-

Chapter 4

+

S A

(b) parsing .

S

2F(E+4)+5

UMBC , CSEE

Parsing

+ A grammar describes the strings of tokens that are
syntactically legal in a PL

* A recogniser simply accepts or rejects strings.

* A generator produces sentences in the language described by
the grammar

* A parser construct a derivation or parse tree for a sentence (if
possible)

» Two common types of parsers:
—bottom-up or data driven

—top-down or hypothesis driven
* A recursive descent parser is a way to implement a top-down
parser that is particularly simple.

UMBC . CSEE

Top down vs. bottom up parsing

* The parsing problem is to connect the root node S S
with the tree leaves, the input
* Top-down parsers: starts constructing the parse
tree at the top (root) of the parse tree and move
down towards the leaves. Easy to implement
by hand, but work with restricted grammars.
examples:

- Predictive parsers (e.g., LL(k))
* Bottom-up parsers: build the nodes on the bottom of the

parse tree first. Suitable for automatic parser generation,
handle a larger class of grammars. examples:

— shift-reduce parser (or LR(k) parsers)

* Both are general techniques that can be made to work for all
languages (but not all grammars!).

UMBC 3 CSEE

A=1+3%4/5

Top down vs. bottom up parsing

* Both are general techniques that can be made to work
for all languages (but not all grammars!).

* Recall that a given language can be described by
several grammars.

* Both of these grammars describe the same language

E -> E + Num E -> Num + E
E -> Num E -> Num

* The first one, with it’s left recursion, causes
problems for top down parsers.
* For a given parsing technique, we may have to
transform the grammar to work with it.
UMBC . CSEE

Parsing complexity
* How hard is the parsing task?

* Parsing an arbitrary Context Free Grammar is O(n?), e.g., it

can take time proportional the cube of the number of symbols
in the input. This is bad!
« If we constrain the grammar somewhat, we can always parse
in linear time. This is good!
. . . * LL(n) : Left to right,
* Linear-time parsing Leftmost derivation,

—LL parsers look ahead at most n
* Recognize LL grammar symbols. q
* LR(n) : Left to right,
*» Use a top-down strategy Right derivation,
—LR parsers look ahead at most n
i symbols.
* Recognize LR grammar
UMB¢Use a bottom-up strategy CSEE

Top Down Parsing Methods

* Simplest method is a full-backup recursive descent parser.

» Write recursive recognizers (subroutines) for each grammar
rule

— If rules succeeds perform some action (I.e., build a tree node, emit
code, etc.)

— If rule fails, return failure. Caller may try another choice or fail
— On failure it “backs up”
* Problems

— When going forward, the parser consumes tokens from the input, so
what happens if we have to back up?

— Backup is, in general, inefficient

— Grammar rules which are left-recursive lead to non-termination

UMBC . CSEE

Recursive Decent Parsing Example
Example: For the grammar:

<term> -> <factor> {(*|/)<factor>}

We could use the following recursive

descent parsing subprogram (this one is
written in C)

void term() {

factor () ; /* parse first factor*/
while (next token == ast_code ||
next token == slash code) {
lexical(); /* get next token */
factor(); /* parse next factor */

}
}

UMBC : CSEE

Informal recursive descent parsing

UMBC . CSEE

Problems

* Some grammars cause problems for top
down parsers.

» Top down parsers do not work with left-
recursive grammars.
— E.g., one with arule like: E->E+ T
— We can transform a left-recursive grammar into

one which is not.

* A top down grammar can limit backtracking

if it only has one rule per non-terminal

— The technique of factoring can be used to
eliminate multiple rules for a non-terminal.

UMBC : CSEE

Left-recursive grammars

* A grammar is left recursive if it has rules like

X->XB

Or if it has indirect left recursion, as in

X ->+XB
* Why is this a problem?
* Consider

E -> E + Num

E -> Num
* We can manually or automatically rewrite a

grammar to remove left-recursion, making it

suitable for a top-down parser.

UMBC Y CSEE

Elimination of Left Recursion

* Consider the left-recursive grammar
S—>Salp

* S generates all strings starting with a 3 and
followed by a number of o

* Can rewrite using right-recursion
S->BS
S>>aS e

UMBC .. CSEE

More Elimination of Left-Recursion

* In general

S—>So|...|Sa,|B;].- | B

* All strings derived from S start with one of
By,....p,, and continue with several instances of
Olyy. .0l

* Rewrite as
S>B,S ... B, S
S—>a, S...]a,5 |¢

UMBC . CSEE

General Left Recursion

* The grammar
S>Aal|d
A—>SB
is also left-recursive because
S>*SPa
where ->+ means “can be rewritten in one or
more steps”

* This indirect left-recursion can also be
automatically eliminated

UMBC . CSEE

Summary of Recursive Descent

» Simple and general parsing strategy
— Left-recursion must be eliminated first
— ... but that can be done automatically

» Unpopular because of backtracking
— Thought to be too inefficient

* In practice, backtracking is eliminated by
restricting the grammar, allowing us to
successfully predict which rule to use.

UMBC . CSEE

Predictive Parser

* A predictive parser uses information from the
first terminal symbol of each expression to decide
which production to use.

* A predictive parser is also known as an LL(k)
parser because it does a Left-to-right parse, a
Leftmost-derivation, and k-symbol lookahead.

* A grammar in which it is possible to decide which
production to use examining only the first token (as
in the previous example) are called LL(1)

* LL(1) grammars are widely used in practice.

— The syntax of a PL can be adjusted to enable it to be
described with an LL(1) grammar.

UMBC . CSEE

Predictive Parser

Example: consider the grammar

S — if E then S else S
S — begin S L
S — print E

L — end
L—;SL An S expression starts either with

an IF, BEGIN, or PRINT token,
and an L expression start with an
END or a SEMICOLON token,
and an E expression has only one
production.

E — num = num

UMBC CSEE

LL(Kk) and LR(K) parsers

» Two important classes of parsers are called LL(k) parsers and
LR(k) parsers.

¢ The name LL(k) means:

— L - Left-to-right scanning of the input

— L - Constructing leftmost derivation

— k — max number of input symbols needed to select a parser action
¢ The name LR(k) means:

— L - Left-to-right scanning of the input

— R - Constructing rightmost derivation in reverse

— k — max number of input symbols needed to select a parser action

* So, a LL(1) parser never needs to “look ahead” more than one input
token to know what parser production to apply.

UMBC . CSEE

Predictive Parsing and Left Factoring

* Consider the grammar
E->T+E|T
T—oint |[int*T|(E)
» Hard to predict because
— For T, two productions start with int
— For E, it is not clear how to predict which rule to use
* A grammar must be left-factored before use for
predictive parsing
 Left-factoring involves rewriting the rules so that,
if a non-terminal has more than one rule, each

begins with a terminal.
UMBC : CSEE

Left-Factoring Example

 Consider the grammar
ES>T+E|T
T—int |int* T|(E)
 Factor out common prefixes of productions
E->TX
X—>+E]|e
T (E)|intY
Y>*T|e

UMBC .g CSEE

Left Factoring

* Consider a rule of the form
A->aBl|aB2|aB3|...aBn

* A top down parser generated from this grammar is not
efficient as it requires backtracking.

* To avoid this problem we left factor the grammar.

— collect all productions with the same left hand side and
begin with the same symbols on the right hand side

— combine the common strings into a single production and
then append a new non-terminal symbol to the end of this
new production

— create new productions using this new non-terminal for
each of the suffixes to the common production.

* After left factoring the above grammar is transformed into:
A—>aAl
Al->B1|B2|B3...Bn

UMBC CSEE

Using Parsing Tables

» LL(1) means that for each non-terminal and token there is
only one production
* Can be specified via 2D tables
— One dimension for current non-terminal to expand
— One dimension for next token
— A table entry contains one production
* Method similar to recursive descent, except
— For each non-terminal S
— We look at the next token a
— And chose the production shown at [S,a]
» We use a stack to keep track of pending non-terminals
* We reject when we encounter an error state

» We accept when we encounter end-of-input

UMBC . CSEE

LL(1) Parsing Table Example

* Left-factored grammar
E->TX X—>+E|e
T (E)|intY Y>*T|e
* The LL(1) parsing table:

int * + () $
E TX TX
X +E € €
T intY (E)
Y *T € € €
UMBC CSEE

LL(1) Parsing Table Example

» Consider the [E, int] entry

— “When current non-terminal is E and next input is int,
use production E— T X

— This production can generate an int in the first place
* Consider the [Y, +] entry

— “When current non-terminal is Y and current token is +,
getrid of Y”

— Y can be followed by + only in a derivation in which Y
—> €

» Blank entries indicate error situations
— Consider the [E,*] entry

— “There is no way to derive a string starting with * from
non-terminal E”

UMBC . CSEE

LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
case stack of
<X, rest> :if T[X, *next] = Y;...Y,
then stack « <Y,... Y,
rest>;
else error ();
<t, rest> :ift == *next ++
then stack < <rest>;
else error ();
until stack == < >

UMBC CSEE

Constructing Parsing Tables

* LL(1) languages are those defined by a parsing
table for the LL(1) algorithm

» No table entry can be multiply defined
* We want to generate parsing tables from CFG
* If A > o, where in the line of A we place o ?

* In the column of t where t can start a string
derived from o
—a—>"tB
— We say that t € First(a)
¢ In the column of t if o is € and t can follow an A

LL(1) Parsing Example
Stack Input Action
E S int * int T X
T X $ int * int int Y
int Y X § int * int terminal
Y X 8 * int $ * T
*T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ €
X $ S €
$ $ ACCEPT

UMBC . CSEE
Computing First Sets
Definition: First(X)= {t| X > ta} U {g¢| X >" ¢}
Algorithm sketch (see book for details):
1. for all terminals t do First(t) < {t}
2. for each production X — € do First(X) € {¢}
3. ifX > A, ...A a and ¢ e First(A;), 1 <i<n do
add First(a) to First(X)
4. foreach X - A, ... A s.t. ¢ e First(A)), 1 <i<ndo
add ¢ to First(X)

5. repeat steps 4 & 5 until no First set can be grown

UMBC

CSEE

-S>"BAtS
— Wesay t € Follow(A)
UMBC : e
First Sets. Example
* Recall the grammar
E->TX X—>+E]|¢
T—(E)|intY Y *T|e
* First sets
First(()={ (} First(T) = {int, (}
First())=1{)} First(E) = {int, (}
First(int) = { int } First(X)= {+, ¢ }
First(+)={+} First(Y)= {*, ¢}
First(*)={*}
UMBC CSEE

Computing Follow Sets

e Definition:
Follow(X)={t|S—>"B Xt}

* Intuition
— If S is the start symbol then $ € Follow(S)

— If X —> A B then First(B) < Follow(A) and

Follow(X) < Follow(B)
— Also if B »" ¢ then Follow(X) < Follow(A)

UMBC . CSEE

Computing Follow Sets

Algorithm sketch:

1. Follow(S) €« {$}
2. For each production A - o X 3
* add First(p) - {€} to Follow(X)

3. Foreach A — a X 3 where € € First(j3)
* add Follow(A) to Follow(X)

» repeat step(s) _ until no Follow set
grows

UMBC “ CSEE

Follow Sets. Example

* Recall the grammar
E->TX X—>+E]|e
T—(E)|intY Y *T|e
* Follow sets
Follow(+)= {int, (} Follow(*)= {int, (}
Follow(()= {int,(} Follow(E)={), $}
Follow(X)={$,)} Follow(T)={+,),$}
Follow())={+,),8} Follow(Y)={+),$}
Follow(int) = {*,+,), $}

UMBC . CSEE

Constructing LL(1) Parsing Tables

* Construct a parsing table T for CFG G

* For each production A — o in G do:
— For each terminal t € First(a) do
*T[A, t]=a
— If ¢ € First(a), for each t € Follow(A) do
*T[A, t]=a
— If e € First(a) and $ € Follow(A) do
*T[A, $]=a

UMBC . CSEE

Notes on LL(1) Parsing Tables

* Ifany entry is multiply defined then G is not
LL(1)
— If G is ambiguous
— If G is left recursive
— If G is not left-factored

* Most programming language grammars are not
LL(1)

* There are tools that build LL(1) tables

UMBC . CSEE

Bottom-up Parsing

* YACC uses bottom up parsing. There are two
important operations that bottom-up parsers use.
They are namely shift and reduce.

— (In abstract terms, we do a simulation of a Push Down
Automata as a finite state automata.)

* Input: given string to be parsed and the set of

productions.

* Goal: Trace a rightmost derivation in reverse by
starting with the input string and working
backwards to the start symbol.

UMBC CSEE

Algorithm

. Start with an empty stack and a full input buffer. (The string to be
parsed is in the input buffer.)

. Repeat until the input buffer is empty and the stack contains the start
symbol.

—_

[5]

a. Shift zero or more input symbols onto the stack from input buffer
until a handle (beta) is found on top of the stack. If no handle is found
report syntax error and exit.
b. Reduce handle to the nonterminal A. (There is a production 4 ->
beta)

. Accept input string and return some representation of the derivation
sequence found (e.g.., parse tree)
The four key operations in bottom-up parsing are shift, reduce, accept
and error.

w

.

.

Bottom-up parsing is also referred to as shift-reduce parsing.

.

Important thing to note is to know when to shift and when to reduce and
to which reduce.

UMBC CSEE

Example of Bottom-up Parsing

STACK INPUT BUFFER ACTION
$ numl+num?2*num3$ shift
S$numl +num2*num3$ reduc E->E+T
SF +num2*num3$ reduc IT
ST +num2*num3$ reduc e
SE +num2*num3$ shift T-=TF
SE+ num2*num3$ shift ::’/F
SE+num2 *num3$ reduc F > (E)
SE+F *num3$ reduc lid
SE+T *num3$ shift |-E
E+T* num3$ shift num
E+T*num3 $ reduc
E+T*F $ reduc
E+T $ reduc
E $ accept

UMBC COEE

