4 (c) parsing -

\@

2% (3+4)+5

Parsing

e A grammar describes syntactically legal strings
in a language
* A recogniser simply accepts or rejects strings
e A generator produces strings
* A parser constructs a parse tree for a string
e Two common types of parsers:
—bottom-up or data driven

—top-down or hypothesis driven
e A recursive descent parser easily implements a
top-down parser for simple grammars

Top down vs. bottom up parsing

¢ The parsing problem is to connect the root
node S with the tree leaves, the input

e Top-down parsers: starts constructing .
the parse tree at the top (root) and move A=1+3%4/5
down towards the leaves. Easy to implement by
hand, but requires restricted grammars. E.g.:

- Predictive parsers (e.g., LL(k))

e Bottom-up parsers: build nodes on the bottom of
the parse tree first. Suitable for automatic parser
generation, handles larger class of grammars. E.g.:

—shift-reduce parser (or LR(k) parsers)

¢ Both are general techniques that can be made to

work for all languages (but not all grammars!)

Top down vs. bottom up parsing

¢ Both are general techniques that can be made to
work for all languages (but not all grammars!)

¢ Recall that a given language can be described by
several grammars
¢ Both of these grammars describe the same language

E -> E + Num E -> Num + E
E -> Num E -> Num

¢ The first one, with it’s left recursion, causes
problems for top down parsers Q: what?

e For a given parsing technique, we may have to
transform the grammar to work with it

Parsing complexity

¢ How hard is parsing? How to we measure that?
e Parsing an arbitrary CFG is O(n3) -- it can take time
proportional the cube of the # of input symbols
¢ This is bad! Q: why?
¢ If we constrain the grammar, we can guarentee
linear time parsing. This is good! Q: why?

¢ Two important (for PL) classes e LL(n) : Left to right,
of linear-time parsers Leftmost derivation,
look ahead < n
—LL parsers: for LL grammars symbols
using a top-down approach * LR(n) : Left to right,
Rightmost derivation,
—LR parsers: for LR grammars [-~ T
using a bottom-up strategy symbols

Top Down Parsing Methods
eSimplest method is a full-backup, recur-
sive descent parser
e Often used for parsing simple languages

e Write recursive recognizers (subroutines)
for each grammar rule

—If rules succeeds perform some action
(i.e., build a tree node, emit code, etc.)

—If rule fails, return failure. Caller may try
another choice or fail

—On failure it “backs up”

Top Down Parsing Methods: Problems

e Grammar rules which are left-recursive
lead to non-termination!

*\When going forward, parser consumes
tokens from input, what happens if we
have to back up? Q: suggestions?

e Algorithms that use backup tend to be, in
general, inefficient

—There might be a large number of possibilities
to try before finding the right one or giving up

Garden Path Sentences

eIn natural languages, a garden path sentence
is one that starts in such a way that a
person’s most likely interpretation is wrong

e Classic examples:
—The old man the boat
—The horse raced past the barn fell
eReaders are lured into a parse that
turns out to be a dead end
—Recovery is difficult or impossible

Recursive Decent
Parsing Example

Problems

e Some grammars cause problems for top
down parsers

e Top down parsers do not work with left-
recursive grammars
—E.g.,onewitharulelike:E->E+T
— We can transform a left-recursive grammar

into one which is not

e A top down grammar can limit backtracking

if it only has one rule per non-terminal

— The technique of rule factoring can be used to
eliminate multiple rules for a non-terminal

Left-recursive grammars

eA grammar is left recursive if it has
rules like

X -> X P

*Or if it has indirect left recursion, as in
X -> AP
A -> X

*Q: Why is this a problem?
—A: can lead to non-terminating recursion!

Left-recursive grammars

eConsider
E -> E + Num
E -> Num

e\We can manually or automatically
rewrite any grammar to remove left-
recursion

*This makes it usable for a top-down
parser

Elimination of Left Recursion

* Consider left-recursive * Concretely
grammar T -> T + id
S = s a T-> id
S > P * T generates strings
S generates strings fd .
B id+id
B id+id+id ...
B o a . Rewrit.e using right-
. oo recursion
* Rewrite using right- .
. T -> id
recursion ’ T oia
S =B s

s = a S| ¢

General Left Recursion

e The grammar
S—=Aa|d
A—Sp
is also left-recursive because
S—=*SPpa
where —* means “can be rewritten in one
or more steps”

e This indirect left-recursion can also be
automatically eliminated

Summary of Recursive Descent

e Simple and general parsing strategy
— Left-recursion must be eliminated first
— ... but that can be done automatically
e Unpopular because of backtracking
— Thought to be too inefficient
e |n practice, backtracking is eliminated by

further restricting the grammar to allow us
to successfully predict which rule to use

Predictive Parsers

¢ Non-terminal with many rules makes parsing
hard

¢ A predictive parser processes the input stream
typically from left to right
—Is there any other way to do it? Yes for programming

languages!

¢ [t peeks ahead at the upcoming terminal
symbols to decide which grammar rule to use
next

¢ And always makes the right choice of which rule
to use

e How much it can peek ahead is an issue

Predictive Parsers

e An important class of predictive parser only
peek ahead one token into the stream

*An an LL(k) parser, does a Left-to-right parse,

a Leftmost-derivation and k-symbol
lookahead

e Grammars where one can decide which rule
to use by examining only the next token are
LL(1)

eLL(1) grammars are widely used in practice

The syntax of a PL can usually be adjusted to enable
it to be described with an LL(1) grammar

Predictive Parser

Example: consider the grammar

S — if Ethen Selse S
S—beginSL

S — print £

L—end

L—=;5L An S expression starts with an IF,
E—num =num BEGIN, or PRINT token, and an L
expression starts with an END or
SEMICOLON token, and an E
expression has only one rule.

By peeking at the next symbol, a parser always
knows what rule to apply for this grammar

Remember...

¢ Given a grammar and a string in the language defined
by the grammar ...

* There may be more than one way to derive the string
leading to the same parse tree
— It depends on the order in which you apply the rules
—And what parts of the string you choose to rewrite next

¢ All of the derivations are valid

e To simplify the problem and the algorithms, we

often focus on one of two simple derivation
strategies

—A leftmost derivation
— A rightmost derivation

LL(k) and LR(k) parsers

¢ Two important parser classes are LL(k) and LR(k)
* The name LL(k) means:
— L: Left-to-right scanning of the input
— L: Constructing leftmost derivation
— k: max # of input symbols needed to predict parser action
* The name LR(k) means:
— L: Left-to-right scanning of the input
— R: Constructing rightmost derivation in reverse
— k: max # of input symbols needed to select parser action
e A LR(1) or LL(1) parser never need to “look ahead”
more than one input token to know what parser
production rule applies

Predictive Parsing and Left Factoring

¢ Consider the grammar

E > T + E Even left recursion is

removed, a grammar

E —= T

T — int may not be parsable
T — int * T with a LL(1) parser
T — (E)

¢ Hard to predict because
— For T, two productions start with int
— For E, it is not clear how to predict which rule to use
* Must left-factor grammar before use for predictive
parsing
e Left-factoring involves rewriting rules so that, if a non-
terminal has > 1 rule, each begins with a terminal

Left-Factoring Example

Add new non-terminals X and Y to factor out
common prefixes of rules

Left Factoring

¢ Consider a rule of the form
A=>aBl|aB2|aB3]|..aBn

¢ A top down parser generated from this
grammar is inefficient due to backtracking

¢ Avoid problem by left factor the grammar

—Collect rules with same left hand side that begin
with the same symbols on the right hand side

—Combine common strings into a single rule and
append a new non-terminal to end of new rule

—Create new rules using this new non-terminal for
each of the suffixes to the common production
e After left factoring:
A—>aAl
Al->B1|B2|B3..Bn

E — T
T — int [> X = + B
T — int * T X —
T — (E) T - (E)
T — int Y
For each non-terminal the revised Y — * T
grammar, there is either only one
rule or every rule begins with a Y — ¢
terminal or e
Using Parsing Tables

¢ LL(1) means that for each non-terminal and
lookahead token there is only one production
¢ Can be represented as a simple table
— One dimension for current non-terminal to expand
— One dimension for next token
— A table entry contains one rule’s action or empty if error
¢ Method similar to recursive descent, except
— For each non-terminal S
— Look at the next token a
— Chose the production shown at table cell [S, a]
¢ Use a stack to keep track of pending non-terminals

¢ Reject when we encounter an error state, accept
when we encounter end-of-input

LL(1) Parsing Table Example

Left-factored grammar

E—TX
X =+ E | ¢
T — (E) | int Y
Y = * T | ¢
End of input symbol

The LL(1) parsing table

int & + () $
E TX TX
X +E & €
T intY (E)
\ T € € €

LL(1) Parsing Table Example

eConsider the [E, int] entry

T
+

(
*

K H X =

Vel

H = oE X

| €
) | int Y
| €

—“When current non-terminal is E & next input int, use production E— T X”
—It’s the only production that can generate an int in next place

eConsider the [Y, +] entry

—“When current non-terminal is Y and current token is +, get rid of Y”

—Y can be followed by + only in a derivation where Y—¢

eConsider the [E, *] entry

—Blank entries indicate error situations

—“There is no way to derive a string starting with * from non-terminal E”

LL(1) Parsing Algorithm

initialize stack = <S $> and next

repeat
case stack of
<X, rest> :if T[X,*next] = Y,..Y,
then stack < <Y,... Y, rest>;
else error ();
<t, rest> :ift == *next ++
then stack < <rest>;
else error ();
until stack == < >
(1) next points to the next input token
where:

(2) X matches some non-terminal
(3) t matches some terminal

int o + () 5
E TX TX
X +E € €
T inty (E)
Y *T € € €
LL(1) Parsing Example
Stack Input Action
E S int * int $ pop () ;push (T X)
T X $ int * int $ pop () ;push (int Y)
int Y X $ int * int $ pop () ;next++
Y X $ * int § pop () ;push (* T)
* T X $ * int § pop () ;next++
T X $ int $ pop () ;push (int Y)
int Y X §$ int $ pop () ;next++;
Y X $ $ pop ()
X $ $ pop ()
$ $ ACCEPT!
E - TX int * + () $
L E TX TX
T = (E) X +E € &
T — int Y
¥ = T intY (E)
e Y *T € € €

Constructing Parsing Tables

e No table entry can be multiply defined
e|f A— «, where in the line of A we place a. ?

eIn column t where t can start a string derived
from o

ca—"tf
¢ We say that t € First(a)
eIn the column tif ais € and t can follow an A
*S—="BAtD
e We say t € Follow(A)

—With the first and follow sets, we can
construct the LL(1) parsing table

Computing First Sets

Definition: First(X) = {t| X—="ta}U{e|X—"¢}

Algorithm sketch (see book for details):

1.
2.
3.

for all terminals t do First(t) < {t}

for each production X — ¢ do First(X) < {¢}
ifX—=A ..A o and e EFirst(A),1=<si<n do
add First(a) to First(X)

foreachX — A, ... A s.t. e €EFirst(A), 1=i=n
do add ¢ to First(X)

repeat steps 4 and 5 until no First set can be
grown

First Sets. Example

Recall the grammar

E—TX X—+E|¢

T—(E)|intY Y=*T|e
First sets

First(() ={(} First(T) ={int, (}

First())=1{)} First(E) ={int, (}

First(int)={int} First(X)={+ ¢}

First(+)={+} First(Y)={* ¢}

First(*)={*}

Computing Follow Sets

¢ Definition:

Follow(X)={t | S—="BXtd}

¢ |ntuition

— If S is the start symbol then $ € Follow(S)

— If X = A B then First(B) C Follow(A) and

Follow(X) € Follow(B)

— Also if B —" ¢ then Follow(X) C Follow(A)

Computing Follow Sets

Algorithm sketch:

[EY

. Follow(S) € {S}
2. For each production A —=a Xf
e add First(p) - {e} to Follow(X)
3. Foreach A — a X 3 where € € First(f3)
e add Follow(A) to Follow(X)

repeat step(s) until no Follow set
grows

Follow Sets. Example

¢ Recall the grammar

E—TX X—+E|e
T—(E)|intY Y—=*T|e

¢ Follow sets

Follow(+)={int,(} Follow(*)={int, (}
Follow(() ={int,(} Follow(E)={), S}
Follow(X)={$,)} Follow(T)={+), S}
Follow())=1{+),S} Follow(Y)={+), S}
Follow(int) = {*, +,), S}

Constructing LL(1) Parsing Tables

e Construct a parsing table T for CFG G

e For each production A — o in G do:
— For each terminal t € First(a) do
oTIA t] =
— If e € First(a), for each t € Follow(A) do
*T[A t] =
— If ¢ E First(a) and $ € Follow(A) do
*T[A, $]=a

Notes on LL(1) Parsing Tables

e If any entry is multiply defined then G is not
LL(1)

e Reasons why a grammar is not LL(1) include
—G is ambiguous
—G is left recursive
—G is not left-factored

* Most programming language grammars are
not strictly LL(1)

eThere are tools that build LL(1) tables

Bottom-up Parsing

® YACC uses bottom up parsing. There are
two important operations that bottom-up
parsers use: shift and reduce

— In abstract terms, we do a simulation of a

Push Down Automata as a finite state
automata

Input: given string to be parsed and the set
of productions.

Goal: Trace a rightmost derivation in
reverse by starting with the input string and
working backwards to the start symbol

1.

N

w

Algorithm

Start with an empty stack and a full input buffer. (The string to be
parsed is in the input buffer.)

. Repeat until the input buffer is empty and the stack contains the start

symbol.

a. Shift zero or more input symbols onto the stack from input buffer
until a handle (beta) is found on top of the stack. If no handle is found
report syntax error and exit.

b. Reduce handle to the nonterminal A. (There is a production A ->
beta)

. Accept input string and return some representation of the derivation

sequence found (e.g.., parse tree)

The four key operations in bottom-up parsing are shift, reduce, accept
and error.

Bottom-up parsing is also referred to as shift-reduce parsing.

Important thing to note is to know when to shift and when to reduce
and to which reduce.

Example of Bottom-up Parsing

STACK INPUT BUFFER ACTION

$ numl+num2*num3$ shift

Snuml +num2 *num3$ reduc E->E+T
SF +num2*num3$ reduc I
ST +num2 *num3$ reduc | ET
SE +num2*num3$ shift T -Il—*FF
SE+ num2*num3$ shift | T/F
SE+num?2 *num3$ reduc F->(E)
SE+F *num3$ reduc | id
SE+T *num3$ shift | -E
E+T* num3$ shift num
E+T*num3 S reduc

E+T*F $ reduc

E+T S reduc

E S accept

10

