Satisfaction

Russell & Norvig Ch. 5

Overview

* Constraint satisfaction offers a powerful problem-
solving paradigm

— View a problem as a set of variables to which we have
to assign values that satisfy a number of problem-
specific constraints.

— Constraint programming, constraint satisfaction
problems (CSPs), constraint logic programming...

* Algorithms for CSPs
— Backtracking (systematic search)
— Constraint propagation (k-consistency)
— Variable and value ordering heuristics
— Backjumping and dependency-directed backtracking

Motivating example: 8 Queens

Place 8 queens on a chess board such
That none is attacking another.

Generate-and-test, with no
redundancies > “only” 88 combinations

8**8is 16,777,216

Motivating example: 8-Queens

What more do we need for 8 queens?

* Not just a successor function and goal test
* But also

—a means to propagate constraints
imposed by one queen on the others

—an early failure test

—> Explicit representation of constraints and
constraint manipulation algorithms

Informal definition of CSP

* CSP = Constraint Satisfaction Problem, given
(1) a finite set of variables
(2) each with a domain of possible values (often finite)

(3) a set of constraints that limit the values the
variables can take on

* A solution is an assignment of a value to each variable
such that the constraints are all satisfied.

* Tasks might be to decide if a solution exists, to find a
solution, to find all solutions, or to find the “best

solution” according to some metric (objective
function).

Example: 8-Queens Problem

* Eight variables Xi, 1 = 1..8 where Xi is the row
number of queen in column i

* Domain for each variable {1,2,...,8}
* Constraints are of the forms:
—Not on same row:
Xi=k=> Xj=k forj=1.8, j=i
—Not on same diagonal
Xi=ki, Xj=kj =>|i-j| =| ki - kj| forj =1..8, j=i

Example: Task Scheduling

TZ/ Tl\\m
et

Examples of scheduling constraints:
*T1 must be done during T3

*T2 must be achieved before T1 starts
*T2 must overlap with T3

*T4 must start after T1 is complete

Example: Map coloring

Color the following map using three colors
(red, green, blue) such that no two adjacent
regions have the same color.

E

Map coloring

 Variables: A, B, C, D, E all of domain RGB

* Domains: RGB = {red, green, blue}

* Constraints: A=B, A=zC, A=E, A=D,B=C, C =
D,D=E

* A solution: A=red, B=green, C=blue, D=green,
E=blue

E
D| A ==

Brute Force methods

*Finding a solution by a brute force solve(A,B,C,D,E) :-

; lor(A),

search is easy §§1§§EB§
—Generate and test is a weak method color(C),

. . color(D),

—Just generate potential combinations and color(E),
test each not(A=B),
. . . not(A=B),
* Potentially very inefficient no(B=C),
not(A=C),

—With n variables where each can have one c=p),
of 3 values, there are 3" possible solutions not(A=E),
to check (=D

* There are ~190 countries in the world, color(red).
. . color(green).
which we can color using four colors coior(blue).

*419 ig a big number!

4**190 is 2462625387274654950767440006258975862817483704404090416746768337765357610718575663213391640930307227550414249394176L

Example: SATisfiability

*» Given a set of propositions containing variables,
find an assignment of the variables to {false, true}
that satisfies them.

* For example, the clauses:
—(AvBv-=C)a(=-AvD)
—(equivalentto (C—=A)v(BAaD—A)
are satisfied by
A = false, B =true, C = false, D = false
» Satisfiability is known to be NP-complete, so in the

worst case, solving CSP problems requires
exponential time

Real-world problems

CSPs are a good match for many practical problems that arise in
the real world

* Scheduling * Graph layout

» Temporal reasoning » Network management
* Building design * Natural language

¢ Planning processing

* Optimization/satisfaction * Molecglar biology /

« Vision genomics

» VLSI design

Definition of a constraint network (CN)

A constraint network (CN) consists of

* a set of variables X = {x|, x,, ... X, }
—each with associated domain of values {d,,d,,...d,}
—the domains are typically finite

* a set of constraints {c,, c, ... c,,} where

—each defines a predicate which is a relation over a
particular subset of variables (X)

—e.g., C; involves variables {X,,, X,,, ... X, } and
defines the relation R; € D;; x D;, x ... Dy

Unary and binary constraints most common

Binary constraints

« Two variables are adjacent or neighbors if they
are connected by an edge or an arc

- It’ s possible to rewrite problems with higher-order
constraints as ones with just binary constraints

Formal definition of a CN

* [nstantiations

—An instantiation of a subset of variables S
is an assignment of a value in its domain to
each variable in S

—An instantiation is legal if and only if it
does not violate any constraints.
* A solution is an instantiation of all of the
variables in the network.

Typical tasks for CSP

* Solutions:
—Does a solution exist?
—Find one solution
—Find all solutions
—Given a metric on solutions, find the best one
—Given a partial instantiation, do any of the above
* Transform the CN into an equivalent CN
that is easier to solve.

Binary CSP

* A binary CSP is a CSP where all constraints are
binary or unary

* Any non-binary CSP can be converted into a binary
CSP by introducing additional variables

* A binary CSP can be represented as a constraint
graph, which has a node for each variable and an
arc between two nodes if and only there is a
constraint involving the two variables

—Unary constraints appear as self-referential arcs

A running example: coloring Australia

Tasmania

¢ Seven variables: {WA,NT,SA,Q,NSW,V, T}
¢ Each variable has the same domain: {red, , blue}
¢ No two adjacent variables have the same value:
WA=NT, WA=SA, NT=SA, NT=Q, SA=Q, SA=NSW,
SA=V,Q=NSW, NSW=V

A running example: coloring Australia

Tasmania

* Solutions are complete and consistent assignments
* One of several solutions
* Note that for generality, constraints can be expressed

as relations, e.g., WA # NT is
(WA,NT) in {(red,green), (red,blue), (green,red), (green,blue),
(blue,red),(blue,green)}

Backtracking example

5

Backtracking example

Backtracking example

R

A/;\
o ¢

/\

L SO S

Backtracking example

R

—F —
 SCR SER ST
—
e f
— T~

< &

Basic Backtracking Algorithm

CSP-BACKTRACKING(Partial Assignment a)
— If a is complete then return a
— X € select an unassigned variable
— D < select an ordering for the domain of X
— For each value v in D do

If v is consistent with a then
— Add(X=v)toa
— result € CSP-BACKTRACKING(a)

— If result # failure then return result
— Remove (X=v) from a

— Return failure
Start with CSP-BACKTRACKING({})

Note: this is depth first search; can solve n-queens problems
forn ~25

Problems with backtracking

* Thrashing: keep repeating the same failed
variable assignments

—Consistency checking can help

—Intelligent backtracking schemes can also
help

Inefficiency: can explore areas of the search
space that aren’t likely to succeed

—Variable ordering can help

Improving backtracking efficiency

Here are some standard techniques to
improve the efficiency of backtracking

—Can we detect inevitable failure early?
—Which variable should be assigned next?
—In what order should its values be tried?

Forward Checking

After a variable X is assigned a value v, look at each
unassigned variable Y connected to X by a constraint
and delete from Y’s domain values inconsistent with v

Using forward checking and backward checking
roughly doubles the size of N-queens problems that
can be practically solved

Forward checking

S

WA NT Q NSW v sA T
(MPEErEErEECE (B E RO E[E]

* Keep track of remaining legal values for
unassigned variables

» Terminate search when any variable has no legal
values

wwwww
uuuuuuu

Forward checking

g

WA NT Q NSW v sA T
(ErEErEEEENE BN BN BN
(m] PeErE[mrE[EeE] PE[ErnE]

wwwww
uuuuuuu

Forward checking

S SSE S

WA NT Q NSW \' SA T
TR IR I I Irerirel
(m] "EErEErE[EeE] PE[EEE]
1 EH[e m[Es] E[ET]

wwwww
uuuuuuu

Forward checking

S - =-i =

(e EEr e[E[E e[E[E Y]
(m] "EErEErE[EeE] PE[EOE]
. E[e EErE 1]
[— (1 [—]

Constraint propagation

wwwww
uuuuuu

* Forward checking propagates info.
from assigned to unassigned variables, but = . "
doesn't provide early detection for all failures.

* NT and SA cannot both be blue!

ESEN SSha o~

WA NT Q NSW v SA T
(mrE[erE[erE[erE[erE[E e E[E]
[— EErE[mE[E]]
[— | m[ae m[mrE] H[E " E]

Definition: Arc consistency

* A constraint C_xy is said to be arc consistent wrt
x if for each value v of x there is an allowed value
ofy

* Similarly, we define that C_xy is arc consistent
wrt'y

* A binary CSP is arc consistent iff every constraint
C xy is arc consistent wrt x as well as y

* When a CSP is not arc consistent, we can make it
arc consistent, e.g., by using AC3

—This is also called “enforcing arc consistency”

Arc Consistency Example

* Domains
-D x={1,2,3}
-D y={3,4,5,6}
* Constraint
—C_xy={(1,3),(1,5), (3,3), (3,6)}
» C_xy is not arc consistent wrt x, neither wrt y. By
enforcing arc consistency, we get reduced domains

-D' x={1, 3}
-D' y={3, 5, 6}

uuuuuuuu

arc consistent

* X =Y is consistent iff for every value x of X
there is some allowed y

SSEN S~ S~

WA NT Q NSW v sA T
(_— | 1| |m mmaE| 11

~¢—

Arc consistency

wwwww

* Simplest form of propagation makes each :
arc consistent

* X =Y is consistent iff for every value x of X
there is some allowed y

SSEN SR S~

WA NT Q NSW v SA T
[— u| I (11 EEuE|

W

Arc consistency .

uuuuuuu

S SSh S

WA NT Q NSW \' SA T

(— (11 I _o_aE 1 HEoE|

&

If X loses a value, neighbors of X need to be
rechecked

Arc consistency

* Arc consistency detects failure earlier than simple
forward checking

* Can be run as a preprocessor or after each assignment

SSEA Sl o~
ILI NT.I: Q |I.Msv;(]):v.I SAXI.T.I

S ——

General CP for Binary Constraints

Algorithm AC3
contradiction € false
Q < stack of all variables
while Q is not empty and not contradiction do
X & UNSTACK(Q)
For every variable Y adjacent to X do
If REMOVE-ARC-INCONSISTENCIES(X,Y)
If domain(Y) is non-empty then STACK(Y,Q)
else return false

Complexity of AC3

» ¢ = number of constraints (edges)

* d = number of values per variable

» Each variable is inserted in Q up to d times
REMOVE-ARC-INCONSISTENCY takes O(dz)
time

* CP takes O(ed?) time

Improving backtracking efficiency

* Here are some standard techniques to
improve the efficiency of backtracking
— Can we detect inevitable failure early?
— Which variable should be assigned next?
— In what order should its values be tried?
* Combining constraint propagation with these
heuristics makes 1000 N-queen puzzles
feasible

wwwww
uuuuuuuu

Most constrained variable

* Most constrained variable:
choose the variable with the fewest legal values

ESEN SSEa SSae oS

* a.k.a. minimum remaining values (MRYV)
heuristic

* After assigning a value to WA, NT and SA have
only two values in their domains — choose one of
them rather than Q, NSW, Vor T

uuuuuuuuuuuuuu

Most constraining variable (=

Victoria

* Tie-breaker among most constrained variables

........

* Choose variable involved in largest # of constraints on
remaining variables

 After assigning SA to be blue, WA, NT, Q, NSW and
V all have just two values left.

* WA and V have only one constraint on remaining
variables and T none, so choose one of NT, Q and
NSW

Least constraining value

* Given a variable, choose least constraining
value:
—the one that rules out the fewest values in the

remaining variables
‘\g% Allows 1 value for SA

— —d°
SR S

» Combining these heuristics makes 1000
queens feasible

Is AC3 Alone Sufficient?

Consider the four queens problem

Solving a CSP still requires search

* Search:
—can find good solutions, but must examine
non-solutions along the way
* Constraint Propagation:

—can rule out non-solutions, but this is not
the same as finding solutions

* Interweave constraint propagation & search:

—Perform constraint propagation at each
search step

X1 X2
Ly 3 4 (1,2,3,4) (1,2,3,4)
1
2
3
4 X3 X4
{1,2,3,4} {1,2,3,4}
12 3 4
1
2
3
4
12 3 4 /’m
1 1 1
2 2 2
3 3 3
4 4 4

4-Queens Problem 4-Queens Problem

X1 X2 X1 X2
{1I213I4} {1121314} 1 2 3 4 {1l2l3l4} { A 1314}

X3 X4 X3 X4
{1,2,3,4} {1,2,3,4} {2 4 {23}
4-Queens Problem 4-Queens Problem
X1 X2 X1 X2
{112I3I4} { I 1314} {1I2I3I4} { r 7 I4}
X3 X4 X3 X4
{ IZI 14} { 12131 } { l2l I4} { I213I }
X2=3 eliminates { X3=2, X3=3, X3=4 } X2=4 = X3=2, which eliminates { X4=2, X4=3}
=> inconsistent! => inconsistent!

4-Queens Problem

X1 X2
{1I213I4} { ror 14}
X3 X4

{2 .} {r 3

X3=2 eliminates { X4=2, X4=3}
= inconsistent!

4-Queens Problem

X1 X2
{1l2I3I4} { ror 14}
X3 X4

{lll} {I2I3I}

1

4-Queens Problem

X1 X2
2 3 4 { 121314} {112I3I4}
X3 X4

{1,2,3,4} {1,2,3,4}

1

4-Queens Problem

X1 X2

2 3 4 { 121314} { rr 14}
X3 X4

{11 l3l } {11 1314}

4-Queens Problem 4-Queens Problem

X1 X2 X1 X2
1 2 3 4 { 121314} { rr 14} 1 2 3 4 { 121314} { rr 14}

X3 X4 X3 X4
{1III} {1I I3I4} {1lll} {II3I}
Sudoku Example
4-Queens PrOblem 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
A 3 T2] T a[4T8]3 o] 21]6][5]7
ap 3] [5 1 s[ol6]7]3]4]5]8]2]1
X1 X2
{ 23,4 (T a c 118] Te]4 cl2l5] 18] 7]6l4]0]3
1 2 3 4 D s[1] T2]9 o[sT4]sT1]3]2]o]7]6
el7 8 e[7]2]o]5]6l4]1]3]8
F ol 7] 18]2 rli]3le]7]o]8]2]4]5
£ 2[6] To[5 e[3]7]2T6l8]ol5]1]4
H|8 2 13 9 w814l 2]5]3]7]6]9
{1X3} {X43} . s| [1] 13 elolslali]7]3]38]2
How can we set this up as a CSP?

def sudoku(initValue):
p = Problem() # Sample problems
k # Define a variable for each cell: 11,12,13...21,22,23...98,99 ey =l
uaoku for in range(1, 10): [0,9,0,7,0,0,8,6,0],
s [0.3,1,0,0,5,0,2,0],
p.addVariables(range(i*10+1, i*10+10), range(1, 10)) [8,0,6.00.0.0,0.0]
* Digit placement puzzle on 9x9 grid with unique answer # Each row has different values 10070500061,
gip p g q ach row has different values ———[0,07,0,5,0,0,04 b
for i in range(1, 10) : [0,0,0,3,0,7,0,0,0],
. I p.addConstraint(AllDifferentConstraint(), range(i* 10+1, i*10+10)) [5,0,0,0,1,0,7,0,0],
* Given an initial partlally filled grlda fill remaining # Each colum has different values [0,0,0,0,0,0,1,0,9],
1 1o t‘ﬁr for i in range(1, 10) : [0,2,0,6,0,0,0,5,01,
squares Wlth a dlglt be cen 1 and 9 p.addConstraint(AllDifferentConstraint(), range(10+i, 100+, 10)) [0.5.,4,0,0,8,0,7.0]]
. . . # Each 3x3 box has different values ——

¢ Each COlumn, row, and nine 3x3 Sub-grlds must contain p.addConstraint(AlIDifferentConstraint(), [11,12,13,21,22,23,31,32,33]) [0,0,3,0,0,0,4,0,0],
. .. p.addConstraint(AlIDifferentConstraint(), [41,42,43,51,52,53,61,62,63]) [0,0,0,0,7,0,0,0,0],
all nine dlgltS p.addConstraint(AlIDifferentConstraint(), [71,72,73,81,82,83,91,92,93]) [5,0.0.4,0,6,0,0,2],
[0.0.4,0,0,0.8,0,0],
U L] p.addConstraint(AlIDifferentConstraint(), [14,15,16,24,25,26,34,35,36]) [0,9,0,0,3,0,0,2,0],
» 31 121 16 AAgsislolalifels|7 p.addConstraint(AlIDifferentConstraint(), [44,45,46,54,55,56,64,65,66]) [0,0,7,0,0,0,5,0,0],
519 3]s 1 slofe]7f3]4fs)8f2]1 p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96]) [6,0,0,5,0,2,0,0,1],
o 18] 64 cl25 I8 el4]013 [0,0,0,0,9,0,0,0,0],
° 811y 1219 ofs5[{4[8f1]3[209]7]6 p.addConstraint(AlIDifferentConstraint(), [17,18,19,27,28,29,37,38,39]) 0,0.9,0,0,0,3,0,0]]

[z 8 725 64133 p.addConstraint(AlIDifferentConstraint(), [47,48,49,57,58,59,67,68,69]) very_hard =
" 617 812 FLLf3]6)7]9]|8]2[4]5 p.addConstraint(AlIDifferentConstraint(), [77,78,79,87,88,89,97,98,99]) [0,0,0,0,0,0,0,0,0],
G 216 915 c|3]7[2]6[8]9)5]1]4 10,0,9,0,6,0,3,0,0],
H8 2 3 9 wlsf1]4]2[5]3]7[6]9 # add unary constraints for cells with initial non-zero values [0,7,0,3,0,4,0,9,0],
! 5 1 3 rl6f9]s5f4l1]703]18]2 for i in range(1, 10) : [0.0,7,2,0,8,6,0,0],
for j in range(1, 10): {gyg,(z),(;,g,g,g,g,g},
11t . e = initvalwefi-iiey,. . 100.2,1,0,6,5.0 5
* Some initial configurations are easy to solve and yatve, Vel 11 [009.0.504.0]
: y . y . [0,0,8,0,2,0,7,0,0],
some very difficult p.addConstraint(lambda var, val=value: var = val, (i*10+},)) [0.0.0.0,0,0,00.0]

return p.getSolution()

Local search for constraint problems Min Conflict Example

« Remember local search? -States: 4 Queens, 1 per column

* A version of local search exists for constraint *Operators: Move queen in its column
problems -Goal test: No attacks

* Basic idea: -Evaluation metric: Total number of attacks
—generate a random “solution”

—Use metric of “number of conflicts”
—Modifying solution by reassigning one variable at
a time to decrease metric until a solution is found |:>
or no modification improves it
* Has all the features and problems of local

search

Basic Local Search Algorithm

Assign a domain value d, to each variable v,
while no solution & not stuck & not timed out:
bestCost <— «; bestList < J;

for each variable v;| Cost(Value(v,) > 0
for each domain value d; of v,
if Cost(d;) < bestCost
bestCost <— Cost(d)); bestList <— d;
else if Cost(d,) = bestCost
bestList <— bestList U d,
Take a randomly selected move from bestList

Eight Queens using Backtracking

Undo move
for Queen 7

and so on...

X %

Eight Queens using Local Search

Answer Found

Backtracking Performance

5000 T

4000 T

3000 T

2000 T

Time in seconds

1000 T

0+t
0 4

8

[T RS R)
=ttt

12 16 20 24 28 32
Number of Queens

Local Search Performance

2500 T
2000
1500 T

1000 T

Time in seconds

500 T

0 f | f !
0 5000 10000 15000 20000
Number of Queens

Min Conflict Performance

* Performance depends on quality and
informativeness of initial assignment;
inversely related to distance to solution

* Min Conflict often has astounding
performance

» For example, it’s been shown to solve
arbitrary size (in the millions) N-Queens
problems in constant time.

* This appears to hold for arbitrary CSPs with
the caveat...

Min Conflict Performance

Except in a certain critical range of the ratio
constraints to variables.

Famous example: labeling line drawings

» Waltz labeling algorithm — earliest AT CSP application
— Convex interior lines are labeled as +
— Concave interior lines are labeled as —
— Boundary lines are labeled as
* There are 208 labeling (most of which are impossible)
* Here are the 18 legal labeling:

Wb Y Y =

Labeling line drawings II

* Here are some illegal labelings:

Labeling line drawings

Waltz labeling algorithm: propagate constraints
repeatedly until a solution is found

A solution for one A la.beling problem
labeling problem with no solution

K-consistency

» K-consistency generalizes arc consistency to
sets of more than two variables.

— A graph is K-consistent if, for legal values of
any K-1 variables in the graph, and for any Kth
variable V|, there is a legal value for V.

* Strong K-consistency = J-consistency for all
J<=K

* Node consistency = strong 1-consistency
* Arc consistency = strong 2-consistency
* Path consistency = strong 3-consistency

Why do we care?

1. If we have a CSP with N variables that
is known to be strongly N-consistent,
we can solve it without backtracking

2. For any CSP that is strongly K-
consistent, if we find an appropriate
variable ordering (one with “small
enough” branching factor), we can
solve the CSP without backtracking

Intelligent backtracking

* Backjumping: if V; fails, jump back to the
variable V, with greatest 1 such that the
constraint (V;, V;) fails (i.e., most recently
instantiated variable in conflict with V;)

* Backchecking: keep track of incompatible
value assignments computed during
backjumping

* Backmarking: keep track of which
variables led to the incompatible variable
assignments for improved backchecking

Challenges for constraint reasoning

* What if not all constraints can be satistied?
—Hard vs. soft constraints
—Degree of constraint satisfaction
—Cost of violating constraints

» What if constraints are of different forms?
—Symbolic constraints
—Numerical constraints [constraint solving]
—Temporal constraints
—Mixed constraints

Challenges for constraint reasoning

» What if constraints are represented intensionally?
— Cost of evaluating constraints (time, memory, resources)
* What if constraints, variables, and/or values change
over time?
— Dynamic constraint networks
— Temporal constraint networks
— Constraint repair
* What if you have multiple agents or systems
involved in constraint satisfaction?
— Distributed CSPs
— Localization techniques

