
331Final Exam 15 December 2008

Page 1 of 11

1 50/
2 40/
3 35/
4 10/
5 15/
6 50/
7 20/
8 25/
9 10/
10 15/
11 20/
12 10/
300/

 CMSC 331 Final Exam Fall 2008

Name: _________________________________

UMBC username:_____________________________

You have two hours to complete this closed book/notes exam. Use the backs of these pages if you need more
room for your answers. Describe any assumptions you make in solving a problem. We reserve the right to
assign partial credit, and to deduct points for answers that are needlessly wordy. Skim through the entire
exam before beginning to get a sense of where best to spend your time. If you get stuck on one question, go
on to another and return to the difficult question later. Comments are not required for programming questions
but adding some might help us understand your code.

1. True/False (50 pts: 25*2)
For each of the following questions, circle T (true) or F (false).
T F BNF grammars do not allow left-recursive rules. FALSE
T F Lexical scanners are typically defined using context-sensitive grammars. FALSE
T F A language defined by a regular expression can always be defined using a BNF grammar. TRUE
T F One disadvantage of static type checking is that t incurs extra type checking during run-time, slowing

down the execution speed of most programs slightly. FALSE
T F In most programming languages that have infix operators, the standard arithmetic operators (e.g., +, -,

* and /) are left associative. TRUE
T F Scheme does not allow you to assign a variable more than once. FALSE
T F Scheme interpreters execute tail-recursion without growing the stack. TRUE
T F Lazy evaluation is a technique that can make it easy to avoid unnecessary computation. TRUE
T F A continuation in Scheme is another name for a function closure. FALSE
T F Scheme functions look up the values of non-local variables in the environment of their caller. FALSE
T F Scheme’s call-with-current-continuation allows one to more easily define functions that can do

backtracking. TRUE
T F The Scheme-in-scheme interpreter does not really implement a lexical scanner or a parser. TRUE
T F The Scheme-in-python interpreter uses a recursive descent parser. TRUE
T F Trampolining is a way to implement recursion using iteration. FALSE
T F In Python, any value that is not considered as the False is interpreted as True. TRUE
T F Python allows you to define a class with more than one super class and inherits attributed and meth-

ods from all of them. TRUE
T F In Python, every function always returns a value. TRUE
T F In a Python dictionary, all of the keys must be unique. TRUE
T F In Python, a sting is just a list of characters. FALSE
T F In Python, the only difference between a tuple and a list is that a tuple’s length is fixed. FALSE
T F Only immutable data structures can be used as keys in a Python dictionary. TRUE
T F In languages with dynamic typing, any type errors are in general only detected at run time. TRUE
T F Languages with static typing do not allow user-defined types. FALSE
T F Only languages with static typing can be type safe. FALSE
T F Python 3.0 is unusual in that it is not backward compatible with earlier version of Python. TRUE

331Final Exam 15 December 2008

Page 2 of 11

2. General multiple-choice questions (40 pts: 10*4)
Circle the letters for all of the correct answers, as in the following sample question.

0. What programming languages did we study this semester? (a) Prolog; (b) Scheme; (c) Haskell; (d)
OCaml; (e) Python; (f) Perl

1. Which of the following Python expressions would be interpreted as false when evaluated: (a) False; (b) -1;
(c) 0; (d) []; (e) ‘’; (f) {}; (g) false; (h) not(-1) A,C,D,E,F,H

2. Which phrase best describes the variable scoping used in Python? (a) wide scoping; (b) narrow scoping;
(c) lexical scoping; (d) dynamic scoping; (e) structured scoping; (f) denotational scoping; (g) none of the
above. C

3. In the Scheme interpreters we studied in class, which of the following items are a part of the representation
of a procedure definition: (a) the procedure’s name; (b) the procedure’s parameter names; (c) the procedure’s
code; (d) the environment in which the procedure was defined; (e) the procedure’s type; (f) storage for the
procedure’s arguments. B, C, D

4. In the Scheme interpreters we studied in class, the data structure used for an environment is essentially (a)
a list of frames; (b) an instance of the Environment class; (c) a list of variable names and their values; (d) a
frame of stacks; (e) a hash table or dictionary. A

5. Scheme macros are primarily used to define: (a) dynamically scoped environments; (b) closures; (c) func-
tions that don’t evaluate all of their arguments; (d) reflective programs. C

6. While a recursive descent parser can be natural and efficient for parsing Scheme programs, one drawback
in using it in Python is that: (a) It is difficult to transform it into a grammar with no left recursion; (b) Python
has a limited stack and does not optimize tail-recursion as iteration; (c) the implementation in Python is ob-
scure; (d) it is slow compared to using the trampolining style of programming. B

7. Which of the following languages are generally considered to be type safe? (a) Scheme; (b) Java; (c) C;
(d) C++; (e) Python. A, B, E

8. Which of the following languages use dynamic typing? (a) Lisp; (b) Scheme; (c) Java; (d) JavaScript; (e)
Python; (f) ML; (g) C. A, B, D, E

9. Which of the following functions were not part of John McCarthy’s original description of Lisp? (a) CAR;
(b) DEFINE; (c) LENGTH; (d) IF; (e) EQ; (f) SET; (g) QUOTE. B, C, D

10. Which of the following are true of Scheme’s delay function? (a) it is a special form; (b) it is used to make
a process sleep for a period of time; (c) it can be used to implement lazy evaluation; (d) it returns a closure;
(e) it returns a continuation. A, C, D

331Final Exam 15 December 2008

Page 3 of 11

3. Writing a BNF grammar (35 pts: 20/15)
Assume that Boolean expressions are built up from the following symbols:

• Binary infix operators: *, +, =>, <=>
• Unary prefix operator: ~
• Variables: A, B, C
• Parentheses: (,)

The ~ operator has a highest precedence, followed by * and +, which have equal
precedence. Operators => and <=> have the lowest precedence. All operators are
all left associative. Parentheses are used to group expressions in the usual manner.
Examples and non-examples are shown in the box to the right.

(a) Write a BNF grammar for this language. Be sure it generates all Boolean
expressions given above. Hint: you probably want to define four non-terminal
symbols, e.g., <exp>, <term>, <factor> and <var>. (b) Using your grammar,
draw a parse tree for the expression A*B => A.

Here is the grammar in one syntax for BNFs:

<exp> ::= <exp> => <term>
 | <exp> <=> <term>
 | <term>

<term> ::= <term> * <factor>
 | <term> + <factor>
 | <factor>

<factor> ::= ~ <factor>
 | (<exp>)
 | <var>

<var> ::= A | B | C

Here is the parse tree for “A*B => A” in symbolic form:

exp(exp(term(term(factor(var(A)))
 *,
 factor(var(B))))
 =>,
 term(factor(var(B))))

Positive Examples
A
(~ A * ~ B) + (~ C =>
A)
~ A * ~ C
~ (A * ~ C) + B
(A * B <=> B * A)
(~ (A)) <=> ((A))
~ ~ A

Negative Examples
A ~ => B
A B
* A
) A + B (
()

331Final Exam 15 December 2008

Page 4 of 11

4. Reserved names (10 pts)
Languages like Python, Java, and C++ have reserved words like "if", "else", and "class" that can't be used as
names for variables or functions. The PL/I language has no reserved words and in it one can write statements
like if = while + then(else). What are some advantages and/or disadvantages to having no reserved words?

Advantages: (1) you don't have work around reserved words when choosing variable names,
(2) less structure to the language to remember. Disadvantage: (1) code like the PL/I example
can be vary confusing, (2) parsing a language with keywords can be easier, (3) it's difficult to
write ad-hoc source code analysis tools to deal with programs written in such languages.

5. Slices in Python (15 pts: 5, 10)
(a) In a few sentences, describe the general notion of Python’s slice operation and what kinds of data struc-
tures it applies to. (b) In the following Python interactive session, show what would be printed for the miss-
ing values.

>>> s = "umbcCMSC331"
>>> s[2:3]
'b'
>>> s[2:]
'bcCMSC331'
>>> s[:3]
'umb'
>>> s[:]
'umbcCMSC331'
>>> s[-1:-3]
''
>>> s[:-1]
'umbcCMSC33'
>>> s[1:1]
''

331Final Exam 15 December 2008

Page 5 of 11

6. Regular expressions (30 pts, 5/20/25)
The table to the right gives the symbols Python uses in regular
expressions.

(a) A variable name in Python must start with a letter or underscore
and may be followed by any number of letters, digits, and
underscores. Give a Python regular expression that matches a legal
Python variable name.

"[a-zA-Z_][a-zA-Z0-9_]*”

(b) Fill in the following table. For each row, assume that we evaluate the expression

mo = re.match(pattern,string)

Fill in the missing values for Match? (i.e., does the pattern matched the string, mo.group() (i.e., what part of
the string matched the pattern) and mo.group(1) (i.e., which is the first of the pattern’s match groups). Enter
N/A in a cell if no answer is appropriate for it.

Pattern String Match? mo.group() mo.group(1)

a* apple Yes a N/A

(ab*){1,2} abaa{1,2} Yes aba a

ab|(c?) abcbb Yes ab N/A

a(ab)*a abababa No N/A N/A

1*(01)*0* 10110 Yes 101 01

a.([bc]+) abcbcbcbc Yes abcbcbcbc cbcbcbc

Python RE symbols
^ the beginning of the line
$ the end of the line
+ one or more times
? at most one time
* zero or more time
(...) a group
(?:...) a noncapturing group
\t a tab
\n a newline character
{n} n times
{n, m} a range at least n and at most m
[...] a character class
. any character
\s whitespace
\d a number
\b a word boundary
| or

331Final Exam 15 December 2008

Page 6 of 11

(c) Write a Python regular expression to match a date string for any date from January 1, 1900 to December
31, 2099 using the familiar notation like 10/08/2002. Here is a specification:

A date is a month followed by a slash followed by a day followed by a slash followed by a year. A
month is an integer between 1 and 12. If the integer is a single digit, it can be preceded by an optional
zero (e.g., 01/20/2009). A day is an integer between 1 and 31 and, if a single digit, can be preceded by
an optional zero (e.g., 12/01/2008). A year will be an integer between 1900 and 2099, inclusive.

You can ignore the fact that some months have fewer than 31 days. Strings your expression should match
include 01/01/1900, 1/1/1900, 12/31/2080, 1/01/2009, 02/30/1984, 1/23/1945, and 10/8/2002 and strings that
shouldn’t match include 00/01/1900, 1/1/1899, 13/01/2000, and 10/8/02. Hint: it will probably help if you
draw a finite state graph for the regular expression first.

 '(0?[1-9]|1[012])/([012]?[1-9]|3[01])/((?:19|20)[0-9][0-9])'

We can break this down into its three key parts to make it easier to study.

 month: (0?[1-9]|1[012])
 day: ([012]?[1-9]|3[01])
 year: ((?:19|20)[0-9][0-9])

The parens ensure re componenets group correctly but also to yield three groups in
the match object. For example:

>>> pat = ‘(0?[1-9]|1[012])/([012]?[1-9]|3[01])/((?:19|20)[0-9][0-9])’
>>> m = match(pat,"12/15/2008")
>>> m.groups()
('12', '15', '2008')

331Final Exam 15 December 2008

Page 7 of 11

7. Reference semantics (20 pts: 10/10)
Python uses reference semantics for variable assignment rather than value semantics.

(a) Describe in a few sentences what reference semantics is and how I differ from value semantics.

In reference semantics, assignment binds a variable to a reference or pointer to an object. In
value semantics, assignment copies the data representing a value into storage associated with
a variable.

(b) Fill in the values that Python would return in the following interactive session.

>>> L1 = [1,2,3,4]
>>> L3 = L2 = L1
>>> def foo(L1):
 L1 = [x+1 for x in L1]
 return L1
>>> foo(L2)
[2, 3, 4, 5]
>>> L1
[1, 2, 3, 4]
>>> L2
[1, 2, 3, 4]
>>> L3
[1, 2, 3, 4]
>>> L1 = foo(L2)
>>> L1
[2, 3, 4, 5]
>>> L2
[1, 2, 3, 4]
>>> L3

 

331Final Exam 15 December 2008

Page 8 of 11

8. Destructive assignment in Scheme (25 pts, 5/5/5/5/5)
Scheme has two destructive assignment functions that can change the pointers in a cons cell: set-car! and
set-cdr!. Assume each of the following six expressions are evaluated in order. After each is evaluated, show
what will be printed for L and draw a box and pointer diagram of the structure of cons cells. Be sure to show
any structure sharing.

Expression Value of L Diagram for L

(define L ‘(1 2
3)) (1 2 3)

(set-cdr! L (cdr
(cdr L))) (1 3)

(set-cdr! L (cons
4 (cdr L))) (1 4 3)

(set-car! L (cdr
L))

((4 3) 4
3)

(set-cdr! L (car
L))

((4 3) 4
3)

(set-cdr! L L) #0=((4 3)
. #0#)

331Final Exam 15 December 2008

Page 9 of 11

9. Explain this! (10 pts)
Your classmate wrote a simple function with two optional arguments: X which defaults to the string
“a” and Y, which defaults to the empty list. It concatenates its first argument to itself and then ap-
pends that to the end of its second argument. Finally, it prints both arguments.

1 def foo(X = "a", Y = []):
2 X = X + X
3 Y.append(X)
4 print X, Y

When she called foo() with no arguments repeatedly, she was surprised and puzzled by the results:

>>> for i in range(4): foo()
aa ['aa']
aa ['aa', 'aa']
aa ['aa', 'aa', 'aa']
aa ['aa', 'aa', 'aa', 'aa']

In a few sentences, explain to your classmate what is going on in this example and why the results
are exactly as expected.

This example arises because Python strings are immutable whereas Python lists are mutable.
When foo is defined, two objects are created to represent the argument default values: a
string “a” and an empty list. When called with no arguments, the variables X and Y reference
(or point to) these objects. The since strings are immutable, the assignment of X to X+X in line
2 creates a new string by concatenating the value of X and changes X to refer to this. The ap-
pend method in line 3 modifies the list that Y refers to include the value of X as a new last
member. The list object that gets modified each time is the same – the initially empty one that
the function definition provided as the default value for Y.

331Final Exam 15 December 2008

Page 10 of 11

10. Explain that! (15 pts, 10/5)

Another classmate thinks he has found a bug in the Python
interpreter. He shows you this code (see the box to the right) and
expects bar1() and bar2() to print the same: the value of the global
variable a and its double. But when he tried it out, he was puzzled.

>>> bar1()
100
200
>>> bar2()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in bar2
UnboundLocalError: local variable 'a' referenced
before assignment

(a) How would you explain to your classmate what Python is doing?

Python assumes that variable a in bar1() is free since it is not defined in bar1() and thus refers
to the global a. In the bar2 function, the variable a is defined by the assignment statement.
Even though this occurs in the code after its first reference, Python assumes that a is a vari-
able local to the bar2 function. Since Python does not automatically provide initial values to
variables, it is an error to reference the value of a variable before it has been given one.

(b) How can he easily modify bar2() to have the effect he wants – to have bar2() produce the same
output as bar1()?

He can add he statement “global a” at the beginning of bar2() to let Python know that the
variable a refers to the global variable.

a = 100

def bar1():
 print a
 print a + a

def bar2():
 print a
 a = a + a
 print a
 a = a / 2

331Final Exam 15 December 2008

Page 11 of 11

 11. Reversing strings and lists in Python (20 pts)
(a) Write a Python function rw() that takes a string representing
a word and returns it reverse. Hint: there are many ways to do
this. One way is to produce a list of the string's characters, use
the reverse method defined for lists, and join the results back
into a string.

(b) Now write a function rs() that takes a string representing a
sentence and returns a string with the words in reverse order.
Hint: Split the string into a list of words, reverse the list, join
them back together with a space between them.

def rw(s):
 l = list(s)
 l.reverse()
 return ''.join(l)

def rs(s):
 words = s.split()
 words.reverse()
 return ' '.join(words)

12. Curry functions (10 pts)
Currying is the technique of transforming a function that takes multiple
arguments so that it can be called as a chain of functions each with a sin-
gle argument. Write a Python function curry2 that takes as its argument
a function of two arguments, and returns it in its curried form, i.e. a func-
tion of one argument that when called with X returns a function that
when called with Y, returns the original function applied to the two ar-
guments, X and Y. Se the sample session in the box to the right. Hint:
You’ll use lambda expressions, of course.

def curry2(f): return lambda x: (lambda y: f(x, y)) 

>>> def add(X,Y):
 return X+Y
>>> add(100,200)
300
>>> f = curry2(add)
>>> f(100)(200)
300

>>> rw('foo')
'oof'
>>> rw('')
''
>>> rs('help me')
'me help'
>>> rs('run')
'run'
>>> rs('the quick brown
fox')
'fox brown quick the’

