## 3 <br> Syntax

## Some Preliminaries

- For the next several weeks we'll look at how one can define a programming language.
- What is a language, anyway?

Language is a system of gestures, grammar, signs, sounds, symbols, or words, which is used to represent and communicate concepts, ideas, meanings, and thoughts

- Human language is a way to communicate representations from one (human) mind to another
- What about a programming language?

A way to communicate representations (e.g., of data or a procedure) between human minds and/or machines.

## Introduction

We usually break down the problem of defining a programming language into two parts.

- defining the PL's syntax
- defining the PL's semantics

Syntax - the form or structure of the expressions, statements, and program units
Semantics - the meaning of the expressions, statements, and program units.
Note: There is not always a clear boundary between the two.

## Why and How

Why? We want specifications for several communities:

- Other language designers
- Implementers
- Machines?
- Programmers (the users of the language)

How? One ways is via natural language descriptions (e.g., user's manuals, text books) but there are a number of techniques for specifying the syntax and semantics that are more formal.


## Syntax Overview

- Language preliminaries
- Context-free grammars and BNF
- Syntax diagrams


## Introduction

A sentence is a string of characters over some alphabet.

A language is a set of sentences.
A lexeme is the lowest level syntactic unit of a language (e.g., *, sum, begin).

A token is a category of lexemes (e.g., identifier).
Formal approaches to describing syntax:

1. Recognizers - used in compilers
2. Generators - what we'll study

## Lexical Structure of Programming Languages

- The structure of its lexemes (words or tokens) - token is a category of lexeme
- The scanning phase (lexical analyser) collects characters into tokens
- Parsing phase(syntactic analyser) determines syntactic



## Grammars

## Context-Free Grammars

- Developed by Noam Chomsky in the mid-1950s.
- Language generators, meant to describe the syntax of natural languages.
- Define a class of languages called context-free languages.


## Backus Normal/Naur Form (1959)

- Invented by John Backus to describe Algol 58 and refined by Peter Naur for Algol 60.
- BNF is equivalent to context-free grammars


## BNF (continued)

A metalanguage is a language used to describe another language.

In BNF, abstractions are used to represent classes of syntactic structures -- they act like syntactic variables (also called nonterminal symbols), e.g.
<while_stmt> ::= while <logic_expr> do <stmt>

This is a rule; it describes the structure of a while statement


NOAM CHOMSKY, MIT Institute Professor Professor of Linguistics Linguistic Theory, Philosophy of Languag


## BNF

- A rule has a left-hand side (LHS) which is a single non-terminal symbol and a right-hand side (RHS), one or more terminal or nonterminal symbols.
- A grammar is a finite, nonempty set of rules
- A non-terminal symbol is "defined" by its rules.
- Multiple rules can be combined with the | symbol (read as "or")
- These two rules:
<stmts> ::= <stmt>
<stmts> ::= <stmnt> ; <stmnts>
are equivalent to this one:
<stmts> : := <stmt> | <stmnt> ; <stmnts>


## Non-terminals, pre-terminals \& terminals

- A non-terminal symbol is any symbol that is in the RHS of a rule. These represent abstractions in the language (e.g., if-then-else-statement in
if-then-else-statement ::= if <test>
then <statement> else <statement>
- A terminal symbol is any symbol that is not on the LHS of a rule. AKA lexemes. These are the literal symbols that will appear in a program (e.g., if, then, else in rules above).
- A pre-terminal symbol is one that appears as a LHS of rule(s), but in every case, the RHSs consist of single terminal symbol, e.g., <digit> in

$$
\text { <digit> ::=0 | } 1 \text { | } 2 \text { | } 3 \ldots 7 \text { |.. } 8 \text { | } 9
$$

## BNF

- Repetition is done with recursion
- E.g., Syntactic lists are described in BNF using recursion
- An <ident_list> is a sequence of one or more <ident>s separated by commas.

```
<ident_list> : := <ident> |
```

<ident> , <ident_list>

## BNF Example

Here is an example of a simple grammar for a subset of English.
A sentence is noun phrase and verb phrase followed by a period.
<sentence> : := <nounPhrase> <verbPhrase> .
<nounPhrase> ::= <article> <noun>
<article> ::= a | the
<noun> :: $=$ man | apple | worm | penguin
<verbPhrase> ::= <verb>|<verb><nounPhrase>
<verb> ::= eats | throws | sees | is

## Derivations

- A derivation is a repeated application of rules, starting with the start symbol and ending with a sentence consisting of just all terminal symbols.
- It demonstrates, or proves that the derived sentence is "generated" by the grammar and is thus in the language that the grammar defines
- As an example, consider our baby English grammar <sentence> ::= <nounPhrase><verbPhrase> <nounPhrase> ::= <article><noun>
<article> ::= a | the
<noun> ::= man | apple | worm | penguin <verbPhrase> ::= <verb> | <verb><nounPhrase> <verb> ::= eats | throws | sees | is


## Derivation using BNF

Here is a derivation for "the man eats the apple." <sentence> -> <nounPhrase><verbPhrase>. <article><noun><verbPhrase>. the<noun><verbPhrase>.
the man <verbPhrase>.
the man <verb><nounPhrase>.
the man eats <nounPhrase>.
the man eats <article> < noun>.
the man eats the <noun>.
the man eats the apple.

## Another BNF Example

```
<program> -> <stmts>
<stmts> -> <stmt>
            | <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const
Here is a derivation:
    <program> => <stmts>
            => <stmt>
            => <var> = <expr>
            => a = <expr>
            => a = <term> + <term>
            => a = <var> + <term>
            => a = b + <term>
            => a = b + const
```


## Derivation

Every string of symbols in the derivation is a sentential form.

A sentence is a sentential form that has only terminal symbols.

A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the one that is expanded.

A derivation may be either leftmost or rightmost or something else.

## Finite and Infinite languages

- A simple language may have a finite number of sentences.
- An finite language is the set of strings representing integers between $-10 * * 6$ and $+10 * * 6$
- A finite language can be defined by enumerating the sentences, but using a grammar might be much easier.
- Most interesting languages have an infinite number of sentences.


## Is English a finite or infinite language?

- Assume we have a finite set of words
- Consider adding rules like the following to the previous example
<sentence> : := <sentence><conj><sentence>.
<conj> ::= and | or | because
- Hint: Whenever you see recursion in a BNF it's a sign that the language is infinite.
-When might it not be?



## Grammar

A grammar is ambiguous iff it generates a sentential form that has two or more distinct parse trees.

Ambiguous grammars are, in general, very undesirable in formal languages.

We can eliminate ambiguity by revising the grammar.

## An ambiguous grammar

Here is a simple grammar for expressions that is ambiguous

```
<expr> -> <expr> <op> <expr>
<expr> -> int
<op> -> +|-|*|/
```

The sentence $1+2 * 3$ can lead to two different parse trees corresponding to $1+(2 * 3)$ and $(1+2) * 3$

## Operator notation

- So, how do we interpret expressions like
(a) $2+3+4$
(b) $2+3 * 4$
- While you might argue that it doesn't matter for (a), it can for different operators $(2 * * 3 * * 4)$ or when the limits of representation are hit (e.g., round off in numbers, e.g., $1+1+1+1+1+1+1+1+1+1+1+10^{* *} 6$ )
- Concepts:
- Explaining rules in terms of operator precedence and associativity.
- Realizing the rules in grammars.


## Operators

- The traditional operator notation introduces many problems.
- Operators are used in
- Prefix notation: E.g. Expression (* (+ 1 3) 2) in Lisp
- Infix notation: E.g. Expression $(1+3) * 2$ in Java
- Postfix notation: E.g. Increment foo ++ in C
- Operators can have 1 or more operands
- Increment in C is a one-operand operator: foo ++
- Subtraction in C is a two-operand operator: foo - bar
- Conditional expression in C is a three-operand operators: (foo $==3 ? 0: 1$ )


## Operators: Precedence and Associativity

- Precedence and associativity deal with the evaluation order within expressions
- Precedence rules specify the order in which operators of different precedence level are evaluated, e.g.:
"*" Has a higher precedence that " + ", so "**" groups more tightly than " + "
- What is the results of $4 * 5 * * 6$ ?
- A language's precedence hierarchy should match our intuitions, but the result's not always perfect, as in this Pascal example:
if $A<B$ and $C<D$ then (*ouch*)
- Pascal's relational operators have the lowest precedence!

Operator Precedence: Precedence Table


## Operators: Associativity

- Associativity rules specify the order in which operators of the same precedence level are evaluated
- Operators are typically either left associative or right associative.
- Left associativity is typical for,+- , * and /
- So A + B + C
- Means: $(\mathrm{A}+\mathrm{B})+\mathrm{C}$
- And not: $\mathrm{A}+(\mathrm{B}+\mathrm{C})$
- Does it matter?

Operator Precedence: Precedence Table

|  | \& (bit-wise and) |  |
| :---: | :---: | :---: |
|  | - (bit-wise exclusive or) |  |
|  | I (bit-wise inclusive or) |  |
| . and. | \% (logical and) | and, or, xor (logical operators) |
| .or. | 11 (logical or) |  |
| .eqv., .neqv. <br> (logical comparisons) | ?: (if. . .then... else) |  |
|  | $\begin{aligned} & =+=,-=, *=, /=, \%=, \gg=, \\ & \ll=, \&=, \triangle=, \mid=(\text { assignment }) \end{aligned}$ |  |
|  | , (sequencing) |  |
|  |  |  |

## Operators: Associativity

- For + and * it doesn't matter in theory (though it can in practice) but for - and / it matters in theory, too.
- What should A-B-C mean? $(A-B)-C \neq A-(B-C)$
- What is the results of $2 * * 3 * * 4$ ?

$$
-2 * *(3 * * 4)=2 * * 81=? ?
$$

$$
-(2 * * 3) * * 4=8 * * 4=256
$$

- Languages diverge on this case:
- In Fortran, ** associates from right-to-left, as in normally the case for mathematics
- In Ada, ${ }^{* *}$ doesn't associate; you must write the previous expression as $2{ }^{* *}(3 * * 4)$ to obtain the expected answer


## Associativity in C

- In C, as in most languages, most of the operators associate left to right

$$
a+b+c=>(a+b)+c
$$

- The various assignment operators however associate right to left

$$
=+=-=*=/=\%=\gg=\ll=\&=\wedge=\mid=
$$

- Consider $\mathrm{a}=+\mathrm{b}=+\mathrm{c}$, which is interpreted as

$$
a=+(b=+c)
$$

- and not as
$(\mathrm{a}=+\mathrm{b})=+\mathrm{c}$
- Why?


## Precedence and associativity in Grammar

If we use the parse tree to indicate precedence levels of the operators, we cannot have ambiguity

An unambiguous expression grammar:

```
<expr> -> <expr> - <term> | <term>
```

<term> -> <term> / const | const

## Precedence and associativity in Grammar

Sentence: const - const / const
Derivation:
<expr> => <expr> - <term> $=>$ term $>$ - <term $>$
$\Rightarrow$ const $-<$ term $>$
Parse tree:
I Colls


## Grammar (continued)

Operator associativity can also be indicated by a grammar

```
<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
            <expr> 
        expr> + const
    <expr> + const
    const
```


## An Expression Grammar

Here's a grammar to define simple arithmetic expressions over variables and numbers.

Exp ::= num
Exp $::=\mathrm{id}$
Exp $::=$ UnOp Exp
Exp := Exp BinOp Exp
Exp ::= '(' Exp ')'
UnOp ::= '+'
UnOp ::= '-'
Here's another common notation variant where single quotes are used to indicate terminal symbols and unquoted symbols are taken as non-terminals.
BinOp ::= '+' | '-' |'*' | '/

## A derivation

Here's a derivation of $\mathrm{a}+\mathrm{b} * 2$ using the expression grammar:

```
Exp => // Exp ::= Exp BinOp Exp
Exp BinOp Exp => // Exp ::= id
id BinOp Exp => // BinOp ::= '+'
id + Exp => // Exp ::= Exp BinOp Exp
id + Exp BinOp Exp => // Exp ::= num
id + Exp BinOp num => // Exp ::= id
id + id BinOp num => // BinOp ::= '*'
id + id * num
a + b * 2
```


## Precedence

- Precedence refers to the order in which operations are evaluated.
- Usual convention: exponents $>$ mult div $>$ add sub.
- So, deal with operations in categories: exponents, mulops, addops.
- Here's a revised grammar that follows these conventions:

```
Exp ::= Exp AddOp Exp
Exp ::= Term
Term ::= Term MulOp Term
Term ::= Factor
Factor ::= '(' + Exp + ')'
Factor ::= num | id
AddOp ::= '+' | '-'
MulOp ::= '*' | '/'
```


## Associativity

- Associativity refers to the order in which 2 of the same operation should be computed
$-3+4+5=(3+4)+5$, left associative (all BinOps)
$-3^{\wedge} 4^{\wedge} 5=3^{\wedge}\left(4^{\wedge} 5\right)$, right associative
- Conditionals right associate but have a wrinkle: an else clause associates with closest unmatched if
if a then if $b$ then $c$ else $d$
$=$ if a then (if b then c else d )


## Adding associativity to the grammar

Adding associativity to the BinOp expression grammar
$\operatorname{Exp} \quad::=\operatorname{Exp}$ AddOp Term
$\operatorname{Exp} \quad::=$ Term
Term $::=$ Term MulOp Factor
Term $::=$ Factor
Factor $::=$ '(' Exp ')'
Factor $::=$ num $\mid$ id
AddOp $::=$ '+' $\mid-'$
MulOp $::=$ '*' |'/'

Exp :: $=$ Term
Term ::= Term MulOp Factor
::= Factor
Factor ::= num | id
MulOp ::= '*' | '/'


## Another example: conditionals

- Goal: to create a correct grammar for conditionals.
- It needs to be non-ambiguous and the precedence is else with nearest unmatched if.
Statement ::= Conditional | 'whatever
Conditional ::= 'if' test 'then' Statement 'else' Statement
Conditional ::= 'if' test 'then' Statement
- The grammar is ambiguous. The 1 st Conditional allows unmatched 'if's to be Conditionals.
if test then (if test then whatever else whatever) = correct
if test then (if test then whatever) else whatever $=$ incorrect
- The final unambiguous grammar.

Statement ::= Matched | Unmatched
Matched ::= 'if' test 'then' Matched 'else' Matched | 'whatever'
Unmatched ::= 'if' test 'then' Statement
I 'if' test 'then' Matched 'else' Unmatched

## Extended BNF

Syntactic sugar: doesn't extend the expressive power of the formalism, but does make it easier to use (more readable and more writable).

Optional parts are placed in brackets ([])
<proc_call> -> ident [ ( <expr_list>)]

Put alternative parts of RHSs in parentheses and separate them with vertical bars

$$
<\text { term }>-><\text { term }>(+\mid-) \text { const }
$$

Put repetitions ( 0 or more) in braces ( $\}$ )

$$
\text { <ident> -> letter \{letter | digit\} }
$$

## Syntax Graphs

Syntax Graphs - Put the terminals in circles or ellipses and put the nonterminals in rectangles; connect with lines with arrowheads
e.g., Pascal type declarations

Provides an intuitive, graphical notation.


## Parsing

- A grammar describes the strings of tokens that are syntactically legal in a PL
- A recogniser simply accepts or rejects strings.
- A generator produces sentences in the language described by the grammar
- A parser construct a derivation or parse tree for a sentence (if possible)
- Two common types of parsers:
- bottom-up or data driven
- top-down or hypothesis driven
- A recursive descent parser is a way to implement a top-down parser that is particularly simple


## Parsing complexity

- How hard is the parsing task?
- Parsing an arbitrary Context Free Grammar is $\mathrm{O}\left(\mathrm{n}^{3}\right)$, e.g., it can take time proportional the cube of the number of symbols in the input. This is bad!
- If we constrain the grammar somewhat, we can always parse in linear time. This is good!
- Linear-time parsing
- LL parsers
»Recognize LL grammar
»Use a top-down strategy
- LR parsers
»Recognize LR grammar
»Use a bottom-up strategy
- LL(n) : Left to right, Leftmost derivation, look ahead at most $n$ symbols.
- LR(n) : Left to right, Right derivation, look ahead at most $n$ symbols.


## Recursive Decent Parsing

- Each nonterminal in the grammar has a subprogram associated with it; the subprogram parses all sentential forms that the nonterminal can generate
- The recursive descent parsing subprograms are built directly from the grammar rules
- Recursive descent parsers, like other topdown parsers, cannot be built from leftrecursive grammars (why not?)



## Recursive Decent Parsing Example

Example: For the grammar:

```
<term> -> <factor> {(*|/)<factor>}
```

We could use the following recursive descent parsing subprogram (this one is written in C)

```
void term() {
    /* parse first factor*
    He (next_token == ast_code 1
            next \overline{token == slas\overline{h}_code) {}
        factor(); /* parse next factor */
    }
}
```

| The Chomsky hierarchy | uncomputable |  |  |
| :---: | :---: | :---: | :---: |
|  | Turing machines | Phrase structure | chines. <br> ee <br> languages. <br> ar or |
|  | Linear-bounded automata | Contextsensitive |  |
|  | Push-down automata | Context-free |  |
|  | Finite state automata | Regular |  |
| - The Chomsky hierarchy <br> machines grammars <br> has four types of languages and their associated grammars and machines. <br> - They form a strict hierarchy; that is, regular languages $<$ context-free languages $<$ context-sensitive languages $<$ recursively enumerable languages. <br> -The syntax of computer languages are usually describable by regular or context free languages. |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Summary

- The syntax of a programming language is usually defined using BNF or a context free grammar
- In addition to defining what programs are syntactically legal, a grammar also encodes meaningful or useful abstractions (e.g., block of statements)
- Typical syntactic notions like operator precedence, associativity, sequences, optional statements, etc. can be encoded in grammars
- A parser is based on a grammar and takes an input string, does a derivation and produces a parse tree.

