
Beating the Averages
PAUL GRAHAM

This article is based on a talk given at the Franz Developer Symposium in Cambridge,
MA, on March 25, 2001. Copyright 2001 by Paul Graham. Draft, April 12, 2001.

In the summer of 1995, my friend Robert Morris and I started a startup called

Viaweb. Our plan was to write software that would let end users build online

stores. What was novel about this software, at the time, was that it ran on our

server, using ordinary Web pages as the interface.

A lot of people could have been having this idea at the same time, of course,

but as far as I know, Viaweb was the first Web-based application. It seemed such

a novel idea to us that we named the company after it: Viaweb, because our soft-

ware worked via the Web, instead of running on your desktop computer.

Another unusual thing about this software was that it was written primarily in

a programming language called Lisp.1 It was in fact the first big end-user applica-

tion to be written in Lisp, which up till then had been used mostly in universities

and research labs. Was Lisp ready for the real world? In our case the answer

turned out to be a definite yes: Lisp gave us a great advantage over competitors

using less powerful languages.

The Secret Weapon
Eric Raymond has written an essay called “How to Become a Hacker,” and in it,

among other things, he tells would-be hackers what languages they should learn.

He suggests starting with Python and Java, because they are easy to learn. The

serious hacker will also want to learn C, in order to hack Unix, and Perl for sys-

tem administration and cgi scripts. Finally, the truly serious hacker should con-

sider learning Lisp:

Lisp is worth learning for the profound enlightenment experience you will

have when you finally get it; that experience will make you a better pro-

grammer for the rest of your days, even if you never actually use Lisp itself

a lot.

This is the same argument you tend to hear for learning Latin. It won’t get you a

job, except perhaps as a classics professor, but it will improve your mind, and

make you a better writer in languages you do want to use, like English.

But wait a minute. This metaphor doesn’t stretch that far. The reason Latin

won’t get you a job is that no one speaks it. If you write in Latin, no one can

understand you. But Lisp is a computer language, and computers speak whatever

language you, the programmer, tell them to.

1. Viaweb at first had two parts: the editor, written in Lisp, which people used to build their

sites, and the ordering system, written in C, which handled orders. The first version was mostly Lisp,

because the ordering system was small. Later we added two more modules, an image generator writ-

ten in C, and a back-office manager written mostly in Perl.
1



So if Lisp makes you a better programmer, like he says, why wouldn’t you

want to use it? If a painter were offered a brush that would make him a better

painter, it seems to me that he would want to use it in all his paintings, wouldn’t

he? I’m not trying to make fun of Eric Raymond here. On the whole, his advice is

good. What he says about Lisp is pretty much the conventional wisdom. But

there is a contradiction in the conventional wisdom: Lisp will make you a better

programmer, and yet you won’t use it.

Why not? Programming languages are just tools, after all. If Lisp really does

yield better programs, you should use it. And if it doesn’t, then who needs it?

This is not just a theoretical question. Software is a very competitive business,

prone to natural monopolies. A company that gets software written faster and

better will, all other things being equal, put its competitors out of business. And

when you’re starting a startup, you feel this very keenly. Startups tend to be an all

or nothing proposition. You either get rich, or you get nothing. In a startup, if you

bet on the wrong technology, your competitors will crush you.

Robert and I both knew Lisp well, and we couldn’t see any reason not to trust

our instincts and go with Lisp. We knew that everyone else was writing their soft-

ware in C ++ or Perl. But we also knew that that didn’t mean anything. If you

chose technology that way, you’d be running Windows. When you choose tech-

nology, you have ignore what other people are doing, and consider only what will

work the best.

This is especially true in a startup. In a big company, you can do what all the

other big companies are doing. But a startup can’t do what all the other startups

do. I don’t think a lot of people realize this, even in startups.

The average big company grows at about ten percent a year. So if you’re run-

ning a big company and you do everything the way the average big company

does it, you can expect to do as well as the average big company—that is, to grow

about ten percent a year. The same thing will happen if you’re running a startup,

of course. If you do everything the way the average startup does it, you should

expect average performance. The problem here is, average performance means

that you’ll go out of business. The survival rate for startups is way less than fifty

percent. So if you’re running a startup, you had better be doing something odd. If

not, you’re in trouble.

Back in1995,we knew something that I don’t think our competitors under-

stood, and few understand even now: when you’re writing software that only has

to run our your own servers, you can use any language you want. When you’re

writing desktop software, there’s a strong bias toward writing applications in the

same language as the operating system. Ten years ago, writing applications

meant writing applications in C. But with Web-based software, especially when

you have the source code of both the language and the operating system, you can

use whatever language you want.

This new freedom is a double-edged sword, however. Now that you can use

any language, you have to think about which one to use. And if you try to pretend

that nothing has changed, your competitors will show you that you’re wrong.
2



If you can use any language, which do you use? We chose Lisp. For one

thing, it was obvious that rapid development would be important in this market.

We were all starting from scratch, so a company that could get new features done

before its competitors would have a big advantage. We knew Lisp was a really

good language for writing software quickly, and server-based applications mag-

nify the effect of rapid development, because you can release software the minute

it’s done.

If other companies didn’t want to use Lisp, so much the better. It might give

usa technological edge, and we needed all the help we could get. When we

started Viaweb, we had no experience in business. We didn’t know anything

about marketing, or hiring people, or raising money, or getting customers. Nei-

ther of us had ever even had what you would call a real job. The only thing we

were good at was writing software. We hoped that would save us. Any advantage

we could get in the software department, we would take.

So you could say that using Lisp was an experiment. Our hypothesis was that

if we wrote our software in Lisp, we’d be able to get features done faster than our

competitors, and also to do things in our software that they couldn’t do. And

because Lisp was so high-level, we wouldn’t need a big development team, so

our costs would be lower. If this were so, we could offer a better product for less

money, and still make a profit. We would end up getting all the users, and our

competitors would get none, and eventually go out of business. That was what we

hoped would happen, anyway.

What were the results of this experiment? Somewhat surprisingly, it worked.

We eventually had many competitors, on the order of twenty to thirty of them, but

none of their software could compete with ours. We had a WYSIWYG online

store builder that ran on the server and yet felt like a desktop application. Our

competitors had CGI scripts. And we were always far ahead of them in features.

Sometimes, in desperation, competitors would try to introduce features that we

didn’t have. But with Lisp our development cycle was so fast that we could some-

times duplicate a new feature within a day or two of a competitor announcing it

in a press release. By the time journalists covering the press release got round to

calling us, we would have the new feature too.

It must have seemed to our competitors that we had some kind of secret

weapon—that we were decoding their Enigma traffic or something. In fact we

did have a secret weapon, but it was simpler than they realized. No one was leak-

ing news of their features to us. We were just able to develop software faster than

anyone thought possible.

When I was about nine I happened to get hold of a copy of The Day of the
Jackal, by Frederick Forsyth. The main character is an assassin who is hired to

kill the president of France. The assassin has to get past the police to get up to an

apartment that overlooks the president’s route. He walks right by them, dressed

up as an old man on crutches, and they never suspect him.

Our secret weapon was similar. We wrote our software in a weird AI lan-

guage, with a bizarre syntax full of parentheses. For years it had annoyed me to

hear Lisp described that way. But now it worked to our advantage. In business,
3



there is nothing more valuable than a technical advantage your competitors don’t

understand. In business, as in war, surprise is worth as much as force.

And so, I’m a little embarrassed to say, I never said anything publicly about

Lisp while we were working on Viaweb. We never mentioned it to the press, and

if you searched for Lisp on our Web site, all you’d find were the titles of two

books in my bio. This was no accident. A startup should give its competitors as

little information as possible. If they didn’t know what language our software

was written in, or didn’t care, I wanted to keep it that way.2

The people who understood our technology best were the customers. They

didn’t care what language Viaweb was written in either, but they noticed that it

worked really well. It let them build great looking online stores literally in min-

utes. And so, by word of mouth mostly, we got more and more users. By the end

of 1996 we had about 70 stores online. At the end of 1997 we had 500. Six

months later, when Yahoo bought us, we had 1070 users. Today, as Yahoo Store,

this software continues to dominate its market. It’s one of the more profitable

pieces of Yahoo, and the stores built with it are the foundation of Yahoo Shop-

ping. I left Yahoo in 1999, so I don’t know exactly how many users they have

now, but the last I heard there were about 14,000.

People sometimes ask me if Yahoo Store still uses Lisp. Yes, all the Lisp code

is still there. Yahoo has server-side software written in all the languages Eric

Raymond recommends to hackers, except Java.

The Blub Paradox
What’s so great about Lisp? And if Lisp is so great, why doesn’t everyone use it?

These sound like rhetorical questions, but actually they have straightforward

answers. Lisp is so great not because of some magic quality visible only to devo-

tees, but because it is simply the most powerful language available. And the rea-

son everyone doesn’t use it is that programming languages are not merely

technologies, but habits of mind as well, and nothing changes slower. Of course,

both these answers need explaining.

I’ll begin with a shockingly controversial statement: programming languages

vary in power.

Few would dispute, at least, that high level languages are more powerful than

machine language. Most programmers today would agree that you do not, ordi-

narily, want to program in machine language. Instead, you should program in a

high-level language, and have a compiler translate it into machine language for

you. This idea is even built into the hardware now: since the 1980s, instruction

sets have been designed for compilers rather than human programmers.

Everyone knows it’s a mistake to write your whole program by hand in

machine language. What’s less often understood is that there is a more general

2. Robert Morris says that I didn’t need to be secretive, because even if our competitors had

known we were using Lisp, they wouldn’t have understood why: “If they were that smart they’d

already be programming in Lisp.”
4



principle here: that if you have a choice of several languages, it is, all other things

being equal, a mistake to program in anything but the most powerful one.3

There are many exceptions to this rule. If you’re writing a program that has to

work very closely with a program written in a certain language, it might be a

good idea to write the new program in the same language. If you’re writing a pro-

gram that only has to do something very simple, like number crunching or bit

manipulation, you may as well use a less abstract language, especially since it

may be slightly faster. And if you’re writing a short, throwaway program, you

may be better off just using whatever language has the best library functions for

the task. But in general, for application software, you want to be using the most

powerful (reasonably efficient) language you can get, and using anything else is a

mistake, of exactly the same kind, though possibly in a lesser degree, as program-

ming in machine language.

You can see that machine language is very low level. But, at least as a kind of

social convention, high-level languages are often all treated as equivalent.

They’re not. Technically the term “high-level language” doesn’t mean anything

very definite. There’s no dividing line with machine languages on one side and

all the high-level languages on the other. Languages fall along a continuum4 of

abstractness, from the most powerful all the way down to machine languages,

which themselves vary in power.

Consider Cobol. Cobol is a high-level language, in the sense that it gets com-

piled into machine language. Would anyone seriously argue that Cobol is equiva-

lent in power to, say, Python?

It’s probably closer to machine language than Python. Or how about Perl 4?

Between Perl 4 and Perl 5, lexical closures got added to the language. Most Perl

hackers would agree that Perl 5 is more powerful than Perl 4. But once you’ve

admitted that, you’ve admitted that one high level language can be more powerful

than another. And it follows inexorably that, except in special cases, you ought to

use the most powerful you can get.

This idea is rarely followed to its conclusion, though. After a certain age, pro-

grammers rarely switch languages voluntarily. Whatever language people happen

to be used to, they tend to consider just good enough.

Programmers get very attached to their favorite languages, and I don’t want to

hurt anyone’s feelings, so to explain this point I’m going to use a hypothetical

language called Blub. Blub falls right in the middle of the abstractness contin-

3. All languages are equally powerful in the sense of being Turing equivalent, but that’s not the

sense of the word programmers care about. (No one wants to program a Turing machine.) The kind of

power programmers care about may not be formally definable, but one way to explain it would be to

say that it refers to features you could only get in the less powerful language by writing an interpreter

for the more powerful language in it. If language A has an operator for removing spaces from strings

and language B doesn’t, that probably doesn’t make A more powerful, because you can probably

write a subroutine to do it in B. But if A supports, say, recursion, and B doesn’t, that’s not likely to be

something you can fix by writing library functions.

4. Note to nerds: or possibly a lattice, narrowing toward the top; it’s not the shape that matters

here but the idea that there is at least a partial order.
5



uum. It is not the most powerful language, but it is more powerful than Cobol or

machine language.

And in fact, our hypothetical Blub programmer wouldn’t use either of them.

Of course he wouldn’t program in machine language. That’s what compilers are

for. And as for Cobol, he doesn’t know how anyone can get anything done with

it. It doesn’t even have x (Blub feature of your choice).

As long as our hypothetical Blub programmer is looking down the power

continuum, he knows he’s looking down. Languages less powerful than Blub are

obviously less powerful, because they’re missing some feature he’s used to. But

when our hypothetical Blub programmer looks in the other direction, up the

power continuum, he doesn’t realize he’s looking up. What he sees are merely

weird languages. He probably considers them about equivalent in power to Blub,

but with all this other hairy stuff thrown in as well. Blub is good enough for him,

because he thinks in Blub.

When we switch to the point of view of a programmer using any of the lan-

guages higher up the power continuum, however, we find that he in turn looks

down upon Blub. How can you get anything done in Blub? It doesn’t even have y.

By induction, the only programmers in a position to see all the differences in

power between the various languages are those who understand the most power-

ful one. (This is probably what Eric Raymond meant about Lisp making you a

better programmer.) You can’t trust the opinions of the others, because of the

Blub paradox: they’re satisfied with whatever language they happen to use,

because it dictates the way they think about programs.

I know this from my own experience, as a high school kid writing programs

in Basic. That language didn’t even support recursion. It’s hard to imagine writ-

ing programs without using recursion, but I didn’t miss it at the time. I thought in

Basic. And I was a whiz at it. Master of all I surveyed.

The five languages that Eric Raymond recommends to hackers fall at various

points on the power continuum. Where they fall relative to one another is a sensi-

tive topic. What I will say is that I think Lisp is at the top. And to support this

claim I’ll tell you about one of the things I find missing when I look at the other

four languages. How can you get anything done in them, I think, without z? And

one of the biggest zs, for me, is macros.

Many languages have something called a macro. But Lisp macros are unique.

And believe it or not, what they do is related to the parentheses. The designers of

Lisp didn’t put all those parentheses in the language just to be different. To the

Blub programmer, Lisp code looks weird. But those parentheses are there for a

reason. They are the outward evidence of a fundamental difference between Lisp

and other languages.

Lisp code is made out of Lisp data objects. And not in the trivial sense that

the source files contain characters, and strings are one of the data types supported

by the language. Lisp code, after it’s read by the parser, is made of data structures

that you can traverse. If you understand how compilers work, what’s really going

on is not so much that Lisp has a strange syntax as that Lisp has no syntax. You

write programs in the parse trees that get generated within the compiler when
6



other languages are parsed. But these parse trees are fully accessible to your pro-

grams. You can write programs that manipulate them. In Lisp, these programs are

called macros. They are programs that write programs.

Programs that write programs? When would you ever want to do that? Not

very often, if you think in Cobol. All the time, if you think in Lisp. It would be

convenient here if I could give an example of a powerful macro, and say there!

how about that? But if I did, it would just look like gibberish to someone who

didn’t know Lisp; there isn’t room here to explain everything you’d need to know

to understand what it meant. In ANSI Common Lisp I tried to move things along

as fast as I could, and even so I didn’t get to macros until page 160.

But I think I can give a kind of argument that might be convincing. The

source code of the Viaweb editor was probably about 20-25% macros. Macros

are harder to write than ordinary Lisp functions, and it’s considered to be bad

style to use them when they’re not necessary. So every macro in that code is there

because it has to be. What that means is that at least 20-25% of the code in this

program is doing things that you can’t easily do in any other language. However

skeptical the Blub programmer might be about my claims for the mysterious

powers of Lisp, this ought to make him curious. We weren’t writing this code for

our own amusement. We were a tiny startup, programming as hard as we could in

order to put technical barriers between us and our competitors.

A suspicious person might begin to wonder if there was some correlation

here. A big chunk of our code was doing things that are very hard to do in other

languages. The resulting software did things our competitors’ software couldn’t

do. Maybe there was some kind of connection. I encourage you to follow that

thread. There may be more to that old man hobbling along on his crutches than

meets the eye.

Aikido for Startups
But I don’t expect to convince anyone (over 25) to go out and learn Lisp. The

purpose of this article is not to change anyone’s mind, but to reassure people

already interested in using Lisp—people who know that Lisp is a powerful lan-

guage, but worry because it isn’t widely used. In a competitive situation, that’s an

advantage. Lisp’s power is multiplied by the fact that your competitors don’t get

it.

If you think of using Lisp in a startup, you shouldn’t worry that it isn’t widely

understood. You should hope that it stays that way. And it’s likely to. It’s the

nature of programming languages to make most people satisfied with whatever

they currently use. Computer hardware changes so much faster than personal

habits that programming practice is usually ten to twenty years behind the pro-

cessor. At places like MIT they were writing programs in high- level languages in

the early 1960s, but many companies continued to write code in machine lan-

guage well into the 1980s. I bet a lot of people continued to write machine lan-

guage until the processor, like a bartender eager to close up and go home, finally

kicked them out by switching to a RISC instruction set.
7



Ordinarily technology changes fast. But programming languages are differ-

ent: programming languages are not just technology, but what programmers think

in. They’re half technology and half religion.5 And so the median language,

meaning whatever language the median programmer uses, moves as slow as an

iceberg. Garbage collection, introduced by Lisp in about 1960, is now widely

considered to be a good thing. Runtime typing, ditto, is growing in popularity.

Lexical closures, introduced by Lisp in the early 1970s, are now, just barely, on

the radar screen. Macros, introduced by Lisp the mid 1960s, are still terra incog-
nita.

Obviously, the median language has enormous momentum. I’m not proposing

that you can fight this powerful force. What I’m proposing is exactly the oppo-

site: that, like a practitioner of Aikido, you can use it against your opponents. If

you work for a big company, this may not be easy. You will have a hard time con-

vincing the pointy-haired boss to let you build things in Lisp, when he has just

read in the paper that some other language is poised, like Ada was twenty years

ago, to take over the world. But if you work for a startup that doesn’t have pointy-

haired bosses yet, you can, like we did, turn the Blub paradox to your advantage:

you can use technology that your competitors, glued immovably to the median

language, will never be able to match.

If you ever do find yourself working for a startup, here’s a handy tip for eval-

uating competitors. Read their job listings. Everything else on their site may be

stock photos or the prose equivalent, but the job listings have to be specific about

what they want, or they’ll get the wrong candidates.

During the years we worked on Viaweb I read a lot of job descriptions. A new

competitor seemed to emerge out of the woodwork every month or so. The first

thing I would do, after checking to see if they had a live online demo, was look at

their job listings. After a couple years of this I could tell which companies to

worry about and which not to. The more of an IT flavor the job descriptions had,

the less dangerous the company was. The safest kind were the ones that wanted

Oracle experience. You never had to worry about those. You were also safe if

they said they wanted C ++ or Java developers. If they wanted Perl or Python pro-

grammers, that would be a bit frightening—that’s starting to sound like a com-

pany where the technical side, at least, is run by real hackers. If I had ever seen a

job posting looking for Lisp hackers, I would have been really worried.

Back when I was writing books about Lisp, I used to wish everyone under-

stood it. But when we started Viaweb I found that changed: I wanted everyone to

understand Lisp except our competitors.

5. As a result, comparisons of programming languages either take the form of religious wars or

undergraduate textbooks so determinedly neutral that they’re really works of anthropology. People

who value their peace, or want tenure, avoid the topic. But the question is only half a religious one;

there is something there worth studying, especially if you want to design new languages.
8


	Beating the Averages
	The Secret Weapon
	The Blub Paradox
	Aikido for Startups


