
UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 1 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 2

Concepts

• Lexical scanning
• Regular expressions
• DFAs and FSAs
• Lex

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 3

This is an overview of the standard
process of turning a text file into an
executable program.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 4

Lexical analysis in perspective

LEXICAL ANALYZER
– Scans Input
– Removes whitespace, newlines, …
– Identifies Tokens
– Creates Symbol Table
– Inserst Tokens into symbol table
– Generates Errors
– Sends Tokens to Parser

lexical
analyzer parser

sym bol table

source
program

token

get next
token

PARSER
– Performs Syntax Analysis

– Actions Dictated by Token Order

– Updates Symbol Table Entries

– Creates Abstract Rep. of Source

– Generates Errors

• LEXICAL ANALYZER: Transforms character stream to token stream
– Also called scanner, lexer, linear analysis

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 5

Where we are

Total=price+tax;

;tax+price=Total

Lexical analyzer

Parser

price

id + id

Expr

assignment

=id

tax

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 6

Basic terminologies in lexical analysis

• Token
– A classification for a common set of strings
– Examples: <identifier>, <number>, etc.

• Pattern
– The rules which characterize the set of strings for a token
– Recall file and OS wildcards (*.java)

• Lexeme
– Actual sequence of characters that matches pattern and is classified by

a token
– Identifiers: x, count, name, etc…

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 7

Examples of token, lexeme and pattern
If (price + gst – rebate <= 10.00) gift := false

))rparen

String consists of letters and numbers and starts with a lettergstidentifier
--operator

String consists of letters and numbers and starts with a letterrebateidentifier
Less than or equal to<=Operator

ififif

String consists of letters and numbers and starts with a letterpriceIdentifier
((Lparen

++operator

Any numeric constant10.00constant

String consists of letters and numbers and starts with a lettergiftidentifier

String consists of letters and numbers and starts with a letterfalseidentifier
Assignment symbol:=Operator

Informal description of patternlexemeToken

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 8

Regular expression

• Scanners are useually based on regular
expressions.

• Remember language is a set of strings.
• Examples of regular expression

– letter a|b|c|...|z|A|B|C...|Z
– digit 0|1|2|3|4|5|6|7|8|9
– identifier letter(letter|digit)*

• Basic operations:
– Set union
– Concatenation
– Kleene closure

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 9

Formal language operations

positive closure

Kleene closure
of L

concatenation of
L and M

union of L and
M

Operation

L+

L*

LM

L ∪ M

Notation

L+ denotes “one or more
concatenations of “ L

L* denotes zero or more
concatenations of L

LM = {st | s is in L and t is
in M}

L ∪ M = {s | s is in L or s
is in M}

Definition

All the strings consists of “a”
and “b”.

All the strings consists of “a”
and “b”, plus the empty
string. {ε, a, b, aa, bb, ab,
ba, aaa, … }

{a0, a1, b0, b1}

{a, b, 0, 1}

Example
L={a, b} M={0,1}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 10

Regular expression
• Regular expression: constructing sequences of symbols (Strings)

from an alphabet.
• Let Σ be an alphabet, r a regular expression then L(r) is the

language that is characterized by the rules of r
• Definition of regular expression

– ε is a regular expression that denotes the language {ε}
– If a is in Σ, a is a regular expression that denotes {a}
– Let r and s be regular expressions with languages L(r) and L(s). Then

» (r) | (s) is a regular expression L(r) ∪ L(s)
» (r)(s) is a regular expression L(r) L(s)
» (r)* is a regular expression (L(r))*

• It is an inductive definition!
• Distinction between regular language and regular expression

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 11

– letter a|b|c|...|z|A|B|C...|Z
– digit 0|1|2|3|4|5|6|7|8|9
– identifier letter(letter|digit)*

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 12

• * is of the highest precedence;
• Concanenation comes next;
• | lowest.
• All the operators are left associative.
• Example

– (a) | ((b)*(c)) is equivalent to a|b*c

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 13

... ...

Concatenation distributes over |r(s|t)=rs | rt
(s|t)r=sr | tr

Concatenation is associative (rs)t=r(st)

| is associativer|(s|t) = (r|s)|t

| is commutativer|s = s|r

DescriptionProperty

We can easily determine some basic properties of the
operators involved in building regular expressions.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 14

Notational shorthand of regular expression

• One or more instance
– L+ = L L*
– L* = L+ | ε
– Example

» digits digit digit*
» digits digit+

• Zero or one instance
– L? = L|ε
– Example:

» Optional_fraction .digits|ε
» optional_fraction (.digits)?

• Character classes
– [abc] = a|b|c
– [a-z] = a|b|c...|z

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 15

Regular grammar and regular expression

• They are equivalent
– Every regular expression can be expressed by regular grammar
– Every regular grammar can be expressed by regular expression

• Example
– An identifier must begin with a letter and can be followed by arbitrary

number of letters and digits.

ID LETTER ID_REST
ID_REST LETTER ID_REST

| DIGIT ID_REST
| EMPTY

ID: LETTER (LETTER | DIGIT)*

Regular grammarRegular expression

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 16

Formal of tokens

• A set of tokens is a set of strings over an alphabet
– {read, write, +, -, *, /, :=, 1, 2, …, 10, …, 3.45e-3, …}

• A set of tokens is a regular set that can be defined by
using a regular expression

• For every regular set, there is a deterministic finite
automaton (DFA) that can recognize it

– (Aka deterministic Finite State Machine (FSM))
– i.e. determine whether a string belongs to the set or not
– Scanners extract tokens from source code in the same

way DFAs determine membership

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 17

Token Definition Example
• Numeric literals in Pascal, e.g.

1, 123, 3.1415, 10e-3, 3.14e4
• Definition of token unsignedNum

DIG → 0|1|2|3|4|5|6|7|8|9
unsignedInt → DIG DIG*
unsignedNum →

unsignedInt
((. unsignedInt) | ε)
((e (+ | – | ε) unsignedInt) | ε)

• Notes:
– Recursion is not allowed!
– Parentheses used to avoid

ambiguity
– It’s always possible to rewrite

removing epsilons

DIG

*

*

DIG

DIG

DIG

DIG

.

*DIG

e e

+
-

DIG

• FAs with epsilons are
nondeterministic.

• NFAs are much harder to
implement (use backtracking)

• Every NFA can be rewriten as
a DFA (gets larger, tho)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 18

Simple Problem

• Write a C program which reads in a character string, consisting
of a’s and b’s, one character at a time. If the string contains a
double aa, then print string accepted else print string rejected.

• An abstract solution to this can be expressed as a DFA
a

1 3+b

b

a a, b2
Start state An accepting state

The state transitions of a
DFA can be encoded as a
table which specifies the
new state for a given current
state and input

33
13
12

a b
1
2
3

input

current
state

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 19

#include <stdio.h>
main()
{ enum State {S1, S2, S3};

enum State currentState = S1;
int c = getchar();
while (c != EOF) {

switch(currentState) {
case S1: if (c == ‘a’) currentState = S2;

if (c == ‘b’) currentState = S1;
break;

case S2: if (c == ‘a’) currentState = S3;
if (c == ‘b’) currentState = S1;
break;

case S3: break;
}
c = getchar();

}
if (currentState == S3) printf(“string accepted\n”);
else printf(“string rejected\n”);

}
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 20

#include <stdio.h>
main()
{ enum State {S1, S2, S3};

enum Label {A, B};
enum State currentState = S1;
enum State table[3][2] = {{S2, S1}, {S3, S1}, {S3, S3}};
int label;
int c = getchar();
while (c != EOF) {

if (c == ‘a’) label = A;
if (c == ‘b’) label = B;
currentState = table[currentState][label];
c = getchar();

}
if (currentState == S3) printf(“string accepted\n”);
else printf(“string rejected\n”);

}

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 21

• Lexical analyzer generator
– It writes a lexical analyzer

• Assumption
– each token matches a regular expression

• Needs
– set of regular expressions
– for each expression an action

• Produces
– A C program

• Automatically handles many tricky problems
• flex is the gnu version of the venerable unix tool lex.

– Produces highly optimized code

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 22

Scanner Generators
• E.g. lex, flex
• These programs take

a table as their input
and return a program
(i.e. a scanner) that
can extract tokens
from a stream of
characters

• A very useful
programming utility,
especially when
coupled with a parser
generator (e.g., yacc)

• standard in Unix

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 23

lex cc foolex
foo.l foolex.c foolex

tokens

input

> flex -ofoolex.c foo.l
> cc -ofoolex foolex.c -lfl

>more input
begin
if size>10

then size * -3.1415
end

> foolex < input
Keyword: begin
Keyword: if
Identifier: size
Operator: >
Integer: 10 (10)
Keyword: then
Identifier: size
Operator: *
Operator: -
Float: 3.1415 (3.1415)
Keyword: end

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 24

A Lex Program

… definitions …
%%
… rules …
%%
… subroutines …

DIG [0-9]
ID [a-z][a-z0-9]*
%%
{DIG}+ printf("Integer\n”);
{DIG}+"."{DIG}* printf("Float\n”);
{ID} printf("Identifier\n”);
[\t\n]+ /* skip whitespace */
. printf(“Huh?\n");
%%
main(){yylex();}

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 25

Simplest Example

%%
.|\n ECHO;
%%

main()
{

yylex();
}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 26

%%
(a|b)*aa(a|b)* {printf(“Accept %s\n”, yytext);}

[a|b]+ {printf(“Reject %s\n”, yytext);}

.|\n ECHO;
%%
main() {yylex();}

Strings containing

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 27

Rules

• Each has a rule has a pattern and an action.
• Patterns are regular expression
• Only one action is performed

– The action corresponding to the pattern matched
is performed.

– If several patterns match the input, the one
corresponding to the longest sequence is chosen.

– Among the rules whose patterns match the same
number of characters, the rule given first is
preferred.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 28

/* scanner for a toy Pascal-like language */
%{
#include <math.h> /* needed for call to atof() */
%}
DIG [0-9]
ID [a-z][a-z0-9]*
%%
{DIG}+ printf("Integer: %s (%d)\n", yytext, atoi(yytext));
{DIG}+"."{DIG}* printf("Float: %s (%g)\n", yytext, atof(yytext));
if|then|begin|end printf("Keyword: %s\n",yytext);
{ID} printf("Identifier: %s\n",yytext);
"+"|"-"|"*"|"/" printf("Operator: %s\n",yytext);
"{"[^}\n]*"}" /* skip one-line comments */
[\t\n]+ /* skip whitespace */
. printf("Unrecognized: %s\n",yytext);
%%
main(){yylex();}

UMBC CMSC 331 notes (9/17/2004)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 29

x character 'x'
. any character except newline
[xyz] character class, in this case, matches either an 'x', a 'y', or a 'z'
[abj-oZ] character class with a range in it; matches 'a', 'b', any letter

from 'j' through 'o', or 'Z'
[^A-Z] negated character class, i.e., any character but those in the

class, e.g. any character except an uppercase letter.
[^A-Z\n] any character EXCEPT an uppercase letter or a newline
r* zero or more r's, where r is any regular expression
r+ one or more r's
r? zero or one r's (i.e., an optional r)
{name} expansion of the "name" definition (see above)
"[xy]\"foo" the literal string: '[xy]"foo' (note escaped “)
\x if x is an 'a', 'b', 'f', 'n', 'r', 't', or 'v', then the ANSI-C

interpretation of \x. Otherwise, a literal 'x' (e.g., escape)
rs RE r followed by RE s (e.g., concatenation)
r|s either an r or an s
<<EOF>> end-of-file

Flex’s RE syntax

