	Finite Automata (FA)	
Chapter 4b Lexical analysis Finite Automata	 FA also called Finite State Machine (FSM) Abstract model of a computing entity. Decides whether to accept or reject a string. Every regular expression can be represented as a FA and vice versa Two types of FAs: Non-deterministic (NFA): Has more than one alternative action for the same input symbol. Deterministic (DFA): Has at most one action for a given input symbol. Example: how do we write a program to recognize java keyword "int"? (q) i (q) n (q2 t (q3)) 	
CMSC 331, Some material \circ 1998 by Addison Wesley Longman, Inc. 1	CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.	2
RE and Finite State Automaton (FA)	Transition Diagram	
 Regular expression is a declarative way to describe the tokens It describes <i>what</i> is a token, but not <i>how</i> to recognize the token. FA is used to describe <i>how</i> the token is recognized FA is easy to be simulated by computer programs; There is a 1-1 correspondence between FA and regular expression Scanner generator (such as lex) bridges the gap between regular expression and FA. 	 FA can be represented using transition diagram. FA can be represented using transition diagram. Corresponding to FA definition, a transition diagram has: States represented by circles; An Alphabet (Σ) represented by labels on edges; Transitions represented by labeled directed edges between states. The label is the input symbol; One Start State shown as having an arrow head; One or more Final State(s) represented by double circles. 	

3

Tokens

Scanner generator

(q3)

UMBC CMSC 331 notes (9/17/2004)

15

17

Transition table

- A transition table is a good way to implement a FSA
 - One row for each state, S
 - One column for each symbol, A
 - Entry in cell (S,A) gives the state or set of states can be reached from state S on input A.
- A Nondeterministic Finite Automaton (NFA) has at least one cell with more than one state.
- A Deterministic Finite Automaton (DFA) has a singe state in every cell

	INPUT	
STATES	а	b
>Q0	{q0, q1}	q0
Q1		q2
Q2		q3
*Q3		

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

DFA (Deterministic Finite Automaton)

- A special case of NFA where the transition function maps the pair (state, symbol) to one state.
 - When represented by transition diagram, for each state *S* and symbol *a*, there is at most one edge labeled *a* leaving *S*;
 - When represented transition table, each entry in the table is a single state.
 - There are no ϵ -transition
- Example: DFA for (a|b)*abb

	INPUT	
STATES	а	b
q0	q1	q0
q1	q1	q2
q2	q1	q3
q3	q1	q0

Recall the NFA:

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

DFA to program

- NFA is more concise, but not as easy to implement;
- In DFA, since transition tables don't have any alternative options, DFAs are easily simulated via an algorithm.
- Every NFA can be converted to an equivalent DFA
 - What does equivalent mean?
- There are general algorithms that can take a DFA and produce a "minimal DFA.

- Minimal in what sense?

- There are programs that take a regular expression and produce a program based on a minimal DFA to recognize strings defined by the RE.
- You can find out more in 451 (automata theory) and/or 431 (Compiler design)

