

Top down vs. bottom up parsing

- The parsing problem is to connect the root node S with the tree leaves, the input
- Top-down parsers: starts constructing the parse tree at the top (root) of the parse tree and move down towards the leaves. Easy to implement by hand, but work with restricted grammars. examples:

- Predictive parsers (e.g., LL(k))

UMBC

- A = 1 + 3 * 4 / 5
- **Bottom-up parsers:** build the nodes on the bottom of the parse tree first. Suitable for automatic parser generation, handle a larger class of grammars. examples:
 - shift-reduce parser (or LR(k) parsers)
- Both are general techniques that can be made to work for all languages (but not all grammars!).

3 **CSEE** Χομπικής Σχαντρά ανό

Parsing

- A grammar describes the strings of tokens that are syntactically legal in a PL
- A recogniser simply accepts or rejects strings.
- A generator produces sentences in the language described by the grammar
- A parser construct a derivation or parse tree for a sentence (if possible)
- Two common types of parsers:
 - -bottom-up or data driven
 - -top-down or hypothesis driven
- A *recursive descent parser* is a way to implement a top-down parser that is particularly simple.

UMBC

CSEE

Top down vs. bottom up parsing

- Both are general techniques that can be made to work for all languages (but not all grammars!).
- Recall that a given language can be described by several grammars.
- Both of these grammars describe the same language

E -> E + Num E -> Num

E -> Num + E E -> Num

- The first one, with it's left recursion, causes problems for top down parsers.
- For a given parsing technique, we may have to transform the grammar to work with it.

UMBC

CSEE Χομπυτερ Σχιενχε ανδ

Parsing complexity

- How hard is the parsing task?
- Parsing an arbitrary Context Free Grammar is O(n³), e.g., it can take time proportional the cube of the number of symbols in the input. This is bad!
- If we constrain the grammar somewhat, we can always parse in linear time. This is good!
- · Linear-time parsing
 - -LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - -LR parsers

UMBC

• Recognize LR grammar

UMBCUse a bottom-up strategy

- LL(n): Left to right, Leftmost derivation, look ahead at most n symbols.
- LR(n): Left to right, Right derivation, look ahead at most n symbols.

CSEE

Recursive Decent Parsing Example

Example: For the grammar:

```
<term> -> <factor> { (* | /) < factor> }
```

We could use the following recursive descent parsing subprogram (this one is written in C)

CSEE

Top Down Parsing Methods

- Simplest method is a full-backup *recursive descent* parser.
- Write recursive recognizers (subroutines) for each grammar rule
 - If rules succeeds perform some action (I.e., build a tree node, emit code, etc.)
 - If rule fails, return failure. Caller may try another choice or fail
 - On failure it "backs up"
- Problems
 - When going forward, the parser consumes tokens from the input, so what happens if we have to back up?
 - Backup is, in general, inefficient
 - Grammar rules which are left-recursive lead to non-termination

JMBC	CSEI

Informal recursive descent parsing

UMBC

Problems

- Some grammars cause problems for top down parsers.
- Top down parsers do not work with left-recursive grammars.
 - E.g., one with a rule like: E -> E + T
 - We can transform a left-recursive grammar into one which is not.
- A top down grammar can limit backtracking if it only has one rule per non-terminal
 - The technique of factoring can be used to eliminate multiple rules for a non-terminal.

UMBC

CSEE

Elimination of Left Recursion

• Consider the left-recursive grammar

$$S \rightarrow S \alpha \mid \beta$$

- S generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

Left-recursive grammars

• A grammar is left recursive if it has rules like

$$X \rightarrow X \beta$$

Or if it has indirect left recursion, as in

$$X \rightarrow + X \beta$$

- Why is this a problem?
- Consider

 $E \rightarrow E + Num$

 $E \rightarrow Num$

• We can manually or automatically rewrite a grammar to remove left-recursion, making it suitable for a top-down parser.

UMBC

CSEE

More Elimination of Left-Recursion

• In general

$$S \rightarrow S \alpha_1 | \dots | S \alpha_n | \beta_1 | \dots | \beta_m$$

- All strings derived from S start with one of β_1, \ldots, β_m and continue with several instances of $\alpha_1, \ldots, \alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' | \dots | \beta_m S'$$

 $S' \rightarrow \alpha_1 S' | \dots | \alpha_n S' | \varepsilon$

General Left Recursion

• The grammar

$$S \rightarrow A \alpha \mid \delta$$

 $A \rightarrow S \beta$

is also left-recursive because

$$S \rightarrow^+ S \beta \alpha$$

where ->+ means "can be rewritten in one or more steps"

• This indirect left-recursion can also be automatically eliminated

UMBC CSEE

Predictive Parser

- A **predictive parser** uses information from the *first terminal symbol* of each expression to decide which production to use.
- A predictive parser is also known as an LL(k) parser because it does a Left-to-right parse, a Leftmost-derivation, and k-symbol lookahead.
- A grammar in which it is possible to decide which production to use examining only the first token (as in the previous example) are called **LL(1)**
- LL(1) grammars are widely used in practice.
 - The syntax of a PL can be adjusted to enable it to be described with an LL(1) grammar.

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar, allowing us to successfully *predict* which rule to use.

UMBC CSEE

Predictive Parser

Example: consider the grammar

 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$

 $S \rightarrow \mathbf{begin} \ S \ L$

 $S \rightarrow \mathbf{print} \ E$

 $L \rightarrow end$ $L \rightarrow : SL$

 $E \rightarrow \text{num} = \text{num}$

An *S* expression starts either with an IF, BEGIN, or PRINT token, and an *L* expression start with an END or a SEMICOLON token, and an *E* expression has only one production.

UMBC

CSEE

CSEE
Χομπυταρ Σγιενγε ανδ
Ελεχτριγιάλ Ενγινικεριν

LL(k) and LR(k) parsers

- Two important classes of parsers are called LL(k) parsers and LR(k) parsers.
- The name LL(k) means:
 - L Left-to-right scanning of the input
 - L Constructing leftmost derivation
 - k max number of input symbols needed to select a parser action
- The name LR(k) means:
 - L Left-to-right scanning of the input
 - R Constructing rightmost derivation in reverse
 - k max number of input symbols needed to select a parser action
- So, a LL(1) parser never needs to "look ahead" more than one input token to know what parser production to apply.

UMBC

CSEE Χομπυτώρ Σχείνγε ανδ

Left-Factoring Example

• Consider the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

• Factor out common prefixes of productions

$$E \rightarrow T X$$

$$X \rightarrow + E \mid \varepsilon$$

$$T \rightarrow (E) \mid \text{int } Y$$

$$Y \rightarrow * T \mid \varepsilon$$

UMBC

CSEE

Predictive Parsing and Left Factoring

• Consider the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

- · Hard to predict because
 - For T, two productions start with *int*
 - For E, it is not clear how to predict which rule to use
- A grammar must be <u>left-factored</u> before use for predictive parsing
- Left-factoring involves rewriting the rules so that, if a non-terminal has more than one rule, each begins with a terminal.

UMBC

CSEE

Left Factoring

• Consider a rule of the form

- A top down parser generated from this grammar is not efficient as it requires backtracking.
- To avoid this problem we left factor the grammar.
 - collect all productions with the same left hand side and begin with the same symbols on the right hand side
 - combine the common strings into a single production and then append a new non-terminal symbol to the end of this new production
 - create new productions using this new non-terminal for each of the suffixes to the common production.
- After left factoring the above grammar is transformed into:

$$A \rightarrow a A1$$

A1 -> B1 | B2 | B3 ... Bn

UMBC

Using Parsing Tables

- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at [S,a]
- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

UMBC

21

CSEE

LL(1) Parsing Table Example

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is *int*, use production $E \rightarrow TX$
 - This production can generate an *int* in the first place
- Consider the [Y, +] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only in a derivation in which Y $\rightarrow \epsilon$
- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

CSEE Χομπυτερ Σχιενχε ανδ

LL(1) Parsing Table Example

· Left-factored grammar

 $E \rightarrow T X$ $X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

• The LL(1) parsing table:

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	3
T	int Y			(E)		
Y		* T	3		3	3

UMBC

22

LL(1) Parsing Algorithm

```
initialize stack = <S $> and next repeat case stack of <X, rest> : if T[X,*next] = Y_1...Y_n then stack \leftarrow <Y_1... Y_n rest>; else error (); <t, rest> : if t == *next ++ then stack \leftarrow <rest>; else error (); until stack == < >
```

UMBC

CSEE
Χομπυτερ Σχιενχε ανδ
Ελεχτριγαλ. Ενγινοεριν

LL(1) Parsing Example

Stack	Input	Action
E \$	int * int \$	T X
T X \$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
T X \$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	8
X \$	\$	8
\$	\$	ACCEPT

Computing First Sets

Definition: First(X) = $\{ t \mid X \rightarrow^* t\alpha \} \cup \{ \epsilon \mid X \rightarrow^* \epsilon \}$

Algorithm sketch (see book for details):

- 1. for all terminals t do First(t) \leftarrow { t }
- 2. for each production $X \to \varepsilon$ do First(X) $\leftarrow \{ \varepsilon \}$
- 3. if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$, $1 \le i \le n$ do
 - add First(α) to First(X)
- 4. for each $X \to A_1 \dots A_n$ s.t. $\varepsilon \in First(A_i)$, $1 \le i \le n$ do
 - $\bullet \quad \text{ add } \epsilon \text{ to } First(X)$

UMBC

5. repeat steps 4 & 5 until no First set can be grown

UMBC
Hauer Tomanur Magdard 27

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG
- If $A \rightarrow \alpha$, where in the line of A we place α ?
- In the column of t where t can start a string derived from α
 - $-\alpha \rightarrow^* t\beta$
 - We say that t ∈ First(α)
- In the column of t if α is ε and t can follow an A
 - $-S \rightarrow^* \beta A t \delta$
 - We say t ∈ Follow(A)

UMBC

CSEE

26

CSEE

First Sets. Example

• Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

First sets

```
First(() = { () First(T) = {int, ()}

First()) = { () First(E) = {int, ()}

First(int) = { int }

First(X) = {+, \epsilon}

First(Y) = {*, \epsilon}

First(*) = {*}
```

UMBC

Computing Follow Sets

• Definition:

$$Follow(X) = \{ t \mid S \rightarrow^* \beta X t \delta \}$$

- Intuition
 - If S is the start symbol then \$ ∈ Follow(S)
 - If X → A B then First(B) \subseteq Follow(A) and Follow(X) \subset Follow(B)
 - Also if B →* ε then Follow(X) \subseteq Follow(A)

UMBC

29

CSEE

Follow Sets. Example

• Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

· Follow sets

UMBC

CSEE
Χομπυτερ Σχιενχε ανδ

Computing Follow Sets

Algorithm sketch:

- 1. Follow(S) \leftarrow { \$ }
- 2. For each production $A \rightarrow \alpha X \beta$
 - add First(β) { ϵ } to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$
 - add Follow(A) to Follow(X)
- repeat step(s) ___ until no Follow set grows

UMBC

CSEE

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal t ∈ First(α) do
 - $T[A, t] = \alpha$
 - If ε ∈ First(α), for each t ∈ Follow(A) do
 - $T[A, t] = \alpha$
 - If ε ∈ First(α) and \$ ∈ Follow(A) do
 - $T[A, \$] = \alpha$

UMBC

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

UMBC

Algorithm

CSEE

- 1. Start with an empty stack and a full input buffer. (The string to be parsed is in the input buffer.)
- Repeat until the input buffer is empty and the stack contains the start symbol.
- a. <u>Shift</u> zero or more input symbols onto the stack from input buffer until a handle (beta) is found on top of the stack. If no handle is found report syntax error and exit.
- b. Reduce handle to the nonterminal A. (There is a production A beta)
- 3. Accept input string and return some representation of the derivation sequence found (e.g.., parse tree)
- The four key operations in bottom-up parsing are <u>shift, reduce, accept</u> and <u>error.</u>
- · Bottom-up parsing is also referred to as shift-reduce parsing.
- Important thing to note is to know when to shift and when to reduce and to which reduce.

UMBC

Bottom-up Parsing

- YACC uses bottom up parsing. There are two important operations that bottom-up parsers use. They are namely shift and reduce.
 - (In abstract terms, we do a simulation of a Push Down Automata as a finite state automata.)
- Input: given string to be parsed and the set of productions.
- Goal: Trace a rightmost derivation in reverse by starting with the input string and working backwards to the start symbol.

UMBC

Example of Bottom-up Parsing

STACK	INPUT BUFFER	ACTION			
\$	num1+num2*num3\$	shift			
\$num1	+num2*num3\$	reduc	$E \rightarrow E+T$		
\$F	+num2*num3\$	reduc	T		
\$T	+num2*num3\$	reduc	E-T		
\$E	+num2*num3\$	shift	T -> T*F		
\$E+	num2*num3\$	shift	F T/F		
\$E+num2	*num3\$	reduc	F -> (E)		
\$E+F	*num3\$	reduc	id		
\$E+T	*num3\$	shift	-E		
E+T*	num3\$	shift	num		
E+T*num3	\$	reduc			
E+T*F	\$	reduc			
E+T	\$	reduc			
E	\$	accept			
UMBC			CSEE XOURTUSED SYLEVYE GIVE EACHTONICAL ENVIRONMENT		