
18

Destructuring

Destructuring is a generalization of assignment. The operators setq and setf
do assignments to individual variables. Destructuring combines assignment with
access: instead of giving a single variable as the first argument, we give a pattern
of variables, which are each assigned the value occurring in the corresponding
position in some structure.

18.1 Destructuring on Lists

As of CLTL2, Common Lisp includes a new macro called destructuring-bind.
This macro was briefly introduced in Chapter 7. Here we consider it in more
detail. Suppose that lst is a list of three elements, and we want to bind x to the
first, y to the second, and z to the third. In raw CLTL1 Common Lisp, we would
have had to say:

(let ((x (first lst))
(y (second lst))
(z (third lst)))

...)

With the new macro we can say instead

(destructuring-bind (x y z) lst
...)

230

18.2 OTHER STRUCTURES 231

which is not only shorter, but clearer as well. Readers grasp visual cues much
faster than textual ones. In the latter form we are shown the relationship between
x, y, and z; in the former, we have to infer it.

If such a simple case is made clearer by the use of destructuring, imagine the
improvement in more complex ones. The first argument todestructuring-bind
can be an arbitrarily complex tree. Imagine

(destructuring-bind ((first last) (month day year) . notes)
birthday

...)

written using let and the list access functions. Which raises another point:
destructuring makes it easier to write programs as well as easier to read them.

Destructuring did exist in CLTL1 Common Lisp. If the patterns in the examples
above look familiar, it’s because they have the same form as macro parameter lists.
In fact, destructuring-bind is the code used to take apart macro argument
lists, now sold separately. You can put anything in the pattern that you would put
in a macro parameter list, with one unimportant exception (the &environment
keyword).

Establishing bindings en masse is an attractive idea. The following sections
describe several variations upon this theme.

18.2 Other Structures

There is no reason to limit destructuring to lists. Any complex object is a candidate
for it. This section shows how to write macros like destructuring-bind for
other kinds of objects.

The natural next step is to handle sequences generally. Figure 18.1 contains a
macro called dbind, which resembles destructuring-bind, but works for any
kind of sequence. The second argument can be a list, a vector, or any combination
thereof:

> (dbind (a b c) #(1 2 3)
(list a b c))

(1 2 3)
> (dbind (a (b c) d) ’(1 #(2 3) 4)

(list a b c d))
(1 2 3 4)
> (dbind (a (b . c) &rest d) ’(1 "fribble" 2 3 4)

(list a b c d))
(1 #\f "ribble" (2 3 4))

232 DESTRUCTURING

(defmacro dbind (pat seq &body body)
(let ((gseq (gensym)))
‘(let ((,gseq ,seq))

,(dbind-ex (destruc pat gseq #’atom) body))))

(defun destruc (pat seq &optional (atom? #’atom) (n 0))
(if (null pat)

nil
(let ((rest (cond ((funcall atom? pat) pat)

((eq (car pat) ’&rest) (cadr pat))
((eq (car pat) ’&body) (cadr pat))
(t nil))))

(if rest
‘((,rest (subseq ,seq ,n)))
(let ((p (car pat))

(rec (destruc (cdr pat) seq atom? (1+ n))))
(if (funcall atom? p)

(cons ‘(,p (elt ,seq ,n))
rec)

(let ((var (gensym)))
(cons (cons ‘(,var (elt ,seq ,n))

(destruc p var atom?))
rec))))))))

(defun dbind-ex (binds body)
(if (null binds)

‘(progn ,@body)
‘(let ,(mapcar #’(lambda (b)

(if (consp (car b))
(car b)
b))

binds)
,(dbind-ex (mapcan #’(lambda (b)

(if (consp (car b))
(cdr b)))

binds)
body))))

Figure 18.1: General sequence destructuring operator.

18.2 OTHER STRUCTURES 233

The #(read-macro is for representing vectors, and #\ for representing characters.
Since "abc" = #(#\a #\b #\c), the first element of "fribble" is the character
#\f. For the sake of simplicity, dbind supports only the &rest and &body
keywords.

Compared to most of the macros seen so far, dbind is big. It’s worth studying
the implementation of this macro, not only to understand how it works, but also
because it embodies a general lesson about Lisp programming. As section 3.4
mentioned, Lisp programs may intentionally be written in a way that will make
them easy to test. In most code, we have to balance this desire against the need
for speed. Fortunately, as Section 7.8 explained, speed is not so important in
expander code. When writing code that generates macroexpansions, we can make
life easier for ourselves. The expansion of dbind is generated by two functions,
destruc and dbind-ex. Perhaps they both could be combined into one function
which would do everything in a single pass. But why bother? As two separate
functions, they will be easier to test. Why trade this advantage for speed we don’t
need?

The first function, destruc, traverses the pattern and associates each variable
with the location of the corresponding object at runtime:

> (destruc ’(a b c) ’seq #’atom)
((A (ELT SEQ 0)) (B (ELT SEQ 1)) (C (ELT SEQ 2)))

The optional third argument is the predicate used to distinguish pattern structure
from pattern content.

To make access more efficient, a new variable (a gensym) will be bound to
each subsequence:

> (destruc ’(a (b . c) &rest d) ’seq)
((A (ELT SEQ 0))
((#:G2 (ELT SEQ 1)) (B (ELT #:G2 0)) (C (SUBSEQ #:G2 1)))
(D (SUBSEQ SEQ 2)))

The output of destruc is sent to dbind-ex, which generates the bulk of the
macroexpansion. It translates the tree produced by destruc into a nested series
of lets:

> (dbind-ex (destruc ’(a (b . c) &rest d) ’seq) ’(body))
(LET ((A (ELT SEQ 0))

(#:G4 (ELT SEQ 1))
(D (SUBSEQ SEQ 2)))

(LET ((B (ELT #:G4 0))
(C (SUBSEQ #:G4 1)))

(PROGN BODY)))

234 DESTRUCTURING

(defmacro with-matrix (pats ar &body body)
(let ((gar (gensym)))
‘(let ((,gar ,ar))

(let ,(let ((row -1))
(mapcan
#’(lambda (pat)

(incf row)
(setq col -1)
(mapcar #’(lambda (p)

‘(,p (aref ,gar
,row
,(incf col))))

pat))
pats))

,@body))))

(defmacro with-array (pat ar &body body)
(let ((gar (gensym)))
‘(let ((,gar ,ar))

(let ,(mapcar #’(lambda (p)
‘(,(car p) (aref ,gar ,@(cdr p))))

pat)
,@body))))

Figure 18.2: Destructuring on arrays.

Note that dbind, like destructuring-bind, assumes that it will find all the
list structure it is looking for. Left-over variables are not simply bound to nil, as
with multiple-value-bind. If the sequence given at runtime does not have all
the expected elements, destructuring operators generate an error:

> (dbind (a b c) (list 1 2))
>>Error: 2 is not a valid index for the sequence (1 2)

What other objects have internal structure? There are arrays generally, which
differ from vectors in having more than one dimension. If we define a destructuring
macro for arrays, how do we represent the pattern? For two-dimensional arrays,
it is still practical to use a list. Figure 18.2 contains a macro, with-matrix, for
destructuring on two-dimensional arrays.

18.2 OTHER STRUCTURES 235

(defmacro with-struct ((name . fields) struct &body body)
(let ((gs (gensym)))
‘(let ((,gs ,struct))

(let ,(mapcar #’(lambda (f)
‘(,f (,(symb name f) ,gs)))

fields)
,@body))))

Figure 18.3: Destructuring on structures.

> (setq ar (make-array ’(3 3)))
#<Simple-Array T (3 3) C2D39E>
> (for (r 0 2)

(for (c 0 2)
(setf (aref ar r c) (+ (* r 10) c))))

NIL
> (with-matrix ((a b c)

(d e f)
(g h i)) ar

(list a b c d e f g h i))
(0 1 2 10 11 12 20 21 22)

For large arrays or those with dimension 3 or higher, we want a different kind
of approach. We are not likely to want to bind variables to each element of a large
array. It will be more practical to make the pattern a sparse representation of the
array—containing variables for only a few elements, plus coordinates to identify
them. The second macro in Figure 18.2 is built on this principle. Here we use it
to get the diagonal of our previous array:

> (with-array ((a 0 0) (d 1 1) (i 2 2)) ar
(values a d i))

0
11
22

With this new macro we have begun to move away from patterns whose
elements must occur in a fixed order. We can make a similar sort of macro to bind
variables to fields in structures built by defstruct. Such a macro is defined in
Figure 18.3. The first argument in the pattern is taken to be the prefix associated
with the structure, and the rest are field names. To build access calls, this macro
uses symb (page 58).

236 DESTRUCTURING

> (defstruct visitor name title firm)
VISITOR
> (setq theo (make-visitor :name "Theodebert"

:title ’king
:firm ’franks))

#S(VISITOR NAME "Theodebert" TITLE KING FIRM FRANKS)
> (with-struct (visitor- name firm title) theo

(list name firm title))
("Theodebert" FRANKS KING)

18.3 Reference

CLOS brings with it a macro for destructuring on instances. Suppose tree is a
class with three slots, species,age, and height, and that my-tree is an instance
of tree. Within

(with-slots (species age height) my-tree
...)

we can refer to the slots of my-tree as if they were ordinary variables. Within the
body of the with-slots, the symbol height refers to the height slot. It is not
simply bound to the value stored there, but refers to the slot, so that if we write:

(setq height 72)

then the height slot of my-treewill be given the value 72. This macro works by
definingheight as a symbol-macro (Section 7.11) which expands into a slot refer-
ence. In fact, it was to support macros like with-slots that symbol-macrolet
was added to Common Lisp.

Whether or not with-slots is really a destructuring macro, it has the same
role pragmatically as destructuring-bind. As conventional destructuring is
to call-by-value, this new kind is to call-by-name. Whatever we call it, it looks to
be useful. What other macros can we define on the same principle?

We can create a call-by-name version of any destructuring macro by making it
expand into a symbol-macrolet rather than a let. Figure 18.4 shows a version
of dbind modified to behave like with-slots. We can use with-places as we
do dbind:

> (with-places (a b c) #(1 2 3)
(list a b c))

(1 2 3)

18.3 REFERENCE 237

(defmacro with-places (pat seq &body body)
(let ((gseq (gensym)))
‘(let ((,gseq ,seq))

,(wplac-ex (destruc pat gseq #’atom) body))))

(defun wplac-ex (binds body)
(if (null binds)

‘(progn ,@body)
‘(symbol-macrolet ,(mapcar #’(lambda (b)

(if (consp (car b))
(car b)
b))

binds)
,(wplac-ex (mapcan #’(lambda (b)

(if (consp (car b))
(cdr b)))

binds)
body))))

Figure 18.4: Reference destructuring on sequences.

But the new macro also gives us the option to setf positions in sequences, as we
do slots in with-slots:

> (let ((lst ’(1 (2 3) 4)))
(with-places (a (b . c) d) lst

(setf a ’uno)
(setf c ’(tre)))

lst)
(UNO (2 TRE) 4)

As in a with-slots, the variables now refer to the corresponding locations in the
structure. There is one important difference, however: you must use setf rather
than setq to set these pseudo-variables. The with-slots macro must invoke
a code-walker (page 273) to transform setqs into setfs within its body. Here,
writing a code-walker would be a lot of code for a small refinement.

If with-places is more general than dbind, why not just use it all the time?
While dbind associates a variable with a value, with-places associates it with
a set of instructions for finding a value. Every reference requires a lookup. Where
dbind would bind c to the value of (elt x 2), with-places will make c a
symbol-macro that expands into (elt x 2). So if c is evaluated n times in the

238 DESTRUCTURING

body, that will entail n calls to elt. Unless you actually want to setf the variables
created by destructuring, dbind will be faster.

The definition of with-places is only slightly changed from that of dbind
(Figure 18.1). Within wplac-ex (formerly dbind-ex) the let has become
a symbol-macrolet. By similar alterations, we could make a call-by-name
version of any normal destructuring macro.

18.4 Matching

As destructuring is a generalization of assignment, pattern-matching is a gener-
alization of destructuring. The term “pattern-matching” has many senses. In this
context, it means comparing two structures, possibly containing variables, to see
if there is some way of assigning values to the variables which makes the two
equal. For example, if ?x and ?y are variables, then the two lists

(p ?x ?y c ?x)
(p a b c a)

match when ?x = a and ?y = b. And the lists

(p ?x b ?y a)
(p ?y b c a)

match when ?x = ?y = c.
Suppose a program works by exchanging messages with some outside source.

To respond to a message, the program has to tell what kind of message it is, and
also to extract its specific content. With a matching operator we can combine the
two steps.

To be able to write such an operator we have to invent some way of distin-
guishing variables. We can’t just say that all symbols are variables, because we
will want symbols to occur as arguments within patterns. Here we will say that
a pattern variable is a symbol beginning with a question mark. If it becomes in-
convenient, this convention could be changed simply by redefining the predicate
var?.

Figure 18.5 contains a pattern-matching function similar to ones that appear
in several introductions to Lisp. We give match two lists, and if they can be made◦
to match, we will get back a list showing how:

> (match ’(p a b c a) ’(p ?x ?y c ?x))
((?Y . B) (?X . A))
T

18.4 MATCHING 239

(defun match (x y &optional binds)
(acond2
((or (eql x y) (eql x ’_) (eql y ’_)) (values binds t))
((binding x binds) (match it y binds))
((binding y binds) (match x it binds))
((varsym? x) (values (cons (cons x y) binds) t))
((varsym? y) (values (cons (cons y x) binds) t))
((and (consp x) (consp y) (match (car x) (car y) binds))
(match (cdr x) (cdr y) it))

(t (values nil nil))))

(defun varsym? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\?)))

(defun binding (x binds)
(labels ((recbind (x binds)

(aif (assoc x binds)
(or (recbind (cdr it) binds)

it))))
(let ((b (recbind x binds)))
(values (cdr b) b))))

Figure 18.5: Matching function.

> (match ’(p ?x b ?y a) ’(p ?y b c a))
((?Y . C) (?X . ?Y))
T
> (match ’(a b c) ’(a a a))
NIL
NIL

As match compares its arguments element by element, it builds up assignments
of values to variables, called bindings, in the parameter binds. If the match is
successful, match returns the bindings generated, otherwise it returns nil. Since
not all successful matches generate any bindings, match, like gethash, returns a
second value to indicate whether the match succeeded or failed:

> (match ’(p ?x) ’(p ?x))
NIL
T

240 DESTRUCTURING

(defmacro if-match (pat seq then &optional else)
‘(aif2 (match ’,pat ,seq)

(let ,(mapcar #’(lambda (v)
‘(,v (binding ’,v it)))

(vars-in then #’atom))
,then)

,else))

(defun vars-in (expr &optional (atom? #’atom))
(if (funcall atom? expr)

(if (var? expr) (list expr))
(union (vars-in (car expr) atom?)

(vars-in (cdr expr) atom?))))

(defun var? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\?)))

Figure 18.6: Slow matching operator.

When match returns nil and t as above, it indicates a successful match which
yielded no bindings.

Like Prolog, match treats (underscore) as a wild-card. It matches everything,
and has no effect on the bindings:

> (match ’(a ?x b) ’(_ 1 _))
((?X . 1))
T

Given match, it is easy to write a pattern-matching version of dbind. Fig-
ure 18.6 contains a macro called if-match. Like dbind, its first two arguments
are a pattern and a sequence, and it establishes bindings by comparing the pattern
with the sequence. However, instead of a body it has two more arguments: a then
clause to be evaluated, with new bindings, if the match succeeds; and an else
clause to be evaluated if the match fails. Here is a simple function which uses
if-match:

(defun abab (seq)
(if-match (?x ?y ?x ?y) seq

(values ?x ?y)
nil))

If the match succeeds, it will establish values for?x and?y, which will be returned:

18.4 MATCHING 241

> (abab ’(hi ho hi ho))
HI
HO

The function vars-in returns all the pattern variables in an expression. It
calls var? to test if something is a variable. At the moment, var? is identical to
varsym? (Figure 18.5), which is used to detect variables in binding lists. We have
two distinct functions in case we want to use different representations for the two
kinds of variables.

As defined in Figure 18.6, if-match is short, but not very efficient. It does
too much work at runtime. We traverse both sequences at runtime, even though
the first is known at compile-time. Worse still, during the process of matching, we
cons up lists to hold the variable bindings. If we take advantage of information
known at compile-time, we can write a version of if-match which performs no
unnecessary comparisons, and doesn’t cons at all.

If one of the sequences is known at compile-time, and only that one contains
variables, then we can go about things differently. In a call to match, either
argument could contain variables. By restricting variables to the first argument
of if-match, we make it possible to tell at compile-time which variables will
be involved in the match. Then instead of creating lists of variable bindings, we
could keep the values of variables in the variables themselves.

The new version of if-match appears in Figure 18.7 and 18.8. When we can
predict what code would be evaluated at runtime, we can simply generate it at
compile-time. Here, instead of expanding into a call to match, we generate code
which performs just the right comparisons.

If we are going to use the variable ?x to contain the binding of ?x, how do we
represent a variable for which no binding has yet been established by the match?
Here we will indicate that a pattern variable is unbound by binding it to a gensym.
So if-match begins by generating code which will bind all the variables in the
pattern to gensyms. In this case, instead of expanding into a with-gensyms, it’s
safe to make the gensyms once at compile-time and insert them directly into the
expansion.

The rest of the expansion is generated by pat-match. This macro takes
the same arguments as if-match; the only difference is that it establishes no
new bindings for pattern variables. In some situations this is an advantage, and
Chapter 19 will use pat-match as an operator in its own right.

In the new matching operator, the distinction between pattern content and
pattern structure will be defined by the function simple?. If we want to be able
to use quoted literals in patterns, the destructuring code (and vars-in) have to be
told not to go inside lists whose first element is quote. With the new matching
operator, we will be able to use lists as pattern elements, simply by quoting them.

242 DESTRUCTURING

(defmacro if-match (pat seq then &optional else)
‘(let ,(mapcar #’(lambda (v) ‘(,v ’,(gensym)))

(vars-in pat #’simple?))
(pat-match ,pat ,seq ,then ,else)))

(defmacro pat-match (pat seq then else)
(if (simple? pat)

(match1 ‘((,pat ,seq)) then else)
(with-gensyms (gseq gelse)

‘(labels ((,gelse () ,else))
,(gen-match (cons (list gseq seq)

(destruc pat gseq #’simple?))
then
‘(,gelse))))))

(defun simple? (x) (or (atom x) (eq (car x) ’quote)))

(defun gen-match (refs then else)
(if (null refs)

then
(let ((then (gen-match (cdr refs) then else)))

(if (simple? (caar refs))
(match1 refs then else)
(gen-match (car refs) then else)))))

Figure 18.7: Fast matching operator.

Like dbind, pat-match calls destruc to get a list of the calls that will
take apart its argument at runtime. This list is passed on to gen-match, which
recursively generates matching code for nested patterns, and thence to match1,
which generates match code for each leaf of the pattern tree.

Most of the code which will appear in the expansion of an if-match comes
from match1, which is shown in Figure 18.8. This function considers four cases.
If the pattern argument is a gensym, then it is one of the invisible variables created
by destruc to hold sublists, and all we need to do at runtime is test that it has the
right length. If the pattern element is a wildcard (), no code need be generated.
If the pattern element is a variable, match1 generates code to match it against,
or set it to, the corresponding part of the sequence given at runtime. Otherwise,
the pattern element is taken to be a literal value, and match1 generates code to
compare it with the corresponding part of the sequence.

18.4 MATCHING 243

(defun match1 (refs then else)
(dbind ((pat expr) . rest) refs
(cond ((gensym? pat)

‘(let ((,pat ,expr))
(if (and (typep ,pat ’sequence)

,(length-test pat rest))
,then
,else)))

((eq pat ’_) then)
((var? pat)
(let ((ge (gensym)))
‘(let ((,ge ,expr))

(if (or (gensym? ,pat) (equal ,pat ,ge))
(let ((,pat ,ge)) ,then)
,else))))

(t ‘(if (equal ,pat ,expr) ,then ,else)))))

(defun gensym? (s)
(and (symbolp s) (not (symbol-package s))))

(defun length-test (pat rest)
(let ((fin (caadar (last rest))))
(if (or (consp fin) (eq fin ’elt))

‘(= (length ,pat) ,(length rest))
‘(> (length ,pat) ,(- (length rest) 2)))))

Figure 18.8: Fast matching operator (continued).

Let’s look at examples of how some parts of the expansion are generated.
Suppose we begin with

(if-match (?x ’a) seq
(print ?x)
nil)

The pattern will be passed to destruc, with some gensym (call it g for legibility)
to represent the sequence:

(destruc ’(?x ’a) ’g #’simple?)

yielding:

244 DESTRUCTURING

((?x (elt g 0)) ((quote a) (elt g 1)))

On the front of this list we cons (g seq):

((g seq) (?x (elt g 0)) ((quote a) (elt g 1)))

and send the whole thing togen-match. Like the naive implementation oflength
(page 22), gen-match first recurses all the way to the end of the list, and then
builds its return value on the way back up. When it has run out of elements,
gen-match returns its then argument, which will be ?x. On the way back up the
recursion, this return value will be passed as the then argument to match1. Now
we will have a call like:

(match1 ’(((quote a) (elt g 1))) ’(print ?x) ’〈else function〉)
yielding:

(if (equal (quote a) (elt g 1))
(print ?x)
〈else function〉)

This will in turn become the then argument to another call to match1, the value
of which will become the then argument of the last call to match1. The full
expansion of this if-match is shown in Figure 18.9.

In this expansion gensyms are used in two completely unrelated ways. The
variables used to hold parts of the tree at runtime have gensymed names, in order
to avoid capture. And the variable ?x is initially bound to a gensym, to indicate
that it hasn’t yet been assigned a value by matching.◦

In the new if-match, the pattern elements are now evaluated instead of being
implicitly quoted. This means that Lisp variables can be used in patterns, as well◦
as quoted expressions:

> (let ((n 3))
(if-match (?x n ’n ’(a b)) ’(1 3 n (a b))

?x))
1

Two further improvements appear because the new version calls destruc (Fig-
ure 18.1). The pattern can now contain &rest or &body keywords (match doesn’t
bother with those). And because destruc uses the generic sequence operators
elt and subseq, the new if-matchwill work for any kind of sequence. If abab
is defined with the new version, it can be used also on vectors and strings:

18.4 MATCHING 245

(if-match (?x ’a) seq
(print ?x))

expands into:

(let ((?x ’#:g1))
(labels ((#:g3 nil nil))
(let ((#:g2 seq))
(if (and (typep #:g2 ’sequence)

(= (length #:g2) 2))
(let ((#:g5 (elt #:g2 0)))
(if (or (gensym? x) (equal ?x #:g5))

(let ((?x #:g5))
(if (equal ’a (elt #:g2 1))

(print ?x)
(#:g3)))

(#:g3)))
(#:g3)))))

Figure 18.9: Expansion of an if-match.

> (abab "abab")
#\a
#\b
> (abab #(1 2 1 2))
1
2

In fact, patterns can be as complex as patterns to dbind:

> (if-match (?x (1 . ?y) . ?x) ’((a b) #(1 2 3) a b)
(values ?x ?y))

(A B)
#(2 3)

Notice that, in the second return value, the elements of the vector are displayed.
To have vectors printed this way, set *print-array* to t.

In this chapter we are beginning to cross the line into a new kind of pro-
gramming. We began with simple macros for destructuring. In the final version
of if-match we have something that looks more like its own language. The
remaining chapters describe a whole class of programs which operate on the same
philosophy.

