

Parsing

- A grammar describes syntactically legal strings in a language
- A recogniser simply accepts or rejects strings
- A *generator* produces strings
- A parser constructs a parse tree for a string
- Two common types of parsers:
 - -bottom-up or data driven
 - -top-down or hypothesis driven
- A recursive descent parser easily implements a top-down parser for simple grammars

Top down vs. bottom up parsing

- The parsing problem is to connect the root node S with the tree leaves, the input
- Top-down parsers: starts constructing
 the parse tree at the top (root) and move
 down towards the leaves. Easy to implement by
 hand, but requires restricted grammars. E.g.:
 - Predictive parsers (e.g., LL(k))
- Bottom-up parsers: build nodes on the bottom of the parse tree first. Suitable for automatic parser generation, handles larger class of grammars. E.g.:
 - shift-reduce parser (or LR(k) parsers)
- Both are general techniques that can be made to work for all languages (but not all grammars!)

Top down vs. bottom up parsing

- Both are general techniques that can be made to work for all languages (but not all grammars!)
- Recall that a given language can be described by several grammars
- Both of these grammars describe the same language

E -> E + Num
E -> Num

E -> Num + E E -> Num

- The first one, with it's left recursion, causes problems for top down parsers Q: what?
- For a given parsing technique, we may have to transform the grammar to work with it

Parsing complexity

- How hard is parsing? How to we measure that?
- Parsing an arbitrary CFG is O(n³) -- it can take time proportional the cube of the # of input symbols
 - This is bad! Q: why?
- If we constrain the grammar, we can guarentee linear time parsing. This is good! Q: why?
- Two important (for PL) classes of linear-time parsers
 - LL parsers: for LL grammars using a top-down approach
 - –LR parsers: for LR grammars using a bottom-up strategy
- LL(n): Left to right, Leftmost derivation, look ahead ≤ n symbols
- LR(n): Left to right, Rightmost derivation, look ahead ≤ n symbols

Top Down Parsing Methods

- Simplest method is a full-backup, recursive descent parser
- Often used for parsing simple languages
- Write recursive recognizers (subroutines) for each grammar rule
 - -If rules succeeds perform some action(i.e., build a tree node, emit code, etc.)
 - If rule fails, return failure. Caller may try another choice or fail
 - -On failure it "backs up"

Top Down Parsing Methods: Problems

- Grammar rules which are left-recursive lead to non-termination!
- When going forward, parser consumes tokens from input, what happens if we have to back up? Q: suggestions?
- Algorithms that use backup tend to be, in general, inefficient
 - There might be a large number of possibilities to try before finding the right one or giving up

Garden Path Sentences

- In natural languages, a garden path sentence is one that starts in such a way that a person's most likely interpretation is wrong
- Classic examples:
 - -The old man the boat
 - -The horse raced past the barn fell
- Readers are lured into a parse that turns out to be a dead end
 - -Recovery is difficult or impossible

Recursive Decent Parsing Example

Problems

- Some grammars cause problems for top down parsers
- Top down parsers do not work with leftrecursive grammars
 - E.g., one with a rule like: E -> E + T
 - We can transform a left-recursive grammar into one which is not
- A top down grammar can limit backtracking if it only has one rule per non-terminal
 - The technique of rule factoring can be used to eliminate multiple rules for a non-terminal

Left-recursive grammars

•A grammar is left recursive if it has rules like

•Or if it has indirect left recursion, as in

- •Q: Why is this a problem?
 - –A: can lead to non-terminating recursion!

Left-recursive grammars

Consider

- We can manually or automatically rewrite any grammar to remove leftrecursion
- This makes it usable for a top-down parser

Elimination of Left Recursion

Consider left-recursive grammar

$$S \rightarrow S \alpha$$

 $S \rightarrow \beta$

• S generates strings

β β α β α α ...

 Rewrite using rightrecursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

Concretely

- T generates strings id id+id
- Rewrite using rightrecursion

id+id+id ...

General Left Recursion

• The grammar

$$S \rightarrow A \alpha \mid \delta$$

 $A \rightarrow S \beta$

is also left-recursive because

$$S \rightarrow^+ S \beta \alpha$$

where → the means "can be rewritten in one or more steps"

• This indirect left-recursion can also be automatically eliminated

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by further restricting the grammar to allow us to successfully *predict* which rule to use

Predictive Parsers

- Non-terminal with many rules makes parsing hard
- A *predictive parser* processes the input stream typically from left to right
 - Is there any other way to do it? Yes for programming languages!
- It peeks ahead at the *upcoming terminal symbols* to decide which grammar rule to use next
- And always makes the right choice of which rule to use
- How much it can peek ahead is an issue

Predictive Parsers

- An important class of predictive parser only peek ahead one token into the stream
- An an LL(k) parser, does a Left-to-right parse, a Leftmost-derivation and k-symbol lookahead
- Grammars where one can decide which rule to use by examining only the next token are LL(1)
- LL(1) grammars are widely used in practice

 The syntax of a PL can usually be adjusted to enable it to be described with an LL(1) grammar

Remember...

- Given a grammar and a string in the language defined by the grammar ...
- There may be more than one way to *derive* the string leading to the *same parse tree*
- It depends on the order in which you apply the rules
- And what parts of the string you choose to rewrite next
- All of the derivations are valid
- To simplify the problem and the algorithms, we often focus on one of two simple derivation strategies
- A *leftmost* derivation
- A rightmost derivation

Predictive Parser

Example: consider the grammar

 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$ $S \rightarrow \text{begin } S L$ $S \rightarrow \text{print } E$ $L \rightarrow \text{end}$ $L \rightarrow ; S L$ $E \rightarrow \text{num} = \text{num}$

An *S* expression starts with an IF, BEGIN, or PRINT token, and an *L* expression starts with an END or SEMICOLON token, and an *E* expression has only one rule.

By peeking at the next symbol, a parser always knows what rule to apply for this grammar

LL(k) and **LR(k)** parsers

- Two important parser classes are LL(k) and LR(k)
- The name LL(k) means:
- L: Left-to-right scanning of the input
- L: Constructing *leftmost derivation*
- $\boldsymbol{-}$ k: max $\boldsymbol{\#}$ of input symbols needed to predict parser action
- The name LR(k) means:
- L: *Left-to-right* scanning of the input
- R: Constructing *rightmost derivation* in reverse
- k: max # of input symbols needed to select parser action
- A LR(1) or LL(1) parser never need to "look ahead" more than one input token to know what parser production rule applies

Predictive Parsing and Left Factoring

• Consider the grammar

$$\begin{split} \mathbf{E} &\rightarrow \mathbf{T} + \mathbf{E} \\ \mathbf{E} &\rightarrow \mathbf{T} \\ \mathbf{T} &\rightarrow \mathbf{int} \\ \mathbf{T} &\rightarrow \mathbf{int} * \mathbf{T} \\ \mathbf{T} &\rightarrow (\mathbf{E}) \end{split}$$

Even left recursion is removed, a grammar may not be parsable with a LL(1) parser

- Hard to predict because
 - For T, two productions start with int
 - For E, it is not clear how to predict which rule to use
- Must left-factor grammar before use for predictive parsing
- Left-factoring involves rewriting rules so that, if a nonterminal has > 1 rule, each begins with a **terminal**

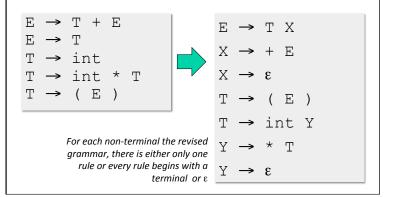
Left Factoring

- Consider a rule of the form A => a B1 | a B2 | a B3 | ... a Bn
- A top down parser generated from this grammar is inefficient due to backtracking
- Avoid problem by left factor the grammar
 - Collect rules with same left hand side that begin with the same symbols on the right hand side
 - Combine common strings into a single rule and append a new non-terminal to end of new rule
 - Create new rules using this new non-terminal for each of the suffixes to the common production
- After left factoring:

A -> a A1 A1 -> B1 | B2 | B3 ... Bn

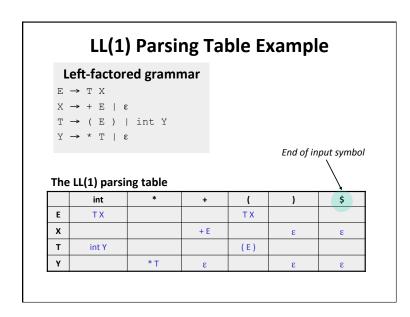
Left-Factoring Example

Add new non-terminals X and Y to factor out **common prefixes** of rules



Using Parsing Tables

- LL(1) means that for each non-terminal and lookahead token there is only one production
- Can be represented as a simple table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one rule's action or empty if error
- Method similar to recursive descent, except
 - For each non-terminal S
 - Look at the next token a
 - Chose the production shown at table cell [S, a]
- Use a stack to keep track of pending non-terminals
- Reject when we encounter an error state, accept when we encounter end-of-input



LL(1) Parsing Table Example

 $E \rightarrow T X$ $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

- •Consider the [E, int] entry
- "When current non-terminal is E & next input int, use production $E \rightarrow T X$ "
- It's the only production that can generate an *int* in next place
- •Consider the [Y, +] entry
- "When current non-terminal is Y and current token is +, get rid of Y"
- -Y can be followed by + only in a derivation where Y→ε
- •Consider the [E, *] entry
- Blank entries indicate error situations
- "There is no way to derive a string starting with * from non-terminal E"

	int	*	+	()	\$
Е	ΤX			ΤX		
Х			+ E		3	8
Т	int Y			(E)		
Υ		* T	ε		ε	8

		LL(1) Parsiı	ng Exar	nple				
Sta	ck		Input		Action				
E \$	E \$			\$	pop();push(T X)				
T X	T X \$			\$	pop();push(int Y)				
int	int Y X \$			\$	pop();next++				
Y X	Y X \$ * int \$				pop();push(* T)				
* T	* T X \$ * i			int \$ po			pop();next++		
T X	T X \$ int \$ int \$ Y X \$ \$ int \$			\$ pop()		;push(int Y)			
int					<pre>pop();next++; pop() pop() ACCEPT!</pre>				
Y X									
X \$	X \$		\$						
\$		\$							
E → TX		int	*	+	()	\$		
$X \rightarrow +E$ $X \rightarrow \epsilon$	Е	ΤX			ТX				
$T \rightarrow (E)$ $T \rightarrow int Y$	Х			+ E		ε	ε		
Y → *T	Т	int Y			(E)				
Υ → ε	Υ		* T	ε		8	ε		

Constructing Parsing Tables

- No table entry can be multiply defined
- If A $\rightarrow \alpha$, where in the line of A we place α ?
- In column t where t can start a string derived from α
 - $\alpha \rightarrow^* t \beta$
 - We say that $t \in First(\alpha)$
- In the column t if α is ε and t can follow an A
 - $S \rightarrow^* \beta A t \delta$
 - We say $t \in Follow(A)$
- With the first and follow sets, we can construct the LL(1) parsing table

Computing First Sets

Definition: First(X) = $\{t \mid X \rightarrow^* t\alpha\} \cup \{\epsilon \mid X \rightarrow^* \epsilon\}$

Algorithm sketch (see book for details):

- 1. for all terminals t do First(t) \leftarrow { t }
- 2. for each production $X \rightarrow \varepsilon$ do First(X) $\leftarrow \{ \varepsilon \}$
- 3. if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$, $1 \le i \le n$ do add $First(\alpha)$ to First(X)
- 4. for each $X \to A_1 \dots A_n$ s.t. $\varepsilon \in First(A_i)$, $1 \le i \le n$ do add ε to First(X)
- 5. repeat steps 4 and 5 until no First set can be grown

First Sets. Example

```
Recall the grammar
```

First(*) = { * }

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow *T \mid \varepsilon$

First sets

First(() = {() First(T) = {int, ()}
First()) = {()} First(E) = {int, ()}
First(int) = {int} First(X) = {+,
$$\epsilon$$
}
First(+) = {+} First(Y) = {*, ϵ }

Computing Follow Sets

• Definition:

Follow(X) = { t | S
$$\rightarrow$$
* β X t δ }

- Intuition
 - If S is the start symbol then $\$ \in Follow(S)$
 - If X → A B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
 - Also if B →* ε then Follow(X) \subseteq Follow(A)

Computing Follow Sets

Algorithm sketch:

- 1. Follow(S) \leftarrow {\$}
- 2. For each production A $\rightarrow \alpha$ X β
 - add First(β) {ε} to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$
 - add Follow(A) to Follow(X)
- repeat step(s) ____ until no Follow set grows

Follow Sets. Example

• Recall the grammar

```
E \rightarrow TX X \rightarrow + E \mid \varepsilon

T \rightarrow (E) \mid int Y Y \rightarrow *T \mid \varepsilon
```

Follow sets

```
Follow(+) = { int, ( } Follow(*) = { int, ( } Follow(() = { int, ( }
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do
 - T[A, t] = α
 - If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - \bullet T[A, t] = α
 - If $\varepsilon \in First(\alpha)$ and $\varphi \in Follow(A)$ do
 - T[A, \$] = α

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
- Reasons why a grammar is not LL(1) include
 - -G is ambiguous
 - -G is left recursive
 - -G is not left-factored
- Most programming language grammars are not strictly LL(1)
- There are tools that build LL(1) tables

Bottom-up Parsing

- YACC uses bottom up parsing. There are two important operations that bottom-up parsers use: shift and reduce
 - In abstract terms, we do a simulation of a <u>Push Down Automata</u> as a finite state automata
- Input: given string to be parsed and the set of productions.
- Goal: Trace a rightmost derivation in reverse by starting with the input string and working backwards to the start symbol

Example of Bottom-up Parsing

		•	U
STACK	INPUT BUFFER	ACTION	
\$	num1+num2*num3\$	shift	
\$num1	+num2*num3\$	reduc	E -> E+T
\$F	+num2*num3\$	reduc	ļΤ
\$T	+num2*num3\$	reduc	E-T
\$E	+num2*num3\$	shift	T -> T*F
\$E+	num2*num3\$	shift	F T/F
\$E+num2	*num3\$	reduc	F -> (E)
\$E+F	*num3\$	reduc	id
\$E+T	*num3\$	shift	-E
E+T*	num3\$	shift	num
E+T*num3	\$	reduc	
E+T*F	\$	reduc	
E+T	\$	reduc	
E	\$	accept	

Algorithm

- 1. Start with an empty stack and a full input buffer. (The string to be parsed is in the input buffer.)
- 2. Repeat until the input buffer is empty and the stack contains the start symbol.
- a. <u>Shift</u> zero or more input symbols onto the stack from input buffer until a handle (beta) is found on top of the stack. If no handle is found report syntax error and exit.
- b. Reduce handle to the nonterminal A. (There is a production A -> beta)
- 3. <u>Accept</u> input string and return some representation of the derivation sequence found (e.g.., <u>parse tree)</u>
- The four key operations in bottom-up parsing are shift, reduce, accept and error.
- Bottom-up parsing is also referred to as shift-reduce parsing.
- Important thing to note is to know when to shift and when to reduce and to which reduce.