

Formal language operations			Regular expression	
Notation	Definition	Example	 Regular expression: constructing sequences of symbols (Strings) from an alphabet. Let S be on alphabet, no regular expression then L (r) is the 	
$L \cup M$	$L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$	{a, b, 0, 1}	• Let 2 be an alphabet, r a regular expression then $L(r)$ is the language that is characterized by the rules of r	
LM	LM = {st s is in L and t is in M}	{a0, a1, b0, b1}	 Definition of regular expression - ε is a regular expression that denotes the language {ε} 	
L*	L* denotes zero or more concatenations of L	All the strings consists of "a" and "b", plus the empty string. { ϵ , a, b, aa, bb, ab, ba, aaa, }	 If a is in Σ, a is a regular expression that denotes {a} Let r and s be regular expressions with languages L(r) and L(s). Then (r) ⊥ (s) is a regular expression → L(r) ⊥ L(s) 	
L+	L+ denotes "one or more concatenations of " L	All the strings consists of "a" and "b".	(r)(s) is a regular expression → L(r) ∪ L(s) (r)(s) is a regular expression → L(r) L(s) (r)* is a regular expression → (L(r))*	
			• It is an inductive definition!	
			Distinction between regular language and regular expression	
Wesley Longman, Inc.		9	CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.	
expre	ession exam	ole revisited	Precedence of operators	
 Examples of regular expression letter→ a b c z A B C Z digit→0 1 2 3 4 5 6 7 8 9 identifier→letter(letter digit)* Q: why it is an regular expression? 			 * is of the highest precedence; Concanenation comes next; lowest. All the operators are left associative. Example (a) ((b)*(c)) is equivalent to a b*c 	
	Notation $\Box \cup M$ $\Box M$ \Box^* $\Box^$	Notation Definition $L \cup M = \{s \mid s \text{ is in L or s} is in M\}$ LM $L \cup M = \{s \mid s \text{ is in L or s} is in M\}$ LM $LM = \{st \mid s \text{ is in L and t is in M}\}$ L^* L^* denotes zero or more concatenations of L L^+ L^+ denotes "one or more concatenations of " L L^+ L^+ denotes "one or more concatenations of " L wester Longmann. Inc. expression examp les of regular expression examp a b c z A B C Z $0 1 2 3 4 5 6 7 8 9$ for \rightarrow letter (letter digit)" vit is an regular expression examples for $a \mid s \mid $	Image operations Notation Definition Example L \cup M = {s s is in L or s {a, b, 0, 1} [a, b, 0, 1] [b] L \cup M = {s s is in L and t is {a0, a1, b0, b1} [b] [a] L* L* denotes zero or more concatenations of L [a] b*, play the empty string, {e, a, b, aa, bb, ab, ba, aaa,} L+ L+ denotes "one or more concatenations of " L [a] the strings consists of "a" and "b". L+ L+ denotes "one or more concatenations of " L [a] the strings consists of "a" and "b". wetty Leggman.tec. 9 Metty Leggman.tec. 9	

Properties	of regular expression	Notational shorthand of regular (Notational shorthand of regular expression		
We can easily de operators involve	etermine some basic properties of the ed in building regular expressions.	• One or more instance $-L+ = L L^*$ $-L^* = L+ \epsilon$ - Example			
Property	Description	» digits→ digit digit* » digits→ digit+			
r s = s r	is commutative	Zero or one instance	Zero or one instance		
r (s t) = (r s) t	is associative	$-L? = L \varepsilon$			
(rs)t=r(st)	Concatenation is associative	- Example: » Optional_fraction \rightarrow .digits ε	 – Example: » Optional fraction→.digits ε 		
r(s t)=rs rt Co (s t)r=sr tr	Concatenation distributes over	» optional_fraction→(.digits)?Character classes			
		- [abc] = a b c			
, Some material © 1998 by Addison Wesley Longman, Inc.		13 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.	14		
, Some material © 1998 by Addison Wesley Longman, Inc. Regular gramn	nar and regular expres	13 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. Sion Formal definition of toke	ens		
 Some material © 1998 by Addison Wesley Longman, Inc. Regular gramm They are equivale Every regular express Every regular gramm Example An identifier must be number of letters and 	nar and regular expres nt sion can be expressed by regular grammar ar can be expressed by regular expression gin with a letter and can be followed by arb digits.	13 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. Sion Formal definition of toke • A set of tokens is a set of strings over an alph - {read, write, +, -, *, /, :=, 1, 2,, 10,, • A set of tokens is a <i>regular set</i> that can be de using a <i>regular expression</i> • For every regular set, there is a <i>deterministic</i>	tens habet 3.45e-3,} efined by		
 Some material © 1998 by Addison Wesley Longman, Inc. Regular gramm They are equivale Every regular express Every regular gramm Example An identifier must be number of letters and Regular expression 	nar and regular expres nt sion can be expressed by regular grammar ar can be expressed by regular expression gin with a letter and can be followed by arb digits.	13 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. Sion Formal definition of toke • A set of tokens is a set of strings over an alph – {read, write, +, -, *, /, :=, 1, 2,, 10,, • A set of tokens is a <i>regular set</i> that can be de using a <i>regular expression</i> • For every regular set, there is a <i>deterministic</i> <i>automaton</i> (DFA) that can recognize it	tens habet 3.45e-3,} efined by <i>c finite</i>		

UMBC CMSC 331 notes (9/17/2004)

Lex	Scanner Generators	
 • Lexical analyzer generator It writes a lexical analyzer • Assumption each token matches a regular expression each token matches a regular expression Needs set of regular expressions for each expression an action • Produces A C program • Automatically handles many tricky problems • flex is the gnu version of the venerable unix tool lex. - Produces highly optimized code 	 E.g. lex, flex These programs take a table as their input and return a program (<i>i.e.</i> a scanner) that can extract tokens from a stream of characters A very useful programming utility, especially when coupled with a parser generator (e.g., yacc) standard in Unix 	22
Lex example input integer: 10 (10) Keyword: then indentifier: size Operator: * Integer: 10 (10) Keyword: then indentifier: size Operator: * Operator: * Integer: 0 (10) Keyword: then indentifier: size Operator: * Operator: * Integer: 0 (10) Keyword: end	A Lex Program DIG [0-9] ID [a-z][a-z0-9]* %% rules %%% rules %%% subroutines %% subroutines	

Simplest Example	Strings containing aa	
%% . \n ECHO; %% main() { yylex(); }	%% (a b)*aa(a b)* {printf("Accept %s\n", yytext);} [a b]+ {printf("Reject %s\n", yytext);} . \n ECHO; %% main() {yylex();}	
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 25	CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 26	
Rules	<pre>/* scanner for a toy Pascal-like language */ %{ #include $/* needed for call to atof() */$</pre>	
 Each has a rule has a <i>pattern</i> and an <i>action</i>. Patterns are regular expression Only one action is performed The action corresponding to the pattern matched is performed. If several patterns match the input, the one corresponding to the longest sequence is chosen. Among the rules whose patterns match the same number of characters, the rule given first is preferred. 	%} DIG [0-9] ID [a-z][a-z0-9]* %% {DIG}+ printf("Integer: %s (%d)\n", yytext, atoi(yytext)); {DIG}+"."{DIG}* printf("Float: %s (%g)\n", yytext, atof(yytext)); if]then begin end printf("Keyword: %s\n",yytext); {ID} printf("Identifier: %s\n",yytext); {ID} printf("Operator: %s\n",yytext); "+" "-" "*" "/" printf("Operator: %s\n",yytext); "{"[^}\n]*"}" /* skip one-line comments */ [\t\n]+ /* skip whitespace */ . printf("Unrecognized: %s\n",yytext); %% main(){yylex();}	

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

UMBC CMSC 331 notes (9/17/2004)

Х	character 'x'	Flex's RE syntax			
•	any character except newline	TICK 5 ILL Syntax			
[xyz]	character class, in this case, matches either an 'x', a 'y', or a 'z'				
[abj-oZ]	<i>character class</i> with a range in it; matches 'a', 'b', any letter from 'j' through 'o', or 'Z'				
[^A-Z]	<i>negated character class</i> , i.e., any character but those in the class, e.g. any character except an uppercase letter.				
[^A-Z\n]	any character EXCEPT an uppercase letter	or a newline			
r*	zero or more r's, where r is any regular exp	pression			
r+	one or more r's				
r?	zero or one r's (i.e., an optional r)				
{name}	expansion of the "name" definition (see ab	ove)			
"[xy]\"foo" the literal string: '[xy]"foo' (note escaped ")					
\ x	if x is an 'a', 'b', 'f', 'n', 'r', 't', or 'v', then the interpretation of \x . Otherwise, a literal 'x'	e ANSI-C (e.g., escape)			
rs	RE r followed by RE s (e.g., concatenation	l)			
r s	either an r or an s				
< <eof>></eof>	>end-of-file				
CMSC 331, Some material	© 1998 by Addison Wesley Longman, Inc.	2	9		