
1

Introduction
2

Overview

• Motivation
• Why study programming

languages?
• Some key concepts

3

What is a
programming

language?
4

5

What is a programming language?

“...there is no agreement on what a programming
language really is and what its main purpose is
supposed to be. Is a programming language a
tool for instructing machines? A means of communicating
between programmers? A vehicle for expressing high-level
designs? A notation for algorithms? A way of expressing
relationships between concepts? A tool for experimenta-
tion? A means of controlling computerized devices? My
view is that a general-purpose programming language must
be all of those to serve its diverse set of users. The only
thing a language cannot be – and survive – is a mere
collection of ‘‘neat’’ features.”

 -- Bjarne Stroustrup, The Design and Evolution of C++
http://www.cs.umbc.edu/331/papers/dne_notes.pdf

6

On language and thought (1)
Idea: language effects thought
“The Language of Thought Hypothesis (LOTH)
postulates that thought and thinking take place in a
mental language. This language consists of a system of
representations that is physically realized in the brain of
thinkers and has a combinatorial syntax (and semantics)
such that operations on representations are causally
sensitive only to the syntactic properties of
representations. …”

-- Stanford Encyclopedia of Philosophy
-- http://plato.stanford.edu/entries/language-thought/

Still controversial for natural languages: eskimos,
numbers, etc.

7

On language and thought (2)

The tools we use have a profound (and
devious!) influence on our thinking habits,
and therefore, on our thinking abilities.

-- Edsger Dijkstra, How do we tell truths that might hurt?,
http://www.cs.umbc.edu/331/papers/ewd498.htm

Edsger Wybe Dijkstra (11 May 1930 -- 6 August 2002), http://
www.cs.utexas.edu/users/EWD/

Professor Edsger Wybe Dijkstra, a noted pioneer of the science
and industry of computing, died after a long struggle with cancer
on 6 August 2002 at his home in Neunen, the Netherlands.

l

8

On languages and thought (3)

“What doesn't exist are really powerful
general forms of arguing with computers right now.
So we have to have special orders coming in on
special cases and then think up ways to do it. Some
of these are generalizable and eventually you will
get an actual engineering discipline.”

-- Alan Kay, Educom Review

Alan Kay is one of the inventors of the Smalltalk programming
language and one of the fathers of the idea of OOP. He is the
conceiver of the laptop computer and the architect of the modern
windowing GUI.

9

Some General Underlying Issues
• Why study PL concepts?
• Programming domains
• PL evaluation criteria
• What influences PL design?
• Tradeoffs faced by programming

languages
• Implementation methods
• Programming environments

10

Why study Programming
Language Concepts?

•  Increased capacity to express programming
concepts

•  Improved background for choosing appropriate
languages

• Enhanced ability to learn new languages
•  Improved understanding of the significance of

implementation
•  Increased ability to design new languages
• Mastering different programming paradigms

11

Programming Domains

• Scientific applications
• Business applications
• Artificial intelligence
• Systems programming
• Scripting languages
• Special purpose languages

12

Language Evaluation Criteria

• Readability
• Writability
• Reliability
• Cost
• Etc…

13

Evaluation Criteria: Readability
• How easy is it to read and understand programs
written in the PL?

• Arguably the most important criterion!
• Factors effecting readability include:

– Overall simplicity
» Too many features is bad as is a multiplicity of
features

– Orthogonality
» Makes the language easy to learn and read
» Meaning is context independent

– Control statements
– Data type and structures
– Syntax considerations

14

Evaluation Criteria: Writability

How easy is it to write programs in the
language?

Factors effecting writability:
– Simplicity and orthogonality
– Support for abstraction
– Expressivity
– Fit for the domain and problem

15

Evaluation Criteria: Reliability

Factors:
 - Type checking
 - Exception handling
 - Aliasing
 - Readability and writability

16

Evaluation Criteria: Cost

Categories:
– Programmer training
– Software creation
– Compilation
– Execution
– Compiler cost
– Poor reliability
– Maintenance

17

Evaluation Criteria: others

• Portability
• Generality
• Well-definedness
• Good fit for hardware (e.g., cell) or

environment (e.g., Web)
• etc…

18

Language Design Influences
Computer architecture

- We use imperative languages, at least in part,
because we use von Neumann machines
- John von Neuman is generally considered to be

the inventor of the "stored program" machines, the
class to which most of today's computers belong

- CPU+memory which contains both program &
data

- Focus on moving data and program instructions
between registers in CPU to memory locations

19

Von Neumann Architecture

20

Language Design Influences:
Programming methodologies

•  50s and early 60s: Simple applications; worry
about machine efficiency

•  Late 60s: People efficiency became important;
readability, better control structures. maintainability

•  Late 70s: Data abstraction
• Middle 80s: Object-oriented programming
•  90s: distributed programs, Internet, Web
•  00s: cloud computing?, mobile/pervasive

computing?, Web 2.0?, Web services?, virtual
worlds?

21

Language Categories
The big four:

Imperative or procedural (e.g., Fortran, C)
Functional (e.g., Lisp, ML)
Rule based (e.g. Prolog, Jess)
Object-oriented (e.g. Smalltalk, Java)

Others:
Scripting (e.g., Python, Perl, PHP, Ruby)
Constraint (e.g., Eclipse)
Concurrent (Occam)
…

22

Language Design Trade-offs

Reliability versus cost of execution
Ada, unlike C, checks all array indices to ensure
proper range.

Writability versus readability
(2 = 0 +.= T o.| T) / T <- iN
APL one-liner producing prime numbers from 1
to N

Flexibility versus safety
C, unlike Java, allows one to do arithmetic
on pointers.

23

Implementation methods
• Direct execution by hardware

e.g., native machine language
• Compilation to another language

e.g., C compiled to native machine language for Intel Pentium
4

• Interpretation: direct execution by software
e.g., csh, Lisp (traditionally), Python, JavaScript

• Hybrid: compilation then interpretation
Compilation to another language (aka bytecode), then
interpreted by a ‘virtual machine’, e.g., Java, Perl

•  Just-in-time compilation
Dynamically compile some bytecode to native code (e.g., V8
javascript engine)

24

Compilation

25

Interpretation

26

Hybrid

27

Implementation issues
1. Complexity of compiler/interpreter
2. Translation speed
3. Execution speed
4. Code portability
5. Code compactness
6. Debugging ease

compile interpret hybrid

1
3

2
4

5
6

28

Programming Environments
• The collection of tools used in software development,

often including an integrated editor, debugger, compiler,
collaboration tool, etc.

• Modern Integrated Development Environments (IDEs)
tend to be language specific, allowing them to offer
support at the level at which the programmer thinks.

• Examples:
– UNIX -- Operating system with tool collection
– EMACS – a highly programmable text editor
– Smalltalk -- A language processor/environment
– Microsoft Visual C++ -- A large, complex visual environment
– Your favorite Java environment: BlueJ, Jbuilder, J++, …
– Generic: IBM’s Eclipse

29

Summary
•  Programming languages have many aspects & uses
• There are many reasons to study the concepts

underlying programming languages
• There are several criteria for evaluating PLs
•  Programming languages are constantly evolving
• Classic techniques for executing PLs are

compilation and interpretation, with variations

