Ph.D. Proposal

ACCESS: An Assistive Contactless Capacitive
Electrostatic Sensing System

Alexander Nelson

12:00pm Friday, 21 August 2015, ITE 325b

The objective of ACCESS is to develop fabric capacitor sensor arrays as a holistic, wearable, touchless sensing solution. The fabric sensors are lightweight, flexible, and can therefore be integrated into items of everyday use. Further, the capacitive sensing hardware is low-power, unobtrusive, and easily maintainable. The research includes: the construction of fabric sensor prototypes and custom sensing hardware; the development of adaptive signal processing and gesture recognition; and the creation of an assistive cyber-physical interface for mobility impairment. The research is conducted with advisement from medical professionals and private consultants, and evaluated in clinical trials by individuals with upper-extremity mobility impairment. Proposed future work includes evaluation of the assistive device for computational overhead, the inclusion of personal contextual information in gesture recognition and device actuation, and investigation of a dense spatial-resolution capacitor sensor array as a low-resolution greyscale imaging system.

Committee: Drs. Nilanjan Banerjee and Ryan Robucci (Chairs), Chintan Patel, Sandy McCombe-Waller (UMB Medical School)