UMBC CMSC 331 notes (9/17/2004)

Right Sentential Forms 1 E -> E+T
2E->T
* Recall the definition of a 3T ->T*F
ap e r derivation and a rightmost g E :z IEE)
derivation. 6 F -> id
* Each of the lines 1s a B 4
B t t U (right) sentential form BT
ottom p * The parsing problem is - E+T*F
. finding the correct RHS in £ E+T:}_d E
ParSIIlg a right-sentential form to g Eiﬁd *1‘31 s
reduce to get the previous I +i_d*i d
right-sentential form in the Ftid*id
derivation ilﬁ-id*id
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 1 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 2
Bottom up parsing % E > $+T Bottom up parsing % E > $+T
* A bottom up parser 3T 2 T*E . . 37T 2 T*E
looks at a sentential D e -{ftge er(?r}lg one is chosen, it A
form and selects a 5F -> (B) cads to fatlure. 5F -> (B)
contiguous sequence of 6 F->1id *E.g.: replacing E+T with E in 6 F ->id
symbols that matches E+T*F yields E+F, which can
the RHS of a grammar E 4 not be further reduced using the error 4
rule, and replaces it E+T given grammar. E*F
: %
with the LHS 1 i 3 E+T—*F « We’ll define the handle of a E+T F
E|+] T[] F E+T*id . E+T*id
* There might be several *_1— 3 sentential form as the RHS that o
choices, as in the - E+F *1d 2 should be rewritten to yield the E+E I |
sentential form E+T*F el next sentential form in the right Et+id*id &
: T+id*id most derivation T+id*id
* Which one should we F+id*id ' F+id*id
choose? id+id*id id+id*id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 3 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

UMBC CMSC 331 notes (9/17/2004)

Sentential forms 1 g > g+7 Handles
2E->T * A handle of a sentential form is a substring a such that :
« Think of a sentential 2 -IIE- :i E*F — a matches the RHS of a production A -> a ; and
form as one of the entries 5 F -> (E) —replacing o by the LHS A represents a step in the
in a'deriv'ation that 6 F -> id reverse of a rightmost derivation of's. 1- S ->
begllr)lslwng the(istarj[h A * For this grammar, the rightmost 2: A -> Ab
symbol and ends with a E derivation for the input abbcde is 3: A->bDb
legal sentence. E 4- B -> d
oy E+T S =>aABe => aAde => aAbcde => abbcde 5
* So, it’s like a sentence \ DT « The strine aAbed be reduced in t]
but it may have some . _ E+T*F e string aAbcde can be reduced in two ways:
“unexpanded” non- % E+T*ﬁ 9 (1) aAbcde => aAde (using rule 2)
terminals. 5 E+F*id Z (2) aAbcde => aAbcBe (using rule 4)
* We can also think of it as B % E+id*id ® * But (2) isn’t a rightmost derivation, so Abc is the only handle.
*] id s
a parse tree where some * 1T T+id*id » Note: the string to the right of a handle will only contain
of the leaves are as yet F+id*id terminals (why?)
unexpanded non- v l_d +id*id alAbclde
terminals. —
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 5 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.
Phrases Phrases, simple phrases and handles
» Def: B is the handle of the right sentential form y =
- = afw if and only if S =>*rm aAw => affw
A phrase is a subsequence of a \
sentential form that is - * Def: B is a phrase of the right sentential form vy if and
eventually “reduced” to a 3 only if S=>*y =alAa2 =>+ alfa2
: : F
single non-terminal. * Def: B is a simple phrase of the right sentential form y
« A simple phrase is a phrase E[+]T[*]id if and only if S =>* y = alAa2 => alBa2
that is reduced in a single step. For this sentential « The handle of a right sentential form is its leftmost
« The handle is the left-most Form auhat are he simple phrase
simple phrase. « phrases * Given a parse tree, it is now easy to find the handle
« simple ph : -
. ;;mnglz PATAses * Parsing can be thought of as handle pruning
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 7 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

UMBC CMSC 331 notes (9/17/2004)

Phrases, simple phrases and handles

E -> E+T
E->T
T -> T*F
E->F E E
F) E+T
F id E+T*F
A E+T*id
E+F*id
] E-+id*id
\ T-+d*id
F+id*id
: ' ' : B id+id*id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 9

On to parsing

* Ok, so how do we manage when we don’t have the parse tree in
front of us?

» We’ll look at a shift-reduce parser, of the kind that yacc uses.

* A shift-reduce parser has a queue of input tokens and an initially
empty stack and takes one of four possible actions:

— Accept: if the input queue is empty and the start symbol is
the only thing on the stack.

— Reduce: if there is a handle on the top of the stack, pop it off
and replace it with the RHS

— Shift: push the next input token onto the stack
— Fail: if the input is empty and we can’t accept.

* In general, we might have a choice of doing a shift or a reduce,
or maybe in reducing using one of several rules.

* The algorithm we next describe is deterministic.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 10

Shift-Reduce Algorithms

A shift-reduce parser scans input, at each step, considers whether to:
« Shift the next token to the top of the parse stack (along with some state info)

+ Reduce the stack by POPing several symbols off the stack (& their state info) and
PUSHing the corresponding nonterminal (& state info)

Top
Parse Stack ! Input
So | X115 Xm| Sm aj |+ am| $
Parser Parsing
Code Table

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 11

Shift-Reduce Algorithms

The stack is always of the form

bottom top
S Xl@Xz Sn@
state terminal or

non-terminal

* A reduction step is triggered when we see the symbols
corresponding to a rule’s RHS on the top of the stack
bottom top

S1 X1 ...S5X5S6T S7*SsF
T->T*F

S1 X1 ...S5X5S6’ T

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 12

UMBC CMSC 331 notes (9/17/2004)

LR parser table

LR shift-reduce parsers can be efficiently implemented
by precomputing a table to guide the processing

Action Goto

State id + . () 3 E T

-

54 1 2 3

(=
v
o

56 accept

R2 57 R2 R2

R4 R4 R4 R4

55 54 8 2 3
R& R6 R& R&

54 [9 [3
55 E _ _ [10 More on this

= el Later. ..
R1 57 R1 R1

wlo|wlo v s w|mn|=
w
&

=

R3 R3 R3 R3

RS RS RS RS

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 13

When to shift, when to reduce

* The key problem in building a shift-reduce parser is deciding
whether to shift or to reduce.

— repeat: reduce if you see a handle on the top of the stack,
shift otherwise

— Succeed if we stop with only S on the stack and no input

* A grammar may not be appropriate for a LR parser because
there are conflicts which can not be resolved.

* A conflict occurs when the parser cannot decide whether to:
— shift or reduce the top of stack (a shift/reduce conflict), or

— reduce the top of stack using one of two possible
productions (a reduce/reduce conflict)

* There are several varieties of LR parsers (LR(0), LR(1), SLR
and LALR), with differences depending on amount of
lookahead and on construction of the parse table.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 14

Conflicts

Shift-reduce conflict: can't decide whether to shift or to reduce
» Example : "dangling else"
Stmt -> if Expr then Stmt
| if Expr then Stmt else Stmt
| ...
» What to do when else is at the front of the input?

Reduce-reduce conflict: can't decide which of several possible
reductions to make

» Example :
Stmt -> id (params)
| Expr := Expr

| ...
Expr > id (params)

* Given the input a(i, j) the parser does not know whether it is a
procedure call or an array reference.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 15

LR Table

* An LR configuration stores the state of an LR parser
(SOX1S1X2S2...XmSm, aiait1...an$)

* LR parsers are table driven, where the table has two
components, an ACTION table and a GOTO table

« The ACTION table specifies the action of the parser
(e.g., shift or reduce), given the parser state and the
next token

—Rows are state names; columns are terminals

* The GOTO table specifies which state to put on top of
the parse stack after a reduce

—Rows are state names; columns are nonterminals

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 16

UMBC CMSC 331 notes (9/17/2004)

tion . Parser actions
State id + b () 3 E T F il f . 0. al
o | <5 o T 12 3 Initia con-lguratlon. (S0, al...an$)
1 ” accet Parser actions:
5 2 | s R2 | R 1 If ACTION[Sm, ai] = Shift S, the next configuration
S Y T is: (SOX1S1X2S2...XmSmaiS, ai+1...an$)
. " o s 1213 2 If ACTION[Sm, ai] = Reduce A —» B and S =
GOTO[Sm-1, A], where r = the length of [3, the next
5 Ré | Re R6 | Ré configuration is
ol i 9 | 3 (SOX1S1X2S2...Xm-rSm-rAS, aiai+1...an$)
7] % 54 10 3 If ACTION[Sm, ai] = Accept, the parse is complete
8 56 11 and no errors were found.
9 R | S7 RT | R 4 If ACTION[Sm, ai] = Error, the parser calls an error-
10 R3 | R3 R3 | R3 handling routine.
n RS R5 RS RS
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 17 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 18
1: E -> E+T
:E->T Adi Got
- T - T*F Cuon 0lo
Example 4 E > F State| id + * () $ E| T | F
5: F -—> (B)
:F ->id 0 S5 S4 1 2 3
Stack Input action 1 $6 accept
0 Id + id * id $ |Shift 5
0 id 5 +id * id $ Reduce 6 goto(0,F) 2 R2 57 R2 R2
OF3 +id *id $ Reduce 4 goto(0,T) 3 R4 R4 R4 R4
0T?2 +id * id $ Reduce 2 goto(0,E)
OE1 +id * id $ Shift 6 4 55 54 8 2 3
0OEL1+6 id ~ id $ Shift 5 5 R6 | R6 R6 | R6
OE1+61id5 *id $ Reduce 6 goto(6,F) 6 $5 4 9 3
OE1+6FS3 * id $ Reduce 4 goto(6,T)
OE1+6T9 *id $ shift 7 7 S5 54 10
OE1+6T9*7 id $ Shift 5 8 S6 S11
OE1+6T9*71id5 $ Reduce 6 goto(7,E)
OE1+6T9*7F 10 $ Reduce 3 goto(6,T) 9 R1 57 R1 R1
OE1+6T9 $ Reduce 1 goto(O0,E) 10 R3 R3 R3 R3
OE1 $ Accept
n RS R5 RS RS
19 20

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

CMS

C 331, Some material © 1998 by Addison Wesley Longman, Inc.

UMBC CMSC 331 notes (9/17/2004)

0 $accept : E $end
1 E:E "+ T
Yacc as a LR parser 2 1T
apter
* The Unix yacc utility is 6 1
just such a parser. state 0 saccept : . E Send (0)
« It does the heavy lifting W ST L
of computing the table. error
) TO see the table 'EI' ggzg 431 BOttom Up
information, use the —v cema | S o
flag when calling yacc, F:°C -E"" ()
iy i, Parsing
yacc —v test.y E 38:8 9
F goto 5
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 21 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 1
Right Sentential Forms 1 E -> E+T Bottom up parsing 1E BT
. 2E->T1 * A bottom up parser 3T = T*F
 Recall the definition of a 2 E -z II*F looks at a sentential 4E ->F
derivation and a rightmost 5F > ® form and selects a 5 F -> (E)
derivation. 6 F -> id contiguous sequence of 6 F -> id
)) symbols that matches
* E?Ch of the llqes 15 a E 4 the RHS of a grammar E 4
(right) sentential form E+T rule, and replaces it E+T
e The parsing problem is - E+T*F with the LHS L e HTE P gi%
finding the correct RHS in £ el E * There might be several errtid |E
aright-sentential formto 2| EtEfd 2 choices, as in the z 3 E+id¥id |2
d h - o E+id*id sentential form E+T*F e
reduce to get the previous T+id*id . T+id*id
right-sentential form in the F+id*id * Which one should we F+id*id
derivation Y id+id*id choose? id+id*id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

UMBC CMSC 331 notes (9/17/2004)

Bottom up parsing 1E > E+T Sentential forms 1 g > g+7
2E—>T 2E ->T
« If the wrong one is chosen, it 2 -IIE- ‘Z -Fr*F _ , 3T -> T*F
leads to failure. B » Think of a sentential 4E ->F
. . . S F->(B) form as one of the entries 5 F —> (E)
*E.g.: replacing E+T with E in 6 F ->id in a derivation that 6 F -> id
E+T*F yields E+F, which can begins with the start
not be further reduced using the error 4 fym}’(’l and ends with a E 4
given grammar. E*F ced Se?t;nce' E BT
* * So, it’s like a sentence —r—
We’ll d:eﬁne the handle ofa %*f‘d but it may have some \ T . E+T*F
sentential form as the RHS that = = “unexpanded” non- = E+T*id b
. : E+F*id 1B xp g : 5
should be rewritten to yield the E+id*id E terminals. 2 E+F*id z.
next sentential form in the right e *¥ = « We can also think of it as = E+id*id *
most derivation. Trid%id a parse tree where some £ LTI T+id*id
£+1F1 1F1 of the leaves are as yet F+id*id
id+id*id unexpanded non- Y id+id*id
terminals. =
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 4 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 5
Handles Phrases
* A handle of a sentential form is a substring a such that :
—a matches the RHS of a production A -> o ; and E
—replacing o by the LHS A represents a step in the » A phrase is a subsequence of a \
reverse of a rightmost derivation of's. 1- S -> € sentential form that is T
« For this grammar, the rightmost 2: A -> Ab eventually “reduced” to a
derivation for the input abbcde is 3: A->D single non-terminal.
- = = = 4: B -> d . : :
87> aABe=>aAde=>aAbcde = abbede « A simple phrase is a phrase e[+] T[]

* The string aAbcde can be reduced in two ways:

(1) aAbcde => aAde (using rule 2)
(2) aAbcde => aAbcBe (using rule 4)

» But (2) isn’t a rightmost derivation, so Abc is the only handle.
* Note: the string to the right of a handle will only contain

terminals (why?)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

a

Abc|de

that is reduced in a single step.

» The handle is the left-most

simple phrase.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

For this sentential
form what are the

* phrases

* simple phrases

* handle

UMBC CMSC 331 notes (9/17/2004)

Phrases, simple phrases and handles

* Def: B is the handle of the right sentential form y =
ofw if and only if S =>*rm aAw => affw

* Def: B is a phrase of the right sentential form vy if and
only if S=>* vy = alAa2 =>+ alfa2

* Def: 3 is a simple phrase of the right sentential form y
ifand only if S =>*y = alAa2 => alBa2

* The handle of a right sentential form is its leftmost
simple phrase

* Given a parse tree, it is now easy to find the handle
* Parsing can be thought of as handle pruning

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 8

Phrases, simple phrases and handles

E -> E+T
E->T
T -> T*F
E->F E E
F) E+T
F id E+T*F
A E+T*id
E+F*id
] E-+id*id
\ T-+d*id
F+id*id
: ' ' : B id+id*id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 9

On to parsing

* Ok, so how do we manage when we don’t have the parse tree in
front of us?

» We’ll look at a shift-reduce parser, of the kind that yacc uses.

* A shift-reduce parser has a queue of input tokens and an initially
empty stack and takes one of four possible actions:

— Accept: if the input queue is empty and the start symbol is
the only thing on the stack.

— Reduce: if there is a handle on the top of the stack, pop it off
and replace it with the RHS

— Shift: push the next input token onto the stack
— Fail: if the input is empty and we can’t accept.

* In general, we might have a choice of doing a shift or a reduce,
or maybe in reducing using one of several rules.

* The algorithm we next describe is deterministic.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 10

Shift-Reduce Algorithms

A shift-reduce parser scans input, at each step, considers whether to:
« Shift the next token to the top of the parse stack (along with some state info)

+ Reduce the stack by POPing several symbols off the stack (& their state info) and
PUSHing the corresponding nonterminal (& state info)

Top
Parse Stack ! Input
So | X115 Xm| Sm aj |+ am| $
Parser Parsing
Code Table

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 11

UMBC CMSC 331 notes (9/17/2004)

Shift-Reduce Algorithms

The stack is always of the form

LR parser table

* LR shift-reduce parsers can be efficiently implemented
by precomputing a table to guide the processing

bottom top
Action Goto
Sl Xl X2 .o Sn@ State| id + . () 3 E T F
1] 55 54 1 2 3
state terminal_or 1 56 accept
non-terminal > Rz | s7 R2 | pe
* A reduction step is triggered when we see the symbols 3 = Al . Re | B4 ——
corresponding to a rule’s RHS on the top of the stack : s T : :
bottom top 6 55 [|54 [[s | 3
7 | ss [[s ' ‘ 10| More on this
S1 X1 ...S5X5S6T S7*SgF s s | | [| ' Later .
T => T*F 9 R | 57| RI | ORI
10 R3 | R3 | R3 | R3
b n RS RS RS RS
S1 X1 ...S5X5S6 T
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 12 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 13
When to shift, when to reduce Conflicts

* The key problem in building a shift-reduce parser is deciding
whether to shift or to reduce.

— repeat: reduce if you see a handle on the top of the stack,
shift otherwise

— Succeed if we stop with only S on the stack and no input

* A grammar may not be appropriate for a LR parser because
there are conflicts which can not be resolved.

* A conflict occurs when the parser cannot decide whether to:
— shift or reduce the top of stack (a shift/reduce conflict), or

—reduce the top of stack using one of two possible
productions (a reduce/reduce conflict)

* There are several varieties of LR parsers (LR(0), LR(1), SLR
and LALR), with differences depending on amount of
lookahead and on construction of the parse table.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 14

Shift-reduce conflict: can't decide whether to shift or to reduce
» Example : "dangling else"
Stmt -> if Expr then Stmt
| if Expr then Stmt else Stmt
| ...
» What to do when else is at the front of the input?

Reduce-reduce conflict: can't decide which of several possible
reductions to make

» Example :
Stmt -> id (params)
| Expr := Expr

| ...
Expr > id (params)

* Given the input a(i, j) the parser does not know whether it is a
procedure call or an array reference.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 15

UMBC CMSC 331 notes (9/17/2004)

LR Table Action Goto
State| id + . () $ E| T | F
» An LR configuration stores the state of an LR parser 0 s5 54 1| 2| 3
(SOX1S1X2S2...XmSm, aiai+1...an$) 1 s6 accept

* LR parsers are table driven, where the table has two B R2 | 57 R2 | R2
components, an ACTION table and a GOTO table 3 R4 | R4 R4 | R4

» The ACTION table specifies the action of the parser i 53 4 8 | 2] 3
(e.g., shift or reduce), given the parser state and the 5 R6 | R6 R6 | R6
next token 6 55 54 9 3

—Rows are state names; columns are terminals 7 $5 54 10
« The GOTO table specifies which state to put on top of 8 %6 S
the parse stack after a reduce 9 R1 | s7 R1 | RI
—Rows are state names; columns are nonterminals 0 RS [R3 R3 | R3
1 RS | RS RS RS
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 16 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 17
. 1: E -> E+T
Parser actions el b qui
Example I

Initial configuration: (S0, al...an$) 25 E = gg)

Parser actions: Stack Tnput action

1 If ACTION[Sm, ai] = Shift S, the next configuration 0 fd + 1d » 1d $ |shiTt 5
is: (S0X1S1X2S2...XmSmaiS, ai+1...an$) 01id5 *id*id$ |Reduce 6 goto(0.F)

) 0OF3 +id * id $ Reduce 4 goto(0,T)

2 If ACTION[Sm, ai] = Reduce A - B and S = 0T 2 +id * id $ Reduce 2 goto(O,E)
GOTO[Sm-1, A], where r = the length of 3, the next 0E1 +id *id $ shift 6
configuration is 0OE1+6 id ~ id $ shift 5

.. OE1+6id5 *id $ Reduce 6 goto(6,F)
(SOX1S1X2S2...Xm-rSm-rAS, aiai+1...an$) CEi oS e e 2 St e T

3 If ACTION[Sm, ai] = Accept, the parse is complete OE1+6T9 *id $ shife 7

and no errors were found. 0E1+6T8*>7 id $ shift 5
A OE1+6T9*71id5 $ Reduce 6 goto(7,E)

4 If ACTION[Sm, ai] = Error, the parser calls an error- OEL+67T9 7 F 10 3 Reduce 3 goto(6.T)

handling routine. OE1+67T09 $ Reduce 1 goto(0,E)
OE1 $ Accept

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 18

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

19

UMBC CMSC 331 notes (9/17/2004)

CMS(

Action Goto

State| id + * () $ T F
0 S5 S4 2 3
1 56 accept
2 R2 S7 R2 R2
3 R4 R4 R4 R4
4 S5 S4 2 3
5 R6 R6 R6 R6
6 S5 54 9 3
7 S5 S4 10
8 S6 SN
9 R1 S7 R1 R1
10 R3 R3 R3 R3
n RS | RS RS RS

C 331, Some material © 1998 by Addison Wesley Longman, Inc.

20

Yacc as a LR parser

* The Unix yacc utility is
just such a parser.

* It does the heavy lifting
of computing the table.

* To see the table

information, use the —v
flag when calling yacc,

as in
yacc —v test.y

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

OURAWNE

0 $accept :
E :

T :

F

state 0O

state 1

E $end
E "+ T

1 T

T "*" F

| F

“E oy
g

-~

$accept : . E $end (0)
(" shift 1
"id" shift 2
error
E goto 3
T goto 4
F goto 5
F:"C .ED &
(" shift 1
"i1d" shift 2
error
E goto 6
T goto 4
F goto 5

21

