)
•  part(arm(john),body(john))

Compound Terms
• A compound term can be thought of as a relation

between one or more terms:
– part_of(finger,hand)

and is written as:
–  the relation name (called the principle functor) which

must be a constant.
– An open parenthesis
– The arguments - one or more terms separated by

commas.
– A closing parenthesis.

• The number of arguments of a compound
terms is called its arity.

Term arity
f 0
f(a) 1
f(a,b) 2
f(g(a),b) 2

Lists
• Lists are so useful there is special syntax to

support them, tho they are just terms
• It’s like Python: [1, [2, 3], 4, foo]
• But matching is special

– If L = [1,2,3,4] then L = [Head | Tail] results in
Head being bound to 1 and Tail to [2,3,4]

– If L = [4] then L = [Head | Tail] results in Head
being bound to 4 and Tail to []

member
% member(X,L) is true if X is a member of list L.

member(X, [X|Tail]).
member(X, [Head|Tail]) :- member(X, Tail).

min
% min(X, L) is true if X is the smallest member
% of a list of numbers L

min(X, L) :-
 member(X, L),
 \+ (member(Y,L), Y>X).

• \+ is Prolog’s negation
operator
• It’s really “negation as

failure”
• \+ G is false if goal G can

be proven
• \+ G is true if G can not

be proven
• i.e., assume its false if

you can not prove it to be
true

Computations
• Numerical computations can be done in logic, but

its messy and inefficient
• Prolog provides a simple limited way to do

computations
•  <variable> is <expression> succeeds if <variable>

can be unified with the value produced by
<expression>

?- X=2, Y=4, Z is X+Y.
X = 2,
Y = 4,
Z = 6.

?- X=2, Y=4, X is X+Y.
false.

From Functions to Relations
• Prolog facts and rules define relations, not

functions
• Consider age as:

– A function: calling age(john) returns 22
– As a relation: querying age(john, 22) returns true,

age(john, X) binds X to 22, and age(john, X) is
false for every X ≠ 22

• Relations are more general than functions
• The typical way to define a function f with

inputs i1…in and output o is as: f(i1,i2,…in,o)

A numerical example
• Here’s how we might define the factorial relation

in Prolog.

fact(1,1).
fact(N,M) :-
 N > 1,
 N1 is N-1,
 fact(N1,M1),
 M is M1*N.

Another example:
 square(X,Y) :- Y is X*X.

def fact(n):
 if n==1:
 return 1
 else:
 n1 = n-1
 m1 = fact(n1)
 m = m1 * n
 return m

Prolog = PROgramming in LOGic
• Prolog is as much a programming language as

it is a theorem prover
• It has a simple, well defined and controllable

reasoning strategy that programmers can
exploit for efficiency and predictability

• It has basic data structures (e.g., Lists) and
can link to routines in other languages

• It’s a great tool for many problems

