
UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 1 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 2

Right Sentential Forms
• Recall the definition of a

derivation and a rightmost
derivation.

• Each of the lines is a
(right) sentential form

• The parsing problem is
finding the correct RHS in
a right-sentential form to
reduce to get the previous
right-sentential form in the
derivation

1 E -> E+T
2 E -> T
3 T -> T*F
4 E -> F
5 F -> (E)
6 F -> id

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 3

Bottom up parsing
• A bottom up parser
looks at a sentential
form and selects a
contiguous sequence of
symbols that matches
the RHS of a grammar
rule, and replaces it
with the LHS

• There might be several
choices, as in the
sentential form E+T*F

• Which one should we
choose?

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

1 E -> E+T
2 E -> T
3 T -> T*F
4 E -> F
5 F -> (E)
6 F -> id

E + T * F1 3

2 4

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 4

Bottom up parsing
• If the wrong one is chosen, it
leads to failure.

• E.g.: replacing E+T with E in
E+T*F yields E+F, which can
not be further reduced using the
given grammar.

• We’ll define the handle of a
sentential form as the RHS that
should be rewritten to yield the
next sentential form in the right
most derivation.

error
E*F
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

1 E -> E+T
2 E -> T
3 T -> T*F
4 E -> F
5 F -> (E)
6 F -> id

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 5

Sentential forms

• Think of a sentential
form as one of the entries
in a derivation that
begins with the start
symbol and ends with a
legal sentence.

• So, it’s like a sentence
but it may have some
“unexpanded” non-
terminals.

• We can also think of it as
a parse tree where some
of the leaves are as yet
unexpanded non-
terminals.

1 E -> E+T
2 E -> T
3 T -> T*F
4 E -> F
5 F -> (E)
6 F -> id

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

E + T * id

F

T

E

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 6

Handles
• A handle of a sentential form is a substring α such that :

– a matches the RHS of a production A -> α ; and
– replacing α by the LHS A represents a step in the

reverse of a rightmost derivation of s.
• For this grammar, the rightmost

derivation for the input abbcde is
S => aABe => aAde => aAbcde => abbcde

• The string aAbcde can be reduced in two ways:
(1) aAbcde => aAde (using rule 2)
(2) aAbcde => aAbcBe (using rule 4)

• But (2) isn’t a rightmost derivation, so Abc is the only handle.
• Note: the string to the right of a handle will only contain

terminals (why?)

1: S -> aABe
2: A -> Abc
3: A -> b
4: B -> d

a A b c d e

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 7

Phrases

• A phrase is a subsequence of a
sentential form that is
eventually “reduced” to a
single non-terminal.

• A simple phrase is a phrase
that is reduced in a single step.

• The handle is the left-most
simple phrase.

E + T * id

F

T

E

For this sentential
form what are the

• phrases
• simple phrases
• handle

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 8

Phrases, simple phrases and handles
• Def: β is the handle of the right sentential form γ =
αβw if and only if S =>*rm αAw => αβw

• Def: β is a phrase of the right sentential form γ if and
only if S =>* γ = α1Aα2 =>+ α1βα2

• Def: β is a simple phrase of the right sentential form γ
if and only if S =>* γ = α1Aα2 => α1βα2

• The handle of a right sentential form is its leftmost
simple phrase

• Given a parse tree, it is now easy to find the handle
• Parsing can be thought of as handle pruning

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 9

Phrases, simple phrases and handles

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

E -> E+T
E -> T
T -> T*F
E -> F
F -> (E)
F -> id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 10

On to parsing

• Ok, so how do we manage when we don’t have the parse tree in
front of us?

• We’ll look at a shift-reduce parser, of the kind that yacc uses.
• A shift-reduce parser has a queue of input tokens and an initially

empty stack and takes one of four possible actions:
– Accept: if the input queue is empty and the start symbol is

the only thing on the stack.
– Reduce: if there is a handle on the top of the stack, pop it off

and replace it with the RHS
– Shift: push the next input token onto the stack
– Fail: if the input is empty and we can’t accept.

• In general, we might have a choice of doing a shift or a reduce,
or maybe in reducing using one of several rules.

• The algorithm we next describe is deterministic.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 11

Shift-Reduce Algorithms
A shift-reduce parser scans input, at each step, considers whether to:
• Shift the next token to the top of the parse stack (along with some state info)
• Reduce the stack by POPing several symbols off the stack (& their state info) and

PUSHing the corresponding nonterminal (& state info)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 12

Shift-Reduce Algorithms

The stack is always of the form

S1 X1 S2 X2 … Sn Xn
bottom top

state terminal or
non-terminal

• A reduction step is triggered when we see the symbols
corresponding to a rule’s RHS on the top of the stack

S1 X1 …S5 X5 S6 T S7 * S8 F
bottom top

T -> T*F

S1 X1 …S5 X5 S6’ T

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 13

LR parser table

• LR shift-reduce parsers can be efficiently implemented
by precomputing a table to guide the processing

More on this
Later . . .

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 14

When to shift, when to reduce
• The key problem in building a shift-reduce parser is deciding

whether to shift or to reduce.
– repeat: reduce if you see a handle on the top of the stack,

shift otherwise
– Succeed if we stop with only S on the stack and no input

• A grammar may not be appropriate for a LR parser because
there are conflicts which can not be resolved.

• A conflict occurs when the parser cannot decide whether to:
– shift or reduce the top of stack (a shift/reduce conflict), or
– reduce the top of stack using one of two possible

productions (a reduce/reduce conflict)
• There are several varieties of LR parsers (LR(0), LR(1), SLR

and LALR), with differences depending on amount of
lookahead and on construction of the parse table.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 15

Conflicts
Shift-reduce conflict: can't decide whether to shift or to reduce
• Example : "dangling else"

Stmt -> if Expr then Stmt
| if Expr then Stmt else Stmt
| ...

• What to do when else is at the front of the input?
Reduce-reduce conflict: can't decide which of several possible

reductions to make
• Example :

Stmt -> id (params)
| Expr := Expr
| ...

Expr -> id (params)
• Given the input a(i, j) the parser does not know whether it is a

procedure call or an array reference.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 16

LR Table

• An LR configuration stores the state of an LR parser
(S0X1S1X2S2…XmSm, aiai+1…an$)

• LR parsers are table driven, where the table has two
components, an ACTION table and a GOTO table

• The ACTION table specifies the action of the parser
(e.g., shift or reduce), given the parser state and the
next token
– Rows are state names; columns are terminals

• The GOTO table specifies which state to put on top of
the parse stack after a reduce
– Rows are state names; columns are nonterminals

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 17 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 18

Parser actions

Initial configuration: (S0, a1…an$)
Parser actions:
1 If ACTION[Sm, ai] = Shift S, the next configuration

is: (S0X1S1X2S2…XmSmaiS, ai+1…an$)
2 If ACTION[Sm, ai] = Reduce A → β and S =

GOTO[Sm-r, A], where r = the length of β, the next
configuration is

(S0X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)
3 If ACTION[Sm, ai] = Accept, the parse is complete

and no errors were found.
4 If ACTION[Sm, ai] = Error, the parser calls an error-

handling routine.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 19

1: E -> E+T
2: E -> T
3: T -> T*F
4: E -> F
5: F -> (E)
6: F -> id

Accept$0 E 1

Reduce 1 goto(0,E)$0 E 1 + 6 T 9

Reduce 3 goto(6,T)$0 E 1 + 6 T 9 * 7 F 10

Reduce 6 goto(7,E)$0 E 1 + 6 T 9 * 7 id 5

Shift 5id $0 E 1 + 6 T 9 * 7

Shift 7* id $0 E 1 + 6 T 9

Reduce 4 goto(6,T)* id $0 E 1 + 6 F 3

Reduce 6 goto(6,F)* id $0 E 1 + 6 id 5

Shift 5id * id $0 E 1 + 6

Shift 6+ id * id $0 E 1

Reduce 2 goto(0,E)+ id * id $0 T 2

Reduce 4 goto(0,T)+ id * id $0 F 3

Reduce 6 goto(0,F)+ id * id $0 id 5

Shift 5Id + id * id $0

actionInputStack

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 20

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 21

Yacc as a LR parser

• The Unix yacc utility is
just such a parser.

• It does the heavy lifting
of computing the table.

• To see the table
information, use the –v
flag when calling yacc,
as in
yacc –v test.y

0 $accept : E $end
1 E : E '+' T
2 | T
3 T : T '*' F
4 | F
5 F : '(' E ')'
6 | "id"

state 0
$accept : . E $end (0)
'(' shift 1
"id" shift 2
. error
E goto 3
T goto 4
F goto 5

state 1
F : '(' . E ')' (5)
'(' shift 1
"id" shift 2
. error
E goto 6
T goto 4
F goto 5

. . .

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 1

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 2

Right Sentential Forms
• Recall the definition of a

derivation and a rightmost
derivation.

• Each of the lines is a
(right) sentential form

• The parsing problem is
finding the correct RHS in
a right-sentential form to
reduce to get the previous
right-sentential form in the
derivation

1 E -> E+T
2 E -> T
3 T -> T*F
4 E -> F
5 F -> (E)
6 F -> id

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 3

Bottom up parsing
• A bottom up parser
looks at a sentential
form and selects a
contiguous sequence of
symbols that matches
the RHS of a grammar
rule, and replaces it
with the LHS

• There might be several
choices, as in the
sentential form E+T*F

• Which one should we
choose?

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

1 E -> E+T
2 E -> T
3 T -> T*F
4 E -> F
5 F -> (E)
6 F -> id

E + T * F1 3

2 4

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 4

Bottom up parsing
• If the wrong one is chosen, it
leads to failure.

• E.g.: replacing E+T with E in
E+T*F yields E+F, which can
not be further reduced using the
given grammar.

• We’ll define the handle of a
sentential form as the RHS that
should be rewritten to yield the
next sentential form in the right
most derivation.

error
E*F
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

1 E -> E+T
2 E -> T
3 T -> T*F
4 E -> F
5 F -> (E)
6 F -> id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 5

Sentential forms

• Think of a sentential
form as one of the entries
in a derivation that
begins with the start
symbol and ends with a
legal sentence.

• So, it’s like a sentence
but it may have some
“unexpanded” non-
terminals.

• We can also think of it as
a parse tree where some
of the leaves are as yet
unexpanded non-
terminals.

1 E -> E+T
2 E -> T
3 T -> T*F
4 E -> F
5 F -> (E)
6 F -> id

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

E + T * id

F

T

E

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 6

Handles
• A handle of a sentential form is a substring α such that :

– a matches the RHS of a production A -> α ; and
– replacing α by the LHS A represents a step in the

reverse of a rightmost derivation of s.
• For this grammar, the rightmost

derivation for the input abbcde is
S => aABe => aAde => aAbcde => abbcde

• The string aAbcde can be reduced in two ways:
(1) aAbcde => aAde (using rule 2)
(2) aAbcde => aAbcBe (using rule 4)

• But (2) isn’t a rightmost derivation, so Abc is the only handle.
• Note: the string to the right of a handle will only contain

terminals (why?)

1: S -> aABe
2: A -> Abc
3: A -> b
4: B -> d

a A b c d e
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 7

Phrases

• A phrase is a subsequence of a
sentential form that is
eventually “reduced” to a
single non-terminal.

• A simple phrase is a phrase
that is reduced in a single step.

• The handle is the left-most
simple phrase.

E + T * id

F

T

E

For this sentential
form what are the

• phrases
• simple phrases
• handle

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 8

Phrases, simple phrases and handles
• Def: β is the handle of the right sentential form γ =
αβw if and only if S =>*rm αAw => αβw

• Def: β is a phrase of the right sentential form γ if and
only if S =>* γ = α1Aα2 =>+ α1βα2

• Def: β is a simple phrase of the right sentential form γ
if and only if S =>* γ = α1Aα2 => α1βα2

• The handle of a right sentential form is its leftmost
simple phrase

• Given a parse tree, it is now easy to find the handle
• Parsing can be thought of as handle pruning

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 9

Phrases, simple phrases and handles

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

E -> E+T
E -> T
T -> T*F
E -> F
F -> (E)
F -> id

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 10

On to parsing

• Ok, so how do we manage when we don’t have the parse tree in
front of us?

• We’ll look at a shift-reduce parser, of the kind that yacc uses.
• A shift-reduce parser has a queue of input tokens and an initially

empty stack and takes one of four possible actions:
– Accept: if the input queue is empty and the start symbol is

the only thing on the stack.
– Reduce: if there is a handle on the top of the stack, pop it off

and replace it with the RHS
– Shift: push the next input token onto the stack
– Fail: if the input is empty and we can’t accept.

• In general, we might have a choice of doing a shift or a reduce,
or maybe in reducing using one of several rules.

• The algorithm we next describe is deterministic.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 11

Shift-Reduce Algorithms
A shift-reduce parser scans input, at each step, considers whether to:
• Shift the next token to the top of the parse stack (along with some state info)
• Reduce the stack by POPing several symbols off the stack (& their state info) and

PUSHing the corresponding nonterminal (& state info)

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 12

Shift-Reduce Algorithms

The stack is always of the form

S1 X1 S2 X2 … Sn Xn
bottom top

state terminal or
non-terminal

• A reduction step is triggered when we see the symbols
corresponding to a rule’s RHS on the top of the stack

S1 X1 …S5 X5 S6 T S7 * S8 F
bottom top

T -> T*F

S1 X1 …S5 X5 S6’ T
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 13

LR parser table

• LR shift-reduce parsers can be efficiently implemented
by precomputing a table to guide the processing

More on this
Later . . .

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 14

When to shift, when to reduce
• The key problem in building a shift-reduce parser is deciding

whether to shift or to reduce.
– repeat: reduce if you see a handle on the top of the stack,

shift otherwise
– Succeed if we stop with only S on the stack and no input

• A grammar may not be appropriate for a LR parser because
there are conflicts which can not be resolved.

• A conflict occurs when the parser cannot decide whether to:
– shift or reduce the top of stack (a shift/reduce conflict), or
– reduce the top of stack using one of two possible

productions (a reduce/reduce conflict)
• There are several varieties of LR parsers (LR(0), LR(1), SLR

and LALR), with differences depending on amount of
lookahead and on construction of the parse table.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 15

Conflicts
Shift-reduce conflict: can't decide whether to shift or to reduce
• Example : "dangling else"

Stmt -> if Expr then Stmt
| if Expr then Stmt else Stmt
| ...

• What to do when else is at the front of the input?
Reduce-reduce conflict: can't decide which of several possible

reductions to make
• Example :

Stmt -> id (params)
| Expr := Expr
| ...

Expr -> id (params)
• Given the input a(i, j) the parser does not know whether it is a

procedure call or an array reference.

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 16

LR Table

• An LR configuration stores the state of an LR parser
(S0X1S1X2S2…XmSm, aiai+1…an$)

• LR parsers are table driven, where the table has two
components, an ACTION table and a GOTO table

• The ACTION table specifies the action of the parser
(e.g., shift or reduce), given the parser state and the
next token
– Rows are state names; columns are terminals

• The GOTO table specifies which state to put on top of
the parse stack after a reduce
– Rows are state names; columns are nonterminals

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 17

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 18

Parser actions

Initial configuration: (S0, a1…an$)
Parser actions:
1 If ACTION[Sm, ai] = Shift S, the next configuration

is: (S0X1S1X2S2…XmSmaiS, ai+1…an$)
2 If ACTION[Sm, ai] = Reduce A → β and S =

GOTO[Sm-r, A], where r = the length of β, the next
configuration is

(S0X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)
3 If ACTION[Sm, ai] = Accept, the parse is complete

and no errors were found.
4 If ACTION[Sm, ai] = Error, the parser calls an error-

handling routine.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 19

1: E -> E+T
2: E -> T
3: T -> T*F
4: E -> F
5: F -> (E)
6: F -> id

Accept$0 E 1

Reduce 1 goto(0,E)$0 E 1 + 6 T 9

Reduce 3 goto(6,T)$0 E 1 + 6 T 9 * 7 F 10

Reduce 6 goto(7,E)$0 E 1 + 6 T 9 * 7 id 5

Shift 5id $0 E 1 + 6 T 9 * 7

Shift 7* id $0 E 1 + 6 T 9

Reduce 4 goto(6,T)* id $0 E 1 + 6 F 3

Reduce 6 goto(6,F)* id $0 E 1 + 6 id 5

Shift 5id * id $0 E 1 + 6

Shift 6+ id * id $0 E 1

Reduce 2 goto(0,E)+ id * id $0 T 2

Reduce 4 goto(0,T)+ id * id $0 F 3

Reduce 6 goto(0,F)+ id * id $0 id 5

Shift 5Id + id * id $0

actionInputStack

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 20 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 21

Yacc as a LR parser

• The Unix yacc utility is
just such a parser.

• It does the heavy lifting
of computing the table.

• To see the table
information, use the –v
flag when calling yacc,
as in
yacc –v test.y

0 $accept : E $end
1 E : E '+' T
2 | T
3 T : T '*' F
4 | F
5 F : '(' E ')'
6 | "id"

state 0
$accept : . E $end (0)
'(' shift 1
"id" shift 2
. error
E goto 3
T goto 4
F goto 5

state 1
F : '(' . E ')' (5)
'(' shift 1
"id" shift 2
. error
E goto 6
T goto 4
F goto 5

. . .

