Integrating Distributed Information Sources
with CARROT 11

R. Scott Cost!, Srikanth Kallurkar!, Hemali Majithia!, Charles Nicholas!, and
Yongmei Shit

University of Maryland, Baltimore County
Baltimore, MD USA

{cost,skallul,hemal,nicholas,yshil}@csee.umbc.edu

Abstract. We describe CARROT II (C2), an agent-based architecture
for distributed information retrieval and document collection manage-
ment. C2 can consist of an arbitrary number of agents, distributed across
a variety of platforms and locations. C2 agents provide search services
over local document collections or information sources. They advertise
content-derived metadata that describes their local document store. This
metadata is sent to other C2 agents which agree to act as brokers for
that collection, and every agent in the system has the ability to serve as
such a broker. A query can be sent to any C2 agent, which can decide
to answer the query itself from its local collection, or to send the query
on to other agents whose metadata indicate that they would be able to
answer the query, or send the query on further. Search results from mul-
tiple agents are merged and returned to the user. C2 differs from similar
systems in that metadata takes the form of an automatically generated,
unstructured feature vector, and that any agent in the system can act
as a broker, so there is no centralized control. We present experimental
results of retrieval performance and effectiveness in a distributed envi-
ronment.

1 Introduction

We have developed a scalable, distributed query routing and information re-
trieval system, CARROT II. It is the successor of an earlier project (Collabora-
tive Agent-based Routing and Retrieval of Text) [9, 7] (originally CAFE [8]). C2
is composed of a flexible hierarchy of query routing agents. These agents com-
municate with one another using KQML [10] and the Jackal platform [6], and
may be distributed across the Internet. While all agents in the system are alike,
they can each control widely varying information systems. Agents interact with
information sources via a well-defined interface. Queries presented to any agent
in the system are routed, based on the content of the query and metadata about
the contents of the servers, to the appropriate destination. Agents themselves
are uniform and extremely simple.
C2 contains wrappers that extend several well-known IR systems (e.g. MG [20],

Telltale [16]), as well as C2’s own, modest IR system. These wrappers present



2 R. Scott Cost et al.

a basic interface to the C2 system for operating on documents and metadata.
Agents are addressable via commands that are communicated in KQML. This
means that a C2 system can be created, configured, and accessed by another
information system, and so can be employed to extend the search capabilities
of an existing project. We use the Jackal platform to support communication
among agents in C2 and to provide an interface to the outside world. In addi-
tion to Jackal’s support for agent communication with KQML, we can use its
conversation management capabilities to specify and implement higher-level be-
haviors for the various negotiation and management tasks required within the
agent system.

Our research effort has been directed towards testing retrieval performance
as well as effectiveness. Since we cannot assume static corpora, we believe in
the use of an agent-based retrieval architecture based on a sophisticated com-
munication infrastructure to handle dynamic data and its associated operations.
Section 2 discusses the problems areas facing DIR and the efforts so far by the
research community, Section 3 describes C2 architecture and Section 4 describes
its operations.

2 Related Work

In the past there have been attempts to introduce the concepts of agent-based
information retrieval. Systems like SavvySearch [14] demonstrated a simple ap-
proach to querying web search engines and combining their results in a single
ranked order.

Historically, Harvest was the first system to demonstrate the use of broker
agents in distributed search. The Harvest system [2] is a distributed, brokered
system originally designed for searching Web, FTP, and Gopher servers. In Har-
vest, “gatherer” agents collect metadata from information providers and deliver
it to one or more brokers. Metadata objects are represented in Summary Ob-
ject Interchange Format (SOIF), an extensible attribute-value-based description
record. Harvest pioneered the ideas of brokering, metasearch, replication, and
caching on the Internet.

2.1 Distributed Information Retrieval

Information Retrieval in a distributed environment normally follows three steps [3]:

1. Information Source Selection: Select best information source per query

2. Query Processing: Send query to source(s) and return ranked list of docu-
ments

3. Results Fusion: Create single ranked list from ranked lists of all sources.

For retrieval from text, one of the methods for information source selection is
use of automatically generated metadata from the content. Comparing the query
to metadata about the sources can reveal the possible relevance of each source



CARROT II 3

to the query. CORI [4] and gGloss [13] are examples of such metadata in infor-
mation source selection. The CORI model is based on inference networks. CORI
creates a virtual document containing Document Frequency (DF') and Inverse
Collection Frequency (ICF). The ICF indicates importance of the term across
the collections and is analogous to the Inverse Document Frequency (IDF),
which is a measure of term importance in a single collection. gGloss creates a
virtual document containing DF'(s) and Term Frequency (T'F), i.e. number of
occurrences per document of unique terms of the collection. French et al. [11]
showed that CORI performed better than gGloss in terms of retrieval effective-
ness, however they could not provide a reason for CORI’s better performance.

Gibbins and Hall [12] modeled query routing topologies for Resource Discov-
ery in mediator based distributed information systems. Queries are routed by
a referral (of a server) by the mediator or by a delegation of the query to the
mediator. Liu [15] demonstrated query routing using processes of query refine-
ment and source selection, which interleaved query and database source profiles
to obtain a subset of good databases.

The final step in answering a query is fusing the ranked list from the queried
sources to obtain a single ranked list. Voorhees et al. [19] showed the use of query
training and query clustering to first query appropriate data sources and then
merge the results. The query training approach used a dice biased by the number
of documents still to be merged, whereas query clustering applied a factor to the
results based on the importance of the source it was from and then rank based
on the new scores. Aslam and Montague [1] showed that results fusion based
on ranks alone can be as good as regular fusion techniques and that relevance
scores are not required.

In general, there is a performance gain by distributing information, but dis-
tributed retrieval lags behind centralized retrieval in terms of retrieval effective-
ness, i.e. percentage of relevant documents returned for a query. However Powell
et al. [17] showed that a distributed search can outperform a centralized search
under certain conditions.

3 C2 Architecture

A C2 system is a collection of coordinated, distributed agents managing a set of
possibly heterogeneous IR resources. These agents each perform the basic tasks
of collection selection, query routing, query processing, and data fusion. In order
to effect this coordination, some amount of underlying structure is required.

There are three components to the C2 architecture. The central work of C2
is performed by a distributed collection of C2 agents. There is also a network
of infrastructure agents which facilitate communication and control of the sys-
tem. Finally, a small set of support agents facilitates access to the system, and
coordinates its activities. Each of these components is described in detail below.



4 R. Scott Cost et al.

3.1 C2 Agents

The C2 agent is the cornerstone of the C2 system. It’s role is to manage a
certain corpus, accept queries, and either answer them itself, or forward them
to other C2 agents in the system. In order to do this, each C2 agent creates
and distributes metadata describing its own corpus to other C2 agents. All C2
agents are identical, although the information systems they manage may vary.

A standard interface provides methods for manipulating documents, meta-
data, and handling queries. The agent maintains a catalog of metadata which
contains information about the documents stored by peer agents

3.2 Information Integration

A C2 agent interfaces with an information source which may be an ordinary IR
package, or a database manager.

The C2 system currently has a wrapper that interfaces with the WONDIR! (in-
house) IR engine. It can however be extended to support other types of Infor-
mation sources. As mentioned earlier, metadata is derived from the document
collection. The metadata takes the form of a vector of the unique “N-grams” of
the collection and a sum of their number of occurrences across all documents
in the collection. Hence unlike Harvest, C2 metadata describes the agent’s col-
lection of documents, not a single document. C2 uses such metadata for source
selection per query. The motivation for such a form of metadata comes from rel-
ative ease of use, low cost of generation, and the ability to aggregate metadata,
such that a single vector may contain metadata about multiple agents.

The C2 metadata is different from the CORI virtual document in that CORI
uses document frequency, i.e. the number of documents the term has occurred in
the collection. C2 uses term frequency, i.e. the sum of the number of occurrences
of the unique terms over all documents. In many if not most collections, a large
percentage of terms have occurrences of 0 or 1. By storing the sum of the terms
C2 metadata adds more weight to terms that appear more often in the collection
either in more documents or in fewer documents with larger occurrences per
document. CORI would favor terms that occurred only in more documents.

The same query operation can now be performed on both documents and
metadata. A query operation returns a similarity score using TF x IDF based
cosine similarity [18]. Querying a collection returns a ranked list of the docu-
ments sorted by their similarity scores. For querying metadata collection IDF
is replaced by the ICF (see Section 2). On average from empirical observations
the metadata is 8-10% of the size of the document collection. The agent that
creates the metadata attaches its signature information to the vector.

3.3 C2 Infrastructure Agents

In order to support the successful inter-operation of potentially very many C2
agents, we have constructed a hierarchical infrastructure. The infrastructure is

! Word or N-gram based Dynamic Information Retrieval



CARROT II 5

largely dormant while C2 is in operation, serving primarily to facilitate the or-
derly startup and shutdown of the system, and provide communications support.

The infrastructure is controlled by a single Master Agent, which may be
located anywhere on the network. At startup, the Master Agent is instructed
as to the number of agents required, and some factors regarding their desired
distribution. These include the number of physical nodes to be used, as well as
the degree of resource sharing at various levels.

The Master Agent starts a Node Agent on each participating machine, and
delegates to it the task of creating a subset of the required agents. The node
will be divided into Platforms, or independent Java Virtual Machines, each gov-
erned by a Platform Agent. The Node Agent creates an appropriate number of
Platforms, and again delegates the creation of a set of agents.

Within each Platform, the Platform Agent creates a set of Cluster agents. The
purpose of the Cluster Agent is to consolidate some of the ‘heavier’ resources that
will be used by the C2 agents. Primarily, this means communication resources. A
Cluster Agent maintains a single instance of Jackal. Each Cluster Agent creates a
series of C2 agents; these run as subthreads of the Cluster Agent. Because most
agents will be dormant at any one time, we allow a C2 agent to be assigned more
than one collection, creating a set of ‘virtual’ agents. Thus the virtual agents are
the agents visible to all entities external to the system.

3.4 C2 Support Agents

While the agents in the C2 system work largely independently, a small set of
support agents serve to coordinate the system’s activities. These are the Agent
Name Server, the Logger Agent, and the Collection Manager.

An Agent Name Server provides basic communication facilitation among the
agents. Through the use of Jackal, C2 employs a hierarchical naming scheme,
and its operation is distributed through a hierarchy of name servers.

A Logger Agent monitors log traffic, and allows the system to assemble in-
formation about the details of operation. This information can then be used to
feed monitors or visualization tools.

Finally, a Collection Manager facilitates the distribution of data and meta-
data. It determines which collection of documents or information source will be
assigned to each agent, how each agent will distribute its metadata, and what
set of agents will be visible outside the system.

4 C2 Operation

Metadata distribution and query processing are the two main functions of the
C2 agents. Recall from Section 3.2 that the C2 metadata is an automatically
generated feature vector derived from the content itself.



6 R. Scott Cost et al.

4.1 Metadata Distribution

C2 uses a vector-based representation of metadata which describes the contents
of the local corpus (see [9]). Metadata, as well as corpus documents, are man-
aged by an underlying IR engine. This metadata is first order only, and is to be
distinguished from information characterizing the set of collections known to a
given agent, or higher order metadata. This form of metadata used supports in-
teroperability. The routing of queries should not be hampered by the underlying
information source, may it be an IR engine, a search engine on the Internet or
an RDF or DAML+OIL [5] based system.

The distribution of Metadata has a profound impact on the system’s abil-
ity to route queries effectively, and determines the “shape” of the C2 system.
Agents receive instructions on metadata distribution from the Collection Man-
ager. There are three possible metadata distribution modes that can be used by
C2:

1. Flood: Each agent broadcasts it’s metadata to every other agent in the sys-
tem. Under this scheme, any agent receiving a query would have complete
(and identical) knowledge of the system, and be able in theory to find the
optimal target for that query.

2. Global: As the original CARROT architecture a designated broker agent has
knowledge of the entire system. All agents share their metadata with only
this agent.

3. Group: Once the system reaches a certain size, however, both of the above
schemes are impractical; the system would become susceptible to bottleneck-
ing. The group scheme based on mathematical, quorum-based distributions,
where a group of agents is represented by a chosen (or elected) agent. Meta-
data sharing would occur inside such groups and amongst the group leaders.

Metadata distribution can be effected by transferring the entire vector, a
“difference” vector in case of changes in agent’s corpus, or just a URL pointing
to the location of the metadata, enclosed in a KQML message.

4.2 Query Processing

Once the system is running, the Collection Manager becomes the primary or
initial interface for outside clients. A client first contacts the Collection Manager
to get the name or names of C2 agents that it may query. The names in this set
will be determined by the metadata distribution policy. For example, in the case
of group-based distribution, the set will contain the group leader agent names.
The client then sends queries to randomly selected agents from the given set. It
is also possible to model more restricted or brokered architectures by limiting the
list to only one or a few agents, which would then feed queries to the remainder
of the system.

In response to an incoming query, an agent decides whether the query should
be answered locally, forwarded to other agents, or both. In flood mode, for ex-
ample, the agent compares the query to its local metadata collection , and deter-
mines the best destinations. Based on the results, it may send the query to the



CARROT II 7

single best source of information, or it may choose to send it to several. One of
those sources may be its own local IR engine. Once answers are computed and
received, the results are forwarded back to the originator of the query. If more
than one information source is targeted, the agent faces the problem of fusing
the information it receives into one coherent response.

Queries may be routed through a number of different agents before finally
being resolved; this depends on the scheme used for metadata distribution and
the routing algorithm. For example, the simplest scheme is to have each agent
broadcast its metadata to every other agent in the system. The corresponding
routing algorithm would be to route to the best information source. Since all
agents have the same metadata collection and employ the same algorithm, a
query will be forwarded at most once before being resolved. For schemes which
employ a more efficient distribution of metadata, or possibly higher order meta-
data, queries may pass through many C2 agents before finally being resolved.

4.3 Implementation

The current implementation of C2 uses the flood mode of metadata distribu-
tion. This implies that the query given to any agent in the system will return
the same answer. The query can be routed either based on a metadata similarity
cutoff or to the best IV agents, based on the metadata similarity scores. There-
fore, as stated in section 4.2, the query needs to be forwarded only once. The
results fusion is based on Voorhees’s query clustering approach [19]. But unlike
their method, the importance of the collection is measured by the metadata
similarity score generated. The metadata score is simply applied as a factor to
the each of the individual document similarity scores of each collection’s ranked
list. The results are then sorted based on this new similarity score and the top
N documents returned as results.

5 Conclusions and Future Work

We presented an initial prototype of a Distributed Information retrieval system
that uses an agent-based architecture. We have been able to show with the
initial construction of the system a proof of concept, i.e. distributed retrieval in
fielded system does actually performs satisfactorily with a slightly deteriorated
performance than centralized retrieval.

References

1. J. A. Aslam and M. Montague. Models for metasearch. In ACM SIGIR, pages
276-284, 2001.

2. C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The
Harvest information discovery and access system. Computer Networks and ISDN
Systems, 28(1-2):119-125, 1995.



8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Scott Cost et al.

J. Callan. Advances in Information Retrieval, chapter 6: Distributed Information
Retrieval, pages 127-150. Kluwer Academic Publishers, 2000.

J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with infer-
ence networks. In E. A. Fox, P. Ingwersen, and R. Fidel, editors, Proceedings of the
18th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 21-28, Seattle, Washington, 1995. ACM Press.

R. S. Cost, T. Finin, A. Joshi, Y. Peng, C. Nicholas, I. Soboroff, H. Chen, L. Kagal,
F. Perich, Y. Zou, and S. Tolia. ITtalks: A case study in the semantic web and
DAML+OIL. IEEE Intelligent Systems, 17(1):40-47, January/February 2002.

R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield, and
A. Boughannam. Jackal: A Java-based tool for agent development. In J. Baxter and
C. Brian Logan, editors, Working Notes of the Workshop on Tools for Developing
Agents, AAAI ’98, number WS-98-10 in AAAT Technical Reports, pages 73-82,
Minneapolis, Minnesota, July 1998. AAAI, AAAI Press.

R. S. Cost, I. Soboroff, J. Lakhani, T. Finin, E. Miller, and C. Nicholas. TKQML:
A scripting tool for building agents. In M. Wooldridge, M. Singh, and A. Rao,
editors, Intelligent Agents Volume IV — Proceedings of the 1997 Workshop on Agent
Theories, Architectures and Languages, volume 1365 of Lecture Notes in Artificial
Intelligence, pages 336-340. Springer-Verlag, Berlin, 1997.

G. Crowder and C. Nicholas. Resource selection in CAFE: An architecture for
network information retrieval. In Proceedings of the Network Information Retrieval
Workshop, SIGIR 96, August 1996.

G. Crowder and C. Nicholas. Metadata for distributed text retrieval. In Proceedings
of the Network Information Retrieval Workshop, SIGIR 97, 1997.

T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language.
In J. Bradshaw, editor, Software Agents. MIT Press, 1997.

J. C. French, A. L. Powell, J. P. Callan, C. L. Viles, T. Emmitt, K. J. Prey, and
Y. Mou. Comparing the performance of database selection algorithms. In SIGIR,
pages 238-245, 1999.

N. Gibbins and W. Hall Scalability issues for query routing service discovery.
In Second Workshop on Infrastructure for Agents, MAS and Scalable MAS at the
Fourth International Conference on Autonomous Agents, pages 209-217, 2001.

L. Gravano and H. Garcia-Molina. Generalizing gloss to vector-space databases
and broker hierarchies. In In Proceedings of the 21st VLDB Conference, Zurich,
Switzerland, 1995.

A. E. Howe and D. Dreilinger. SAVVYSEARCH: A metasearch engine that learns
which search engines to query. Al Magazine, 18(2):19-25, 1997.

L. Liu. Query Routing in Large Scale Digital Library Systems. ICDE, IEEE Press,
1997.

C. Pearce and C. Nicholas. TELLTALE: Experiments in a dynamic hypertext
environment for degraded and multilingual data. Journal of the American Society
for Information Science, June 1994.

A. L. Powell, J. C. French, J. Callan, M. Connell, and C. L. Viles. The impact of
database selection on distributed searching. In SIGIR, pages 232-239, 2000.

G. Salton, C. Yang, and A. Wong. A vector space model for automatic indexing.
Communication of the ACM, pages 613-620, 1975.

E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird. Learning collection fusion
strategies. In SIGIR, Fusion Strategies, pages 172-179, 1995.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Van Nostrand Reinhold, 1994.



