Chapter 4b

Lexical analysis Finite Automata

Finite Automata (FA)

- FA also called Finite State Machine (FSM)
- Abstract model of a computing entity.
- Decides whether to accept or reject a string.
- Every regular expression can be represented as a FA and vice versa
- Two types of FAs:
- Non-deterministic (NFA): Has more than one alternative action for the same input symbol.
- Deterministic (DFA): Has at most one action for a given input symbol.
- Example: how do we write a program to recognize java keyword "int"?

RE and Finite State Automaton (FA)

- Regular expression is a declarative way to describe the tokens - It describes what is a token, but not how to recognize the token.
- FA is used to describe how the token is recognized
- FA is easy to be simulated by computer programs;
- There is a $1-1$ correspondence between FA and regular expression
- Scanner generator (such as lex) bridges the gap between regular expression and FA.

Example of constructing a FA

- Is " 00 " accepted?
- The leftmost two states are also final states
- First state from the left: ε is also accepted
- Second state from the left: strings with " 0 "s only are also accepted

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

How does a FA work

- NFA definition for (a|b)*abb
$-\mathrm{S}=\{\mathbf{q 0}, \mathbf{q} \mathbf{1}, \mathbf{q} \mathbf{2}, \mathbf{q} \mathbf{3}\}$

- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
- Transitions: $\operatorname{move}(\mathbf{q} 0, \mathrm{a})=\{\mathbf{q} 0, \mathbf{q} 1\}, \operatorname{move}(\mathbf{q} 0, \mathrm{~b})=\{\mathbf{q} 0\}, \ldots$
- $\mathbf{s 0}=\mathbf{q 0}$
- $\mathbf{F}=\left\{\mathbf{q}^{3}\right\}$
- Transition diagram representation
- Non-determinism:
" exiting from one state there are multiple edges labeled with same symbol, or
» There are epsilon edges.
- How does FA work? Input: ababb
$\operatorname{move}(0, a)=1$
move $(1, \mathrm{~b})=2$
$\operatorname{move}(2, \mathrm{a})=$? (undefined)
REJECT !
$\operatorname{move}(0, \mathrm{a})=0$
$\operatorname{move}(0, b)=0$
move $0, a)=1$ $\operatorname{move}(0, a)=1$ $\operatorname{move}(1, b)=2$ $\operatorname{move}(2, b)=3$

ACCEPT!

Example of constructing a FA

- The leftmost two states are duplicate
- their arcs point to the same states with the same symbols

- Check that they are correct
- All strings in the language can be accepted
$\geqslant \varepsilon$, the empty string, is accepted
" strings with " 0 "s / " 1 "s only are accepted
- No strings not in language are accepted
- Naming all the states

FA for (a|b)*abb

- What does it mean that a string is accepted by a FA?

An FA accepts an input string x iff there is a path from the start state to a final state, such that the edge labels along this path spell out x;

- A path for "aabb": $\quad \mathrm{Q} 0 \rightarrow^{\mathrm{a}} \mathrm{q} 0 \rightarrow^{\mathrm{a}} \mathrm{q} 1 \rightarrow^{\mathrm{b}} \mathrm{q} 2 \rightarrow^{\mathrm{b}} \mathrm{q} 3$
- Is "aab" acceptable?

$$
\begin{aligned}
& \text { Q0 } \rightarrow^{a} q 0 \rightarrow \rightarrow^{a} q 1 \rightarrow{ }^{b} q 2 \\
& \text { Q0 } \rightarrow^{a} q 0 \rightarrow{ }^{a} q 0 \rightarrow{ }^{b} q 0
\end{aligned}
$$

»Final state must be reached;
»In general, there could be several paths.

- Is "aabbb" acceptable?

$$
\mathrm{Q} 0 \rightarrow^{\mathrm{a}} \mathrm{q} 0 \rightarrow \rightarrow^{\mathrm{a}} \mathrm{q} 1 \rightarrow^{\mathrm{b}} \mathrm{q} 2 \rightarrow^{\mathrm{b}} \mathrm{q} 3
$$

$»$ Labels on the path must spell out the entire string.

UMBC CMSC 331 notes (9/17/2004)

Transition table

- A transition table is a good way to implement a FSA
- One row for each state, S
- One column for each symbol, A
- Entry in cell (S,A) gives the state or set of states can be reached from state S on input A .
- A Nondeterministic Finite Automaton (NFA) has at least one cell with more than one state.
- A Deterministic Finite Automaton (DFA) has a singe state in every cell
(a|b)*abb

STATES	INPUT	
	a	b
$>Q 0$	$\{\mathrm{q} 0, \mathrm{q} 1\}$	q 0
Q1		q 2
Q2		q3
*Q3		

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

DFA (Deterministic Finite Automaton)

- A special case of NFA where the transition function maps the pair (state, symbol) to one state.
- When represented by transition diagram, for each state S and symbol a, there is at most one edge labeled a leaving S;
- When represented transition table, each entry in the table is a single state.
- There are no ε-transition
- Example: DFA for (a|b)*abb

states	INPUT	
	a	b
q 0	q 1	q 0
q 1	q 1	q 2
q 2	q 1	q 3
q 3	q 1	q 0

- Recall the NFA:

CMSC 331, Some material © 1998 by Addison Westey Longman, Inc

DFA to program

- NFA is more concise, but not as easy to implement;
- In DFA, since transition tables don't have any alternative options, DFAs are easily simulated via an algorithm.
- Every NFA can be converted to an equivalent DFA
- What does equivalent mean?
- There are general algorithms that can take a DFA and produce a "minimal DFA.
- Minimal in what sense?
- There are programs that take a regular expression and produce a program based on a minimal DFA to recognize strings defined by the RE.
- You can find out more in 451 (automata theory) and/or 431 (Compiler design)

