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Logic programming is a language para-
digm based on logic, more specifically on
resolution theorem proving in the pred-
icate calculus as proposed in Robinson
[1965]. Robinson had the foresight to
distinguish the importance of two com-
ponents in automatic theorem proving:
a single inference rule called resolution
and the testing for equality of trees
called unification. Resolution is an in-
ference step used to prove the validity of
predicate calculus formulas expressed
as clauses. In its simplest version: P \/
@ and -P \/ R imply @ \/ R, which is
called the resolvant. Unification is the
matching of terms used in a resolution
step. It consists of testing the satisfi-
ability of the equality of terms (i.e.,
labeled trees) whose leaves may contain
variables. For example, the unification
of the terms p(X, ¢(Z, a)) and p(b, q(a,
Y)) succeeds, yielding the bindings X =
b,Z=aqa,and Y = a.

Prolog, the main representative of LP,
consists of a sequence of Horn clauses.
A Horn clause is one containing (at
most) one positive literal. The term def-
inite clause is used to denote a clause
with exactly one positive literal. Prolog
programs can be viewed as a set of
definite clauses in which the positive
literal is the head of the rule and the
negative literals constitute the body or
tail of the rule. From a procedural point
of view, a head corresponds to the defi-
nition of a Boolean function whose body
consists of conjunctions of calls to the
Boolean functions representing the tail
[Kowalski 1979].

A quintessential example of a Prolog

program is that of append. It consists of
two Horn clauses specifying that list L3
is the concatenation of two lists, L1 and
L2:

append (L1, L2, L3) :-L1 = nil, L2 = L3.
append (L1, L2, L3) :-L1 = cons (H, T),
L3 = cons (H, Z), append (T, L2, Z).

The capital letters correspond to vari-
ables; cons is a term; the equal sign
corresponds to a unification, a comma to
a Boolean “and,” and the “:-” to a (re-
verse) implication.

In a logical reading, a query @ is
either deducible or not from a set of
clauses P; if it is, then variables appear-
ing in the query are specified by the
resulting unifications. In a procedural
interpretation, a query consists of an
actual “call.” For example, the query
append (X1, X2, [a, b]) provides all lists
X1 and X2 that, when appended, result
in the list [a, b]. This is accomplished by
a nondeterministic exploration of the
search space.

A good reference on the theoretical
foundations of LP is Lloyd [1987]. Ster-
ling and Shapiro [1994] is a recom-
mended introductory text.

Constraint logic programming (CLP)
languages are LP languages in which
unification is replaced by constraint
solving in various domains. Constraints
are special predicates whose satisfiabil-
ity can be established for various do-
mains using efficient algorithms (e.g.,
inequalities and disequalities). Unifica-
tion can be viewed as a particular type
of constraint that tests equality in the
domain of trees. A recent survey on CLP
is presented in Jaffar and Maher [1994].
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Some of the current CLP languages
and their domains are:

Prolog IV—trees, reals, intervals, ratio-
nals, finite domains (including Bool-
eans), strings

CLP(R)—trees, floating-point arithmetic

CHIP—trees, floating-point arithmetic,
finite domains

CLP(BNR)—trees, intervals

The languages considering intervals
(defined by their lower and upper
bounds) deal with numeric nonlinear
constraints; symbolic linear constraints
are handled by the first three languages
(see Jaffar and Maher [1994]).

Another class of LP and CLP lan-
guages is made up of those that replace
don’t-know nondeterminism by don’t-
care nondeterminism. The first type of
nondeterminism consists of specifying a
number of options, each of which is con-
sidered either in parallel or sequentially
(the latter using some type of search
mechanism). In don’t-care nondetermin-
ism, only one option is considered and
the others are disregarded. The LP or
CLP languages using don’t-care nonde-
terminism are called concurrent lan-
guages and were designed for the devel-
opment of operating and real-time
systems. Their major representatives
appear to converge in a common concur-
rent language [Shapiro 1989].

APPLICATIONS

LP and CLP have proved successful in
many applications. This success is due
in great part to the conciseness that can
be achieved by programs, the nondeter-
ministic searches, and the LP relation-
ship with logic; the latter instills a dis-
cipline for writing and debugging
programs. Among the successful appli-
cation areas are the following:

Symbolic Manipulation. Although
Lisp and Prolog are currently the main
languages in this area, it is quite prob-
able that a CLP language may replace
Prolog in the next few years. There is a
close relationship between the aims of
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CLP and those of symbolic languages
like Maple, Mathematica, and Mac-
syma.

Numerical Analysis and Operations
Research. The proposed CLP languages
allow their users to generate and refine
sets that involve a large number of
equations and inequations. The possibil-
ity of expressing inequations in a com-
puter language has attracted the inter-
est of specialists in operations research.
Difficult problems in scheduling have
been solved using CLP in finite do-
mains.

Combinatorics. Nondeterministic lan-
guages like Prolog have been successful
in the solution of combinatorial prob-
lems. The availability of constraints ex-
tends the scope of problems that can be
expressed by CLP programs.

Artificial Intelligence Applications.
Boolean constraints have been utilized
in the design of expert systems. Con-
straints have also been used in natural
language processing. The increased po-
tential for inversibility makes CLP lan-
guages unique in programming certain
applications.

Deductive Databases. These applica-
tions have attracted a considerable
number of researchers [Minker 1987]
and developers who are now extending
the DB domains to include constraints.

Engineering Applications. The ease
with which CLP can be used for gener-
ating large numbers of equations and
inequations makes it useful in the solu-
tion of engineering problems. Ohm’s
and Kirchhoff’s laws can readily be used
to generate equations describing the be-
havior of electrical circuits.

IMPLEMENTATION

The implementation of Prolog requires
the management of a stack, a heap, and
a trail. The first two are well-known
data structures used in processing most
languages. In Prolog, the trail is used to
implement nondeterminism and back-
tracking. The reader interested in a
quick implementation of a nucleus of a
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Prolog interpreter written in Pascal or
C is referred to Cohen [1985]. Most of
the existing Prolog on compilers gener-
ates a special code called Warren Ab-
stract Machine (WAM), named after its
developer. The WAM allows the compi-
lation of efficient Prolog code [Ait-Kacl
1991]. There exists a substantial body of
research in parallel implementations of
LP [Kergommeaux and Codognet 1994].
As to CLP languages, variations of
the simplex algorithm are used to test
the satisfiability of linear equations and
inequations. In the case of interval con-
straints, the operation of narrowing is
applied repeatedly until convergence or
failure is reached. The algorithms for
testing satisfiability have to be incre-
mental (i.e., a new constraint added to a
satisfiable set of constraints involves
only a small amount of recomputation).
Simplification and elimination of redun-
dant constraints are also desirable.

FINAL REMARKS

During the past twenty years, LP has
followed a creative and productive
course. It is not unusual for a funda-
mental scientific endeavor to branch out
into many interesting subfields. An in-
teresting aspect of these developments
is that LP’s original body of knowledge
actually branched into subareas that
joined previously existing research ar-
eas. For example, CLP is being merged
with the area of constraint satisfaction
problems; LP researchers are interested
in modal, temporal, intuitionistic, and
linear logic; relational database re-
search now includes constraints; and
operations research and CLP have
found previously unexplored similari-
ties.
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The several subfields of LP now in-
clude research on CLP in various do-
mains, typing, nonmonotonic reasoning,
inductive LP, semantics, concurrency,
nonstandard logic, abstract interpreta-
tion, partial evaluation, and blending
with functional and object-oriented lan-
guages. It will not be surprising if each
of these subfields becomes fairly inde-
pendent of their LP roots and the vari-
ous specialized groups organize autono-
mous journals and conferences. The
available literature on LP is abundant
and is likely to be followed by a plenti-
ful number of publications on its auton-
omous subfields.
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