Informed

Search
Chapter 4 (a)

Some material adopted from notes
by Charles R. Dyer, University of
Wisconsin-Madison

Today’ s class

Heuristic search

Best-first search

—Greedy search

—Beam search

—A, A*

—Examples

Memory-conserving variations of A*
Heuristic functions

Big idea: heuristic

Merriam-Webster's Online Dictionary
Heuristic (pron. \hyu- "ris-tik\): adj. [from Greek heuriskein to discover.]
involving or serving as an aid to learning, discovery, or problem-solving
by experimental and especially trial-and-error methods

The Free On-line Dictionary of Computing (15Feb98)
heuristic 1. <programming> A rule of thumb, simplification or educated
guess that reduces or limits the search for solutions in domains that are
difficult and poorly understood. Unlike algorithms, heuristics do not
guarantee feasible solutions and are often used with no theoretical
guarantee. 2. <algorithm> approximation algorithm.

From WordNet (r) 1.6
heuristic adj 1: (computer science) relating to or using a heuristic rule 2:
of or relating to a general formulation that serves to guide investigation
[ant: algorithmic] n : a commonsense rule (or set of rules) intended to
increase the probability of solving some problem [syn: heuristic rule,
heuristic program]

Informed methods add
domain-specific information

Add domain-specific information to select the
best path along which to continue searching
Define a heuristic function, h(n), that estimates
the “goodness” of a node n.

* Specifically, h(n) = estimated cost (or distance) of

minimal cost path from n to a goal state.

* The heuristic function is an estimate, based on

domain-specific information that is computable
from the current state description, of how close
we are to a goal

Heuristics

* All domain knowledge used in the search is encoded
in the heuristic function, h().
* An example of a “weak method” due to limited way
domain-specific information is used to solve problem
* Examples:
— Missionaries & Cannibals: # people on starting river bank
— 8-puzzle: number of tiles out of place
— 8-puzzle: sum of distances each tile is from its goal position
* In general:
— h(n) >=0for all nodes n
— h(n) =0 implies that n is a goal node
— h(n) = o= implies n is a dead-end that can’t lead to a goal

Weak vs. strong methods

* Weak methods are extremely general methods not
tailored to a specific situation or domain

* Examples of weak methods include
— Means-ends analysis: represent current situation & goal
and then seek ways to shrink the differences between
them
— Space splitting: list the possible solutions to a problem
and then try to rule out classes of these possibilities
— Subgoaling: split a large problem into several smaller
ones that can be solved one at a time
* Called “weak” methods because they don’t use more
powerful domain-specific heuristics

Heuristics for 8-puzzle

123
Current
State S
7 8
The number of
misplaced tiles
: . 123
(not including Goal
the blank) State 4
718

In this case, only “8” is misplaced, so the heuristic
function evaluates to 1.

In other words, the heuristic is telling us, that it thinks a
solution might be available in just 1 more move.

Heuristics for 8-puzzle

Manhattan 3/2|8 3|=|3
. Current
Distance (not State 4156 2 spaces
including the
blank)
- 8
23
Goal A 3 spaces
State
8
8 S
1 4=
+ In this case, only the “3”, “8” and “1” tiles are 1 3
misplaced, by 2, 3, and 3 squares respectively, so spaces
the heuristic function evaluates to 8. 1

* In other words, the heuristic is telling us, that it
thinks a solution is available in just 8 more moves.
+ The misplaced heuristic’ s value is 3. Total 8

1]2]3 h(n)
48 —
7,65
— ™~
We can use e 213
heuristics to guide 418,316 148 514
7,65 716
search. \
1/213
. 8513
In this s
hill climbing S
1213 1/2]3
example, the alslslq4 |« [s]2
Manhattan Distance — t=s
heuristic helps us trs] frafs 3 NE
: 4.5 4.5 4/2/513
qHICkly ﬁnda’ 7,86 7/8|6 7/8|6
solution to the 8- = =
1(2]3 12
puzzle. goal|+/s so |4/s3]2
78 7/8|6

1,23 hin
In this example, 4 5|8 — ™
hill climbing does 6|7
not work! / \
All the nodes on 3 123
the fringe are
taking a step 817 4.5 5
“backwards” 6 7 6|78
(local minima)

N

Note th?.t this 12 3 1 2
puzzle is solvable
in just 12 more 4 516 | 4|5 3
steps. 678 678

Best-first search

* A search algorithm that optimizes depth-
first search by expanding most promising
node chosen according to some rule

* Order nodes on the nodes list by
increasing value of an evaluation function,
f(n), that incorporates domain-specific
information in some way

* This is a generic way of referring to the
class of informed methods

Greedy best first search search

* Uses evaluation function f(n) = h(n),
sorting nodes by increasing values of f

* Selects node to expand appearing
closest (i.e., “greedy”) to a goal (i.e.,

select node with smallest f value)

* Not complete

* Not admissible, as in the example

— Assuming all arc costs are one, then
greedy search will find goal g, which has

a solution cost of five

— However, the optimal solution is the
path to goal with cost three

©
b=2(b) (h) =
h=1(¢) @ h=1

Beam search

* Use an evaluation function f(n), but the maximum
size of the nodes list is k, a fixed constant

* Only keeps k best nodes as candidates for
expansion, and throws the rest away

+ kis the “beam width”

* More space efficient than greedy search, but may
throw away a node that is on a solution path

* As k increases, beam search approaches best first
search

* Not complete
* Not admissible (optimal)

Algorithm A

* Use as an evaluation function
f(n) = g(n) + h(n)
* g(n) = minimal-cost path from the
start state to state n

* g(n) term adds a “breadth-first”
component to the evaluation function

* Ranks nodes on search frontier by
estimated cost of solution from start
node through the given node to goal

* Not complete if h(n) can equal infinity
* Not admissible (optimal) g(d)=4
h(d)=9

Cis chosen
next to expand

Algorithm A

1 Put the start node S on the nodes list, called OPEN

2 If OPEN is empty, exit with failure

3 Select node in OPEN with minimal f(n) and place on CLOSED
4 If nis a goal node, collect path back to start and stop

5 Expand n, generating all its successors and attach to them
pointers back to n. For each successor n' of n

11f n'is not already on OPEN or CLOSED
eputn'on OPEN
e compute h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n")

21f n'is already on OPEN or CLOSED and if g(n') is lower for the
new version of n', then:
* Redirect pointers backward from n’ on path with lower g(n’)
* Put n' on OPEN

Algorithm A*

« “Astar”

* Described by Hart and Nilsson in 1968

* Algorithm A with constraint that h(n) <= h*(n)

* h*(n) = true cost of the minimal cost path fromnto a
goal

* his admissible when h(n) <= h*(n) holds

* Using an admissible heuristic guarantees that the first
solution found will be an optimal one

* A*is complete whenever the branching factor is finite,
and every operator has a fixed positive cost

* A*is admissible

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths". [EEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100-107.

Some observations on A

* Perfect heuristic: If h(n) = h*(n) for all n, then only the

nodes on the optimal solution path will be expanded. So,

no extra work will be performed

Null heuristic: If h(n) = 0 for all n, then this is an

admissible heuristic and A* acts like uniform-cost search

Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal

nodes, then h2 is a better heuristic than hl

—If A1* uses h1, and A2* uses h2, then every node
expanded by A2* is also expanded by A1*

—i.e., Al expands at least as many nodes as A2*
—We say that A2* is better informed than A1*
* The closer h to h*, the fewer extra nodes expanded

Example search space

start state

parent pointer

arc cost

h value

goal state

Example
n g(n) h(n) f(n) h*n)
S 8 8 9
A 1 8 9 9
B 5 4 9 4
c 8 3 n 5
D 4 inf inf inf
E 8 inf inf inf
G 9 0 9 0

* h*(n) is the (hypothetical) perfect heuristic (an
oracle)

* Since h(n) <= h*(n) for all n, h is admissible
(optimal)
* Optimal path =S B G with cost 9

Greedy search

f(n) = h(n)
node expanded nodes list
{ s(8) 1}
S { C(3) B(4) A(8) }
C { G(0) B(4) A(8) }
G { B(4) A(8) }

* Solution path found is S C G, 3 nodes expanded.
* See how fast the search is!! But it is NOT optimal.

A* search
f(n) = g(n) + h(n)
node exp. nodes list
5(8) }

A(9) B(9) C(11) }

B(9) G(10) C(11) D(inf) E(inf) }
G(9) G(10) C(11) D(inf) E(inf) }
C(11) D(inf) E(inf) }

Q w P n
P N .

* Solution path found is S B G, 4 nodes expanded..
* Still pretty fast. And optimal, too.

Proof of the optimality of A*
* Assume that A* has selected G2, a goal state
with a suboptimal solution, i.e., g(G2) > f*
* We show that this is impossible
— Choose a node n on the optimal path to G
— Because h(n) is admissible, f* >=f(n)
— If we choose G2 instead of n for expansion, then
f(n) >=f(G2).
— This implies f* >=f(G2).
— G2 is a goal state: h(G2) =0, f(G2) = g(G2).
— Therefore f* >= g(G2)
— Contradiction

Dealing with hard problems

* For large problems, A* may require too much space
* Two variations conserve memory: IDA* and SMA*
* IDA* -- iterative deepening A* -- uses successive
iteration with growing limits on f, e.g.
— A* but don’ t consider any node n where f(n) >10
— A* but don’ t consider any node n where f(n) >20
— A* but don’ t consider any node n where f(n) >30, ...
* SMA* -- Simplified Memory-Bounded A*

— uses a queue of restricted size to limit memory
use

On finding a a good heuristic

* If h1(n) < h2(n) <= h*(n) for all n, h2 is better than
(dominates) h1

* Relaxing the problem: remove constraints to create a
(much) easier problem; use the solution cost for this
problem as the heuristic function

* Combining heuristics: take the max of several
admissible heuristics: still have an admissible heuristic,
and it’ s better!

* Use statistical estimates to compute g; may lose
admissibility

* Identify good features, then use a learning algorithm to
find a heuristic function; also may lose admissibility

In-class Exercise: Creating Heuristics

Missionaries and

8-Puzzle Cannibals

(s)] BB }géé
Missionary3

E lI‘ lz‘ Canniball és

BB OB == ?ﬁé

N-Queens Water Jug Problem

Remove 5
Sticks

Route Planning

35
FRANCE %

Summary: Informed search

* Best-first search is general search where the minimum-
cost nodes (w.r.t. some measure) are expanded first

* Greedy search uses minimal estimated cost h(n) to the
goal state as measure; reduces search time, but is
neither complete nor optimal

* A* search combines uniform-cost search and greedy
search: f(n) = g(n) + h(n). A* handles state repetitions
and h(n) never overestimates
—A* is complete and optimal, but space complexity is high.
—The time complexity depends on the quality of the heuristic

function.
—IDA* and SMA* reduce the memory requirements of A*.

