Logic Programming and Constraint Logic Programming

JACQUES COHEN

Brandeis University (jc@cs.brandeis.edu)

Logic programming is a language para-
digm based on logic, more specifically on
resolution theorem proving in the pred-
icate calculus as proposed in Robinson
[1965]. Robinson had the foresight to
distinguish the importance of two com-
ponents in automatic theorem proving:
a single inference rule called resolution
and the testing for equality of trees
called unification. Resolution is an in-
ference step used to prove the validity of
predicate calculus formulas expressed
as clauses. In its simplest version: P \/
@ and -P \/ R imply @ \/ R, which is
called the resolvant. Unification is the
matching of terms used in a resolution
step. It consists of testing the satisfi-
ability of the equality of terms (i.e.,
labeled trees) whose leaves may contain
variables. For example, the unification
of the terms p(X, ¢(Z, a)) and p(b, q(a,
Y)) succeeds, yielding the bindings X =
b,Z=aqa,and Y = a.

Prolog, the main representative of LP,
consists of a sequence of Horn clauses.
A Horn clause is one containing (at
most) one positive literal. The term def-
inite clause is used to denote a clause
with exactly one positive literal. Prolog
programs can be viewed as a set of
definite clauses in which the positive
literal is the head of the rule and the
negative literals constitute the body or
tail of the rule. From a procedural point
of view, a head corresponds to the defi-
nition of a Boolean function whose body
consists of conjunctions of calls to the
Boolean functions representing the tail
[Kowalski 1979].

A quintessential example of a Prolog

program is that of append. It consists of
two Horn clauses specifying that list L3
is the concatenation of two lists, L1 and
L2:

append (L1, L2, L3) :-L1 = nil, L2 = L3.
append (L1, L2, L3) :-L1 = cons (H, T),
L3 = cons (H, Z), append (T, L2, Z).

The capital letters correspond to vari-
ables; cons is a term; the equal sign
corresponds to a unification, a comma to
a Boolean “and,” and the “:-” to a (re-
verse) implication.

In a logical reading, a query @ is
either deducible or not from a set of
clauses P; if it is, then variables appear-
ing in the query are specified by the
resulting unifications. In a procedural
interpretation, a query consists of an
actual “call.” For example, the query
append (X1, X2, [a, b]) provides all lists
X1 and X2 that, when appended, result
in the list [a, b]. This is accomplished by
a nondeterministic exploration of the
search space.

A good reference on the theoretical
foundations of LP is Lloyd [1987]. Ster-
ling and Shapiro [1994] is a recom-
mended introductory text.

Constraint logic programming (CLP)
languages are LP languages in which
unification is replaced by constraint
solving in various domains. Constraints
are special predicates whose satisfiabil-
ity can be established for various do-
mains using efficient algorithms (e.g.,
inequalities and disequalities). Unifica-
tion can be viewed as a particular type
of constraint that tests equality in the
domain of trees. A recent survey on CLP
is presented in Jaffar and Maher [1994].

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996

258 o Jacques Cohen
Some of the current CLP languages
and their domains are:

Prolog IV—trees, reals, intervals, ratio-
nals, finite domains (including Bool-
eans), strings

CLP(R)—trees, floating-point arithmetic

CHIP—trees, floating-point arithmetic,
finite domains

CLP(BNR)—trees, intervals

The languages considering intervals
(defined by their lower and upper
bounds) deal with numeric nonlinear
constraints; symbolic linear constraints
are handled by the first three languages
(see Jaffar and Maher [1994]).

Another class of LP and CLP lan-
guages is made up of those that replace
don’t-know nondeterminism by don’t-
care nondeterminism. The first type of
nondeterminism consists of specifying a
number of options, each of which is con-
sidered either in parallel or sequentially
(the latter using some type of search
mechanism). In don’t-care nondetermin-
ism, only one option is considered and
the others are disregarded. The LP or
CLP languages using don’t-care nonde-
terminism are called concurrent lan-
guages and were designed for the devel-
opment of operating and real-time
systems. Their major representatives
appear to converge in a common concur-
rent language [Shapiro 1989].

APPLICATIONS

LP and CLP have proved successful in
many applications. This success is due
in great part to the conciseness that can
be achieved by programs, the nondeter-
ministic searches, and the LP relation-
ship with logic; the latter instills a dis-
cipline for writing and debugging
programs. Among the successful appli-
cation areas are the following:

Symbolic Manipulation. Although
Lisp and Prolog are currently the main
languages in this area, it is quite prob-
able that a CLP language may replace
Prolog in the next few years. There is a
close relationship between the aims of

ACM Computing Surveys, Vol. 28, No. 1, March 1996

CLP and those of symbolic languages
like Maple, Mathematica, and Mac-
syma.

Numerical Analysis and Operations
Research. The proposed CLP languages
allow their users to generate and refine
sets that involve a large number of
equations and inequations. The possibil-
ity of expressing inequations in a com-
puter language has attracted the inter-
est of specialists in operations research.
Difficult problems in scheduling have
been solved using CLP in finite do-
mains.

Combinatorics. Nondeterministic lan-
guages like Prolog have been successful
in the solution of combinatorial prob-
lems. The availability of constraints ex-
tends the scope of problems that can be
expressed by CLP programs.

Artificial Intelligence Applications.
Boolean constraints have been utilized
in the design of expert systems. Con-
straints have also been used in natural
language processing. The increased po-
tential for inversibility makes CLP lan-
guages unique in programming certain
applications.

Deductive Databases. These applica-
tions have attracted a considerable
number of researchers [Minker 1987]
and developers who are now extending
the DB domains to include constraints.

Engineering Applications. The ease
with which CLP can be used for gener-
ating large numbers of equations and
inequations makes it useful in the solu-
tion of engineering problems. Ohm’s
and Kirchhoff’s laws can readily be used
to generate equations describing the be-
havior of electrical circuits.

IMPLEMENTATION

The implementation of Prolog requires
the management of a stack, a heap, and
a trail. The first two are well-known
data structures used in processing most
languages. In Prolog, the trail is used to
implement nondeterminism and back-
tracking. The reader interested in a
quick implementation of a nucleus of a

Logic Programming and Constraint Logic Programming .

Prolog interpreter written in Pascal or
C is referred to Cohen [1985]. Most of
the existing Prolog on compilers gener-
ates a special code called Warren Ab-
stract Machine (WAM), named after its
developer. The WAM allows the compi-
lation of efficient Prolog code [Ait-Kacl
1991]. There exists a substantial body of
research in parallel implementations of
LP [Kergommeaux and Codognet 1994].
As to CLP languages, variations of
the simplex algorithm are used to test
the satisfiability of linear equations and
inequations. In the case of interval con-
straints, the operation of narrowing is
applied repeatedly until convergence or
failure is reached. The algorithms for
testing satisfiability have to be incre-
mental (i.e., a new constraint added to a
satisfiable set of constraints involves
only a small amount of recomputation).
Simplification and elimination of redun-
dant constraints are also desirable.

FINAL REMARKS

During the past twenty years, LP has
followed a creative and productive
course. It is not unusual for a funda-
mental scientific endeavor to branch out
into many interesting subfields. An in-
teresting aspect of these developments
is that LP’s original body of knowledge
actually branched into subareas that
joined previously existing research ar-
eas. For example, CLP is being merged
with the area of constraint satisfaction
problems; LP researchers are interested
in modal, temporal, intuitionistic, and
linear logic; relational database re-
search now includes constraints; and
operations research and CLP have
found previously unexplored similari-
ties.

259

The several subfields of LP now in-
clude research on CLP in various do-
mains, typing, nonmonotonic reasoning,
inductive LP, semantics, concurrency,
nonstandard logic, abstract interpreta-
tion, partial evaluation, and blending
with functional and object-oriented lan-
guages. It will not be surprising if each
of these subfields becomes fairly inde-
pendent of their LP roots and the vari-
ous specialized groups organize autono-
mous journals and conferences. The
available literature on LP is abundant
and is likely to be followed by a plenti-
ful number of publications on its auton-
omous subfields.

REFERENCES

Air-KacrL, H. 1991. The WAM: A (Real) Tuto-
rial. MIT Press, Cambridge, MA.

COHEN, J. 1985. Describing Prolog by its inter-
pretation and compilation. Commun. ACM 28,
12 (Dec.), 1311-1324.

JAFFAR, J. AND MAHER, M. 1994. Constraint
logic programming, a survey. J. Logic Pro-
gram. 503-581.

KERGOMMEAUX, J. C. AND CODOGNET, P. 1994.
Parallel LP systems. ACM Comput. Surv. 26,
3.

KowaLskl, R. A. 1979. Algorithm = logic + con-
trol. Commun. ACM 22, 7 (July), 424—-436.
LLoyp, J. W. 1987. Foundations of Logic Pro-

gramming. Springer-Verlag, New York.

MINKER, J. 1987. Foundations of Deductive Da-
tabases and LP. Morgan Kaufmann, San Ma-
teo, CA.

RoBINSON, J. A. 1965. A machine-oriented logic
based on the resolution principle. J. ACM 12,
1 (Jan), 23-41.

SHAPIRO, E. 1989. The family of concurrent LP
languages. ACM Compu. Surv. 21, 3.

STERLING, L. AND SHAPIRO, E. 1994. The Art of
Prolog. MIT Press, Cambridge, MA.

ACM Computing Surveys, Vol. 28, No. 1, March 1996

