
Training Deep Neural Networks with Gradual Deconvexification

James Ting-Ho Lo Yichuan Gui Yun Peng

Abstract—A new method of training deep neural networks
including the convolutional network is proposed. The method
deconvexifies the normalized risk-averting error (NRAE) grad-
ually and switches to the risk-averting error (RAE) whenever
RAE is computationally manageable. The method creates tunnels
between the depressed regions around saddle points, tilts the
plateaus, and eliminates nonglobal local minima. Numerical ex-
periments show the effectiveness of gradual deconvexification as
compared with unsupervised pretraining. After the minimization
process, a statistical pruning method is used to enhance the
generalization capability of the neural network under training.
Numerical results show further reduction of the testing criterion.

I. INTRODUCTION

In this section, we examine the issues involved in training
neural networks and motivate a training method based on
convexification of the sum of squared errors (SSE) [1–8].
This training method, which is an improved version of that
proposed in [5–7], is suited for training all deep learning
machines (DLMs) including convolutional neural networks
(CNNs) [9] and recurrent neural networks with any feedback
structures. We also discuss briefly how convexification can
help overcome the saddle points, plateaus and nonglobal local
minima on the surface of the SSE.

Training neural networks such as the multilayer perceptron
and its variants (e.g., the CNN and other DLMs) is mainly
to minimize a training criterion, such as the SSE and cross
entropy (CE), constructed with a training dataset. The training
criterion is usually nonconvex and has a large number of
nonglobal local minima and plateaus. Commonly used min-
imization methods include the gradient descent, quasi-Newton
and conjugate gradient method. Such a method depends on the
first- and/or second-order derivative of the training criterion
in each iteration and hence slows down on a plateau or
saddle point and has difficulty getting out of a nonglobal local
minimum.

In addition to the minimization of the training criterion,
training a neural network has another objective, namely the
maximization of the generalization capability of the neural
network. The generalization capability is usually measured
by a testing criterion constructed with a test dataset that
mimics the training criterion. In the process of minimizing
the training criterion, the generalization capability is usually
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monitored with a cross-validation criterion constructed with
a cross-validation dataset. Whenever the cross-validation cri-
terion starts to increase steadily, the minimization process is
terminated.

Cross-validation is used to prevent training process from
reducing the generalization capability of the neural network.
It does not improve the approximation of the underlying
function by the neural network. Another way to enhance
the generalization capability is pruning or drop-out [10] of
neural network weights. After pruning or drop-out, the neural
network has less weights, retraining the neural network with
the same training method cannot reduce the training criterion
or the deviations of the neural network outputs from the
corresponding values of the underlying function.

Therefore, the notion that since the training process is to
be stopped by cross-validation, it does not matter whether the
minimization method used has the ability to avoid nonglobal
local minima or whether a global or near global minimum
can be found is mistaken. Briefly speaking, failure in mini-
mization does not guarantee success in generalization. In our
opinion, generalization capability, which reflects mostly the
interpolation and some extrapolation accuracy, should be on
the basis of a training method that is able to reach a global or
near global minimum. For example, pruning a neural network
increases its training criteria. A neural network with a smaller
training criterion after the termination of the training process
allows more room for pruning and thus for enhancing the
generalization capability of the neural network.

Generally speaking, the more approximating resources (e.g.,
layers and weights) the neural network has, the smaller the
values of the training criterion are at local minima. Since the
training criterion is bounded from below by 0, the values
of most local minima may be close to that of the global
local minima. This is true whether the architecture (i.e.,
approximating resources) of the neural network required for
fitting a given training dataset is large or small. However,
because of the structural symmetry of the neural networks,
nonglobal local minima whose values are not close to that
of the global minima exist in large numbers. The chance for
a minimization method intended for convex criteria to get
trapped in such a nonglobal local minimum is not zero.

Equally important, the more approximating resources the
neural network has, the more overfitting errors, especially the
misinterpolation error, the neural network has after training.
Unless a large number of weights are pruned or drop out,
and the cross-validation and testing datasets are large enough
to sufficiently reflect all the scenarios in the application of
the neural network, the overfitting errors may show up in
the application. Therefore, in the early development of neural



networks, neural networks used are kept as small as feasible
even with regularization terms included in the training error
criterion. Stimulating results on the surface of the training
criterion, which are related to our discussions above, can be
found in [11–13].

The purpose of this paper is to develop the gradual de-
convexification (GDC) method further [5–7] to avoid plateaus
and nonglobal local minima more effectively, speed up min-
imization process, require no multiple training sessions with
different sets of random initial weights, and enhance general-
ization.

The unsupervised pretraining followed by fine tuning for
training DLMs represents the state of the art in training neural
networks [10, 14–22]. A large number of more recent articles
on the unsupervised pretraining and DLMs can be found on
the web. Numerical experiments were performed to compare
our new version of GDC to the method of unsupervised
pretraining followed by fine tuning on well-known benchmark
examples. The numerical results show the deep neural net-
works (including the CNN) obtained by training with the new
GDC, which is stopped by cross-validation and then followed
by statistical pruning, are better than those trained with the
method of unsupervised discriminative pretraining followed
by fine tuning, but are not as good as the deep belief network
or deep Boltzmann machine. The differences are small, but
significant, showing room for GDC to be further developed.

Because of GDC’s consistent performances among different
training sessions with different initialization seeds, wide appli-
cability (e.g., to convolutional and recurrent neural networks),
conceptual simplicity and mathematical justification, and pos-
sible use jointly with other methods such as the discriminative
unsupervised pretraining, further development of GDC is at the
top of the list of our future work.

II. PRELIMINARY RESULTS

In this section, we review the theory of the risk-averting
error (RAE) Jλ(w) and the normalized risk-averting error
(NRAE) Cλ(w) criteria. The former was proposed to con-
vexify the sum of squared errors (SSE) [3]. The latter was
used to overcome computer overflow in computing the RAE
and its derivatives [4, 5, 8].

A. Risk-Averting Error Criterion

A standard formulation of training a multilayer perceptron
(MLP) under supervision follows: given a set of input/output
pairs (xk, yk), k = 1, ...,K, which are assumed to satisfy the
equation yk = f (xk) + ξk where f is an unknown or known
function and ξk are random noises or zero, finding an MLP
y = f̂ (x,w) such that the SSE criterion

Q(w) :=

K∑
k=1

∥∥∥yk − f̂ (xk, w)
∥∥∥2 (1)

is minimized with the variation of the weight vector w, where
‖·‖ denotes the Euclidean norm and the weights w ∈ RN .

The RAE criterion [3]

Jλ(w) :=

K∑
k=1

e

(
λ‖yk−f̂(xk,w)‖2

)
(2)

was motivated by emphasizing the larger individual deviations∥∥∥yk − f̂ (xk, w)
∥∥∥ of the SSE criterion Q(w) in an exponential

manner, thereby avoiding such large individual deviations
and achieving robust performance. It turned out that under
a regularity condition on f̂ (x,w), the convexity region of
Jλ(w) expands monotonically as λ increases. This is stated
in the following theorem [3]:

Theorem 1 (RAE Convexity). Assume that the risk-averting
error criterion Jλ(w) in (2) is twice continuously differen-
tiable, and that N < K.

DK(w) :=

[
∂f̂ (xk, w)

∂wki

]
K×N

(3)

is the Jacobian of f̂ (xk, w) and

Hλ(w) :=

[
∂2Jλ(w)

∂wi∂wj

]
N×N

(4)

is the Hessian of Jλ(w). Denoting the set{
w ∈ RN : rankDK(w) = N

}
by Ω, the set

Pλ := {w ∈ Ω |Hλ(w) > 0} expands monotonically as
λ increases.

Remark. Let C(K,N) denote the number of combinations of
N objects taken K at a time. Note that the complement ΩC of
Ω is the intersection of the solution sets of C(K,N) algebraic
equations defined by setting the determinants of C(K,N)
submatrices of DK(w) equal to zero. As the number K of
input/output pairs in the training data increases, the number
C(K,N) of solution sets increases rapidly, and the intersection
Ω of these solution sets shrinks monotonically.

B. Normalized Risk-Averting Error Criterion

To make advantage of a large convexity region of Jλ (w), λ
must be large. At the beginning of training, the squared errors∥∥∥yk − f̂ (xk, w)

∥∥∥2 of the SSE Q(w) are usually very large.
Computing Jλ (w) or its derivatives for a large λ or a large∥∥∥yk − f̂ (xk, w)

∥∥∥2 often causes computer overflow. To avoid
it, the NRAE criterion [4]

Cλ (w) :=
1

λ
ln

(
1

K
Jλ (w)

)
(5)

must be used.
To simplify mathematical expressions, we use the following

symbols:

ŷk (w) := f̂ (xk, w) (6)
εk (w) := yk − ŷk (w) (7)

and for each w,

S (w) = arg max
k∈{1,...,K}

‖εk (w)‖2 (8)



S (w) may contain more than one element if a tie exists. Let

M = min
m
{m |m ∈ S (w)} (9)

which is the smallest index among all values in the set S (w).
It follows that ‖εk (w)‖2 ≤ ‖εM (w)‖2 for all k ∈ {1, ...,K}.
Using the symbol,

ηk (w) := eλ(‖εk(w)‖2−‖εM (w)‖2) (10)

where we note 0 < ηk(w) ≤ 1 and 0 <
∑K
k=1 ηk (w) ≤ K,

the NRAE criterion Cλ (w) in (5) can be rewritten as

Cλ (w) =
1

λ
ln

(
1

K
eλ‖εM (w)‖2

K∑
k=1

ηk (w)

)
(11)

≤ 1

λ
ln

1

K
+ ‖εM (w)‖2 +

1

λ
lnK (12)

= ‖εM (w)‖2 (13)

It indicates that Cλ (w) is bounded by the term ‖εM (w)‖2,
which is independent of λ, and no computer overflow occurs
even for λ >> 1. Evaluation of the derivatives of Cλ (w)
without computer overflow is examined in the sequel.

Note that Cλ(w) is a strictly increasing function
1
λ ln

(
1
K (·)

)
of Jλ(w). Therefore, NRAE and RAE share the

same nonglobal local and global optima. In other words, as
the convexity region of RAE expands, NRAE contains less
and less nonglobal local minima as well. For a neural network
f̂ (x,w) that is sufficiently large for minwQ(w) to be close to
0 for some w, if a global or near-global minimum of NRAE
and RAE is reached, it is also a near-global local minimum
of Q(w).

For a neural network f̂ (x,w) that is not large enough
for minwQ(w) to be close to 0, if a global or near-global
minimum of NRAE and RAE is reached, it may not be
very close to a near-global local minimum of Q(w). For
minimizing Q(w), we continue training with NRAE or RAE
with gradually smaller and smaller λ until λ = 0. According
to our experiences, this practice converges to minwQ(w) all
the time. This is consistent with limλ→0 Cλ (w) = 1

KQ (w),
which is proven as follows:

lim
λ→0

Cλ (w) = lim
λ→0

1

λ
ln

(
1 +

1

K

K∑
k=1

λ ‖εk (w)‖2 +O(λ2)

)

= lim
λ→0

1

λ

(
1

K

K∑
k=1

λ ‖εk (w)‖2 +O(λ2)

)

=
1

K

K∑
k=1

‖εk (w)‖2 (14)

where the Taylor series expansions of exponential and loga-
rithm functions are applied.

III. GRADUAL DECONVEXIFICATION

Recall that under a rank condition on f̂ (x,w), the convexity
region of Jλ(w) expands monotonically as λ increases. To
make advantage of a larger convexity region of Jλ(w) at a

greater λ and avoid computer overflow, we are tempted to
minimize Cλ(w) at a λ as large as possible. However, at a
very large λ, we encounter the following phenomena called
stagnancy of training.

A. Stagnancy of Training at a Too Large λ

As the convexity region of Jλ (w) expands as λ increases,
it is tempting to start training with Cλ (w) at an extremely
large value of λ. Let us first see from (11),

lim
λ→∞

Cλ (w) = lim
λ→∞

1

λ
ln

(
1

K

K∑
k=1

ηk (w)

)
+ ‖εM (w)‖2

= ‖εM (w)‖2 (15)

Numerical experiments confirm or reveal the following
phenomena:

1) Equation (15) shows that minimum of Cλ (w) ≈
‖εM (w)‖2 for λ >> 1 is virtually minimax of Q (w).
To minimize ‖εM (w)‖2, we use the entire MLP to
approximate (xk, yk) where k ∈ S (w), which are at
most a small number of input/output pairs in the train-
ing dataset, which usually contains a relatively larger
number K of input/output pairs. The architecture of the
neural network selected for approximating the training
dataset is therefore redundant for the approximation of
(xk, yk). When all the weights are adjusted to achieve
the approximation for (xk, yk), they tend to become
”similar” or ”duplicated”, thus causing rank deficiency.
Without a satisfied rank condition in the basic con-
vexification theorem, it is not clear whether Jλ (w) is
convexified at an extremely large λ.

2) There are four possible cases in minimizing Cλ(w) ≈
‖εM (w)‖2 at an extremely large λ:

a) Cλ (w) ≈ ‖εM (w)‖2 is a plateau or nearly a
plateau around the current w: Cλ (w) stops de-
creasing or decreases extremely slowly. It may
mistakenly be interpreted as reaching a local or
global minimum of Cλ (w).

b) Cλ (w) ≈ ‖εM (w)‖2 contains a local minimum
near the current w and the training converges to it.

c) Cλ (w) ≈ ‖εM (w)‖2 continues to decrease, but
some other ‖εk (w)‖2 increase: at one point, one
of them replaces the current ‖εM (w)‖2 as a new
‖εM (w)‖2. This usually happens when the surface
near the current w is not a plateau or nearly
a plateau. Therefore, whether there is a local
minimum or rank deficiency is irrelevant at an
extremely large lambda.

d) A group of different ‖εk (w)‖2 take turns to be
‖εM (w)‖2: if one ‖εM (w)‖2 decreases, then the
other ‖εk (w)‖2 in the group increase. The index
M cycles through the group, while such cycling is
observed in our numerical experiments.

In the above phenomena, Cλ (w) decreases very slowly or
simply ceases to decrease. This is called stagnancy of training.



The smallest value of λ at which stagnancy of training with
Cλ (w) occurs depends on the application. It is unclear how to
determine or even estimate it. Therefore, to make advantage
of as large a convexity region of RAE (contained in NRAE) as
possible, we start training with NRAE Cλ (w) at a very large
value of λ, say 109. To deal with the stagnancy of training,
we reduce the value of λ by a preset percentage whenever
Cλ (w) does not decrease for a preset amount or percentage
in a preset number of epochs. As discussed in Section II-B,
if minw Cλ(w) ≈ minwQ(w) ≈ 0, we switch training with
Cλ(w) to training with Q(w); else we continue GDC training
with Cλ(w) until λ ≈ 0. Experimental results reported in [6, 7]
confirm the effectiveness of GDC for preventing the stagnancy
of training and avoiding the non-global local minimum in
training MLPs in both batch and pairwise training.

As the convexity region of RAE (contained in NRAE)
shrinks as λ decreases, this procedure is called GDC stage
1 [6]. In the sequel, GDC stage 2 will be proposed.

We examine a fast evaluation of the gradient of Cλ (w) at a
very large λ in the subsection below. With this fast evaluation,
we may start with a very large λ without incurring too much
computational cost.

B. Fast Evaluation of NRAE Gradient at a Large λ

Minimization of Cλ (w) in GDC involves the evaluation of
the first-order derivative of Cλ (w):

∂Cλ (w)

∂wi
=

1

λJλ (w)

∂Jλ (w)

∂wi

=
1

λJλ (w)

[
−2λ

K∑
k=1

eλ‖εk(w)‖2εTk (w)
∂ŷk (w)

∂wi

]

=
−2
∑K
k=1 ηk (w) εTk (w) ∂ŷk(w)

∂wi∑K
k=1 ηk (w)

(16)

where ‖εk (w)‖2 ≤ ‖εM (w)‖2and 0 < ηk(w) ≤ 1. The
evaluation of ηk(w) = eλ(‖εk(w)‖2−‖εM (w)‖2) in (10) involves
an exponential operation of εk (w) and εM (w), costing the
most computational resources during the training.

Note that if ‖εk(w)‖2 = ‖εM (w)‖2, then ηk(w) =
1. Note also that if ‖εk(w)‖2 < ‖εM (w)‖2, then
limλ→∞ eλ(‖εk(w)‖2−‖εM (w)‖2) = 0. Therefore, at a very
large value of λ, evaluation of ηk(w) and ηk (w) εTk (w) ∂ŷk(w)

∂wi

is simple: if ‖εk(w)‖2 < ‖εM (w)‖2, they are both equal
to 0; if ‖εk(w)‖2 = ‖εM (w)‖2, set ηk(w) = 1 and
ηk (w) εTk (w) ∂ŷk(w)

∂wi
= εTk (w) ∂ŷk(w)

∂wi
in (16) as presenting

in Algorithm 1.

C. Switching Minimization of Cλ(w) to Minimization of
Jλ(w)

The logarithm function 1
λ ln

(
1
K Jλ(w)

)
in Cλ(w) tends to

neutralize the effects of the exponential functions in Jλ(w),
and because limλ→0 Cλ (w) = 1

KQ (w), the smaller λ is, the
closer Cλ(w) is to Q (w). Consequently, the effects of Jλ(w)
in tilting plateaus and creating tunnels around saddle points on

Algorithm 1 Fast NRAE Gradient Evaluation
Require: Initialize the NRAE training with selecting the

weight vector w randomly;
1: for k = 1 to K do
2: if ‖εk(w)‖2 = ‖εM (w)‖2 then
3: Set ηk(w)← 1;
4: Tk(w)← εTk (w) ∂ŷk(w)

∂wi
;

5: else
6: Ek(w)← λ

(
‖εk(w)‖2 − ‖εM (w)‖2

)
;

7: if Ek(w) < lnFmin then
8: Set ηk(w)← 0 and Tk(w)← 0;
9: else

10: ηk(w)← eEk(w);
11: Tk(w)← ηk (w) εTk (w) ∂ŷk(w)

∂wi
;

12: end if
13: end if
14: Set k ← k + 1;
15: end for
16: for i = 1 to N do
17:

∂Cλ(w)
∂wi

← −2
∑K
k=1 Tk(w)∑K

k=1 ηk(w)
;

18: end for
19: return ∇Cλ(w)←

[
∂Cλ(w)
∂wi

]
1×N

Q (w) are weakened. Therefore, for faster minimization con-
vergence and better training results, we switch minimization
of Cλ (w) to minimization of Jλ (w) as soon as Jλ (w) does
not cause computer overflow. We include this switching in our
GDC procedure. Minimization of Jλ (w) is called stage 2 of
GDC.

Recalling Jλ(w) =
∑K
k=1 e

(
λ‖yk−f̂(xk,w)‖2

)
and ηk (w) =

e
λ
(
‖yk−f̂(xk,w)‖2−‖εM (w)‖2

)
, we obtain

Jλ(w) = eλ‖εM (w)‖2
K∑
k=1

e
λ
(
‖yk−f̂(xk,w)‖2−‖εM (w)‖2

)

= eλ‖εM (w)‖2
K∑
k=1

ηk (w) (17)

where 0 < Jλ(w) ≤ Keλ‖εM (w)‖2 , and the evalua-
tion of Jλ(w) does not cause computational overflow if
Keλ‖εM (w)‖2 < Fmax, where Fmax denotes the largest positive
floating point number that can be handled by the computer.
Then, a value λc of λ under which the evaluation of Jλ(w)
does not cause computer overflow is

λc :=
lnFmax − lnK

‖εM (w)‖2
(18)

Differentiating Jλ(w) yields

∂Jλ (w)

∂wi
= −2λ

K∑
k=1

eλ‖εk(w)‖2εTk (w)
∂ŷk (w)

∂wi
(19)

= −2λeλ‖εM (w)‖2
K∑
k=1

ηk (w) εTk (w)
∂ŷk (w)

∂wi



whose evaluation usually does not cause computer overflow,
but whose value often very large. Consequently, the gradient

∇Jλ (w) =

[
∂Jλ(w)

∂wi

]
1×N

(20)

is often very large and changes much from iteration to
iteration in the process of minimizing Jλ(w). Furthermore,
a large gradient causes saturation of sigmoidal activation
functions. To avoid such problems in the gradient descent
or backpropagation method, we use the normalized gradient
∇Jλ (w) / ‖∇Jλ (w)‖, where ‖·‖ denotes the Euclidean norm.

IV. STATISTICAL NEURAL NETWORK PRUNING

In training neural networks, the optimal number of hid-
den nodes is hard to be determined before each training
starts, while it is commonly estimated by the trial-and-error
fashion. A network pruning strategy, which first selects a
neural network with a large number of hidden nodes then
removes the redundant nodes during the training, is the most
important way to achieve the proper neural network that uses
less trainable parameters and thus has better generalization
capability. Although it is difficult to decide which weights or
nodes are the least important for pruning the network, several
techniques and heuristic approaches have been developed to
resolve this issue, such as the iterative pruning algorithm
for feedforward neural networks [23], the Karnin’s pruning
method [24], the pruning based on orthogonal transforms like
the SVD and QR with column pivoting (QR-cp) [25], the
principal components pruning [26], and methods based on the
perturbation analysis of the second-order Taylor expansion of
the objective function like optimal brain damage (OBD) [27]
and optimal brain surgeon (OBS) [28].

Particularly, the OBD and OBS methods together with their
variations are the most popular procedures to prune neural net-
works through determining the saliency of weights with the aid
of Hessian. However, pruning large neural networks with these
methods involves intensive calculations of Hessian, which cost
enormous amount of computational time and memory spaces
on the real-world datasets in practice. A statistical neural net-
work pruning method proposed in [29] described an innovated
approach, which can reduce the total amount of computation in
OBS with the use of the sensitivity measurement of weights
that is closely related to the saliency of weights defined by
OBS under certain demonstrated conditions.

The basic idea of the statistical neural network pruning is
derived from a hypothesis testing, which is a standard pro-
cedure of statistical inferences applied for testing a statistical
hypothesis. If the hypothesis testing declares a null and an
alternative hypothesis as

H0 : µ = 0 (21)
H1 : µ 6= 0 (22)

where µ is a population mean, while a sample mean x
taken from the population that has a normal distribution with
variance s2, then the test z-statistic for the mean under H0 is

z =
x

s
(23)

that describes the distance of the sample mean x away from
the population mean µ = 0. A significance level is selected as
a probability threshold to test the z-statistic, where the smaller
significance level means the stronger evidence to reject the null
hypothesis.

The z-statistic that applies to test the hypothesis, which
describes the sensitivity of weights as zero, is an estimation
of each component of the weight vector in the neural network.
The z value is calculated by (23) with the use of the absolute
value of the j-th weight as x and the estimation of s as

s =

√√√√P (w)

/(
∂P (w)

∂wi

)2

(24)

where P (w) is the mean squared error (MSE) criterion defined
as

P (w) :=
1

K
Q(w) (25)

and ∂P (w)
∂wi

is the first-order derivative of P (w)

∂P (w)

∂wi
= − 2

K

K∑
k=1

∥∥∥yk − f̂ (xk, w)
∥∥∥ ∂f̂ (xk, w)

∂wi
(26)

If the tested z value is greater than or equal to a chosen critical
value zc, such a z-statistic is regarded as the sufficient evidence
to support that the evaluated component of the weight vector
is not zero. Otherwise, the sensitivity of the evaluated weight
is zero, which indicates that the corresponding connection
associated with the evaluated weight in the network should
be pruned.

A statistical pruning (SP) method directly calculates z
values for all components of the weight vector and prunes the
weight if its corresponding z value is smaller than a critical
value zc. With choosing the proper zc, the neural network after
pruning is able to be retained in R epochs for achieving a
better generalization level with less number of weights than
the original network. The critical value zc is commonly chosen
as the value with respect to small significance level in the
complementary cumulative convention of the standard normal
table (also referred to as the Z table), which gives a probability
that a statistic is greater than zc. For example, if we choose
zc = 2.00, the corresponding significant level is 4.55%, which
is generally accepted as a sufficiently small probability where
any evaluated z value greater than or equal to zc is considered
as a sufficient evidence to reject the null hypothesis in practice.
SP is described in Algorithm 2.

Although a proper critical value zc is generally selected
according to a small significance level for rejecting the null
hypothesis in practice, the neural network could be pruned
incorrectly by an inappropriate selection of zc. If zc is too
large, the linearization in the derivation of the statistical neural
network pruning method is invalid, leading to incorrect prun-
ing results for the significant weights without the linearization
or the critical statistic against the null hypothesis. Moreover,
if zc is too large, more sensitive weights with large z values
could be removed excessively because of z < zc. It may cause



Algorithm 2 Statistical Pruning
Require: Obtain the weight vector w from the previously

trained neural network, select a critical value zc, and set
R;

1: for i = 1 to N do {Perform the pruning}
2: Compute z ← |wi|/s

where s←

√
P (w)

/(
∂P (w)
∂wi

)2
;

3: if z < zc then
4: Set wi ← 0 and flagi ← 0;
5: else
6: Set flagi ← 1;
7: end if
8: end for
9: Obtain the pruned weight vector w;

10: for j = 1 to R do {Retrain the network}
11: for i = 1 to N do
12: if flagi = 1 then
13: Update wi to wi∗ by backpropagation;
14: else
15: Set wi∗ ← wi;
16: end if
17: end for
18: end for
19: return The optimal weight vector w∗.

the model underfitting, where the weights after pruning with
the large zc are insufficient to properly express the training
problem. On the other hand, if zc is too small, it could cause
ineffective pruning, where the weights may not be pruned
enough thus the overfitting of the original network is not
properly alleviated.

Therefore, we propose a gradual statistical pruning (GSP)
method for choosing the best critical value zc adaptively via
repeating the pruning and retraining phases with the aid of
the validation data. Like SP, an critical value zc is initially
selected to prune the trained network with the weight vector
wold and the error vold for the validation data. Then, the
network is retrained after pruning in R epochs. In GSP, we
always record the weight vector wnew according to the recently
lowest validation error as vnew, and then wnew is pruned by the
updated critical value zc = zc +zinc, where zinc is an increment
for gradually raising zc as each pruning phase applies. The
described pruning and retraining phases will repeat until the
maximum critical value zmax or a satisfactory validation error
vopt is reached. GSP is described in Algorithm 3.

V. EXPERIMENTAL SETTINGS

To experimentally verify the effectiveness of the GDC
method in training neural networks on a real-world dataset, we
evaluate it by training CNNs and MLPs on the MNIST dataset
without data augmentation. The standard MNIST dataset con-
tains 60,000 training samples and 10,000 testing samples of
handwritten digits from 0 to 9. Each sample has 784 features,
which are obtained from a 28 × 28 black and white image.

Algorithm 3 Gradual Statistical Pruning
Require: Obtain the weight vector wold and its related valida-

tion error vold from the previously trained neural network,
choose a desired validation error vopt, select zmax and zinc,
and set zc << zmax;

1: while zc < zmax or vold > vopt do
2: Start SP with wold and zc;
3: Record the lowest validation error vnew during the

retraining phase in SP;
4: Save the corresponding weight vector as wnew;
5: if vnew < vold then
6: Let wold ← wnew and vold ← vnew;
7: end if
8: zc ← zc + zinc;
9: Set w∗ ← wold;

10: end while
11: return The optimal weight vector w∗.

Each feature value is generated by the anti-aliasing normalized
gray level of the corresponding pixel in an image. To properly
use the MNIST dataset as the same as the benchmark methods
employed, we randomly choose 50,000 out of 60,000 training
samples and apply the left 10,000 samples as the validation set
to select the best performed weights with the lowest validation
error, then we use the full 60,000 training samples to keep
training the optimal weights until the convergence. At last,
we adopt the optimal weights to evaluate the 10,000 testing
samples and provide the final test error rate.

For the experiment of CNNs, we apply the GDC method
to train LeNet-5 [9] for classifying handwritten digits on
the MNIST dataset. LeNet-5 is generally considered as a
classic learning model with deep architectures, which comprise
8 layers including 1 input layer, 3 convolutional layers, 2
pooling layers, 1 fully connected layer, and 1 output layer in
sequence. In our experiments, we apply the same experimental
settings, including the organization of training and testing
samples, the architecture of LeNet-5, and the selection of
convolutional and pooling operations, as described in [9] to
evaluate the GDC method on the pairwise mode. In addition,
we perform the GDC method on the pairwise mode with using
the same parameters as the GDC method to train LeNet-5 for
demonstrating the advantages of GDC compared to GDC.

To further demonstrate the advantage of the GDC method
comparing to more deep learning methods that are aided
by unsupervised layer-wise pre-training, we perform GDC
simply in the supervised manner to train distinct MLPs on
the MNIST dataset and compare the achieved test error rates
to benchmark results reported in training MLPs, stacked
autoencoders (SAEs), deep belief networks (DBNs), and deep
Boltzmann machines (DBMs) under the same experimental
settings. Particularly, we perform GDC on one shallow MLP
with the 784-1000-10 architecture, one deep MLP with the
784-500-1000-10 architecture, and another deep MLP with the
784-500-500-1000-10 architecture.

As for training parameters of the GDC and GDC methods,



we set the initial value of λ as 104, the maximum training
epochs for the deconvexification as 10 and the deconvexifica-
tion rate of λ as 0.9. For the pairwise NRAE and RAE training
sessions in both GDC and GDC, we fix the global learning rate
and the momentum term in stochastic gradient descent (SGD)
equal to 0.0001 and 0.5, respectively. For the SSE training
session in GDC when λ < 1, we apply the learning rate
decay to decrease the global learning rate by 50% in every
10 training epochs, i.e., 0.0001 for the first 10 epochs, then
0.00005 for the next 10 epochs, and so on. The training session
is considered as convergence once the training error rate in ten
consecutive epochs is less than 0.01%. For all experiments, we
use Fmax = 10300 and Fmin = 10−300 to perform GDC.

Some general parameters in training neural networks are
chosen based on the suggestions in [30]: initial weights
are randomly selected from a uniform distribution between
−2.4/Fu and 2.4/Fu, where Fu is the number of input nodes
of the connected unit u; all input and output values in the
training dataset are normalized into [−1, 1]; the activation
function in each training node is chosen as the hyperbolic
tangent function ϕ(v) = atanh(bv), where a = 1.7159 and
b = 2/3.

In order to remove the network redundancy and improve
the generalization of LeNet-5 and MLPs, we perform GSP
to prune the networks trained by GDC. For parameters of
GSP, we choose zc = 0.2, zmax = 3.0, zinc = 0.1, R = 10,
and vopt = 0.80% in our experiments. Since GSP provides
the best pruned and retrained network with the aid of the
validation data, the network does not need to convergence
during the retraining phase after pruning, and it would avoid
excessive training time if the network is large. Therefore, in
each retraining phase, we always apply SGD by using the fixed
global learning rate and the momentum term as 0.00001 and
0.5 without employing the learning rate decay.

VI. RESULTS AND DISCUSSION

A. Experiments with LeNet-5 on MNIST dataset

LeNet-5 is a well-known CNN that was first published by
Yann LeCun in 1998 [9]. The GDC method without and with
statistical pruning is applied to train LeNet-5. The numerical
results are listed in Table I in comparison with those in [9].
Note that GDC followed by RAE and pruning produced a
LeNet-5 with a test error rate of 0.84%, which is close to
the two LeNet-5’s trained with stochastic diagonal Levenberg-
Marquardt (SDLM) method on the MNIST dataset with image
distortion added. The results are encouraging.

B. Experiments with MLPs on MNIST dataset

The purpose of the experimental results and comparisons
that are discussed here is to show how a GDC training method
compares to well-known methods. We are not trying to come
up with a neural network or a committee of neural networks
to beat everyone else on the test error rates regardless of
the size of the neural network. Therefore, we select neural
network architectures of reasonable sizes from the table on the
well-known webpage http://yann.lecun.com/exdb/mnist/ and

use GDC to train neural networks of the selected architec-
tures. We then compare the resultant test error rates with the
corresponding ones in the same table.

Numerical results show that GDC without switching to
RAE produces a good MLP(784-300-10) in each of 5 training
sessions starting with 5 different initialization seeds on the
MNIST dataset without added data with distortion [6]. The 5
resultant test error rates (2.61%, 2.67%, 2.70%, 2.73%, 2.88%)
are listed in Table II in comparison with those obtained with
MLPs of the same or similar architectures.

GDC with switching to RAE was used to train an MLP(784-
1000-10) on the MNIST dataset. The test error rate of the
resultant neural network is 1.37%. After statistical pruning, the
test error rate was reduced to 1.34%. These 2 test error rates
are also listed in Table II in comparison with those obtained
with MLPs of the same or similar architectures. Notice that
the test error rate of MLP(784-1000-10) trained as a DBN has
a test error rate of 1.30%.

In [17], MLP(784-X-X-X-10)’s trained with supervised pre-
training, auto-associator pretraining and DBN have a test error
rate of 2.00%, 1.40%, 1.20%, respectively, where X denotes a
number between 500 and 1000. In comparison, MLP(784-500-
500-1000-10)’s trained with GDC w/ RAE, GDC w/ RAE +
pruning have a test error rate of 1.29% and 1.27% respectively.
Smaller MLP(784-500-1000-10)’s trained with GDC w/ RAE,
GDC w/ RAE + pruning have a test error rate of 1.31% and
1.29% respectively. However, an MLP(784-500-500-1000-10)
trained as a DBM has a test error rate of 1.01%, and an
MLP(784-500-1000-10) trained as a DBM has a very good
test error rate of 0.95% [19].

C. Pruning LeNet-5 and MLPs

The experimental result shown in Table I present a new
test error rate 0.84%, which is lower than the original test
error rate 0.90%, with applying GSP after GDC on LeNet-5.
This new test error rate is also comparable to a benchmark
result 0.80% achieved by applying huge data distortion as
reported in [9]. Since GSP is directly applied to LeNet-5
after GDC without any image distortions, the experimental
result we achieved confirms the effectiveness of GSP for
improving the generalization of LeNet-5. Furthermore, the test
error rate 0.84% is achieved when the critical value zc = 2.0
in GSP. Meanwhile, the significance level corresponding to
zc = 2.0 is 4.55%, which is generally accepted as a sufficiently
small probability to reject the null hypothesis in practical
hypothesis testing. According to that significance level, the
pruning percentage is close to 60%, which means more than a
half of trainable weights in LeNet-5 could be pruned in GSP. It
illustrates that GSP is capable to provide a succinct network by
dramatically reducing trainable weights of the original LeNet-
5 and achieve a lower test error rate compared to the network
without pruning and data augmentation.

Table II demonstrates the best performances of shallow and
deep MLPs achieved by GSP after applying GDC. As similar
as what we observed on LeNet-5, both shallow and deep
MLPs are able to be pruned by GSP, achieving consistently



TABLE I
TEST ERROR RATES ACHIEVED BY LENET-5 ON THE MNIST DATASET

Training Method Neural Network Test Error Rate
SSE + SDLM LeNet-5 0.95%
GDC w/o RAE LeNet-5 0.93%
GDC w/ RAE LeNet-5 0.90%
SSE + SDLM (huge distortions) LeNet-5 0.85%
GDC w/ RAE + Pruning LeNet-5 0.84%
SSE + SDLM (distortions) LeNet-5 0.80%

TABLE II
TEST ERROR RATES ACHIEVED BY MLPS ON THE MNIST DATASET

Training Method Neural Network Test Error Rate
SSE MLP(784-300-10) 4.7%
SSE (distortions) MLP(784-300-10) 3.6%
GDC w/o RAE MLP(784-300-10) 2.61%, 2.67%, 2.70%, 2.73%, 2.88%
SSE MLP(784-1000-10) 4.5%
SSE MLP(784-300-100-10) 3.05%
SSE MLP(784-500-150-10) 2.95%
CE MLP(784-1000-10) 1.78%
CE MLP(784-800-10) 1.60%
CE + Weight Regularizer MLP(784-1000-10) 1.68%
CE + Denoising SAE MLP(784-1000-10) 1.57%
GDC w/ RAE MLP(784-1000-10) 1.37%
GDC w/ RAE + Pruning MLP(784-1000-10) 1.34%
Deep Belief Network MLP(784-1000-10) 1.30%
Supervised Pretraining MLP(784-X-X-X-10) 2.00%
Stacked Auto-encoder MLP(784-X-X-X-10) 1.40%
GDC w/ RAE MLP(784-500-1000-10) 1.31%
GDC w/ RAE + Pruning MLP(784-500-1000-10) 1.29%
GDC w/ RAE MLP(784-500-500-1000-10) 1.29%
GDC w/ RAE + Pruning MLP(784-500-500-1000-10) 1.27%
Deep Belief Network MLP(784-X-X-X-10) 1.20%
Deep Boltzmann Machine MLP(784-500-500-1000-10) 1.01%
Deep Boltzmann Machine MLP(784-500-1000-10) 0.95%

lower test error rates compared to the original networks before
pruning. In addition, the test error rates are achieved when
the critical values of zc are adapted between 1.8 and 2.2. The
significance levels according to these zc values are below 10%,
and the pruning percentages are correspondingly between 20%
and 30%. Such experimental results present the effectiveness
of GSP in pruning shallow and deep MLPs for a better
generalization with a smaller network architecture.

VII. CONCLUSION

Gradual deconvexification (GDC) comprising two stages is
proposed for training neural networks. In stage 1, we minimize
normalized risk-averting error (NRAE) with a very large risk-

sensitivity index λ and gradually decrease it. When λ is large,
we use a fast method to evaluate the NRAE and its gradient.
As soon as the evaluation of risk-averting error (RAE) does
not cause computer overflow, we switch to minimizing RAE
with a fixed λ as stage 2 until convergence or termination by
cross-validation.

Stage 1 allows the use of very large λ to make advantage
of a large convexity region of RAE contained in NRAE.
Stage 1 brings the squared errors down so that RAE becomes
computationally manageable. Stage 2 allows further use of
a large convexity region and continued much tilting of the
plateaus and tunneling around saddle points on SSE. An
important advantage of the propose method is the consistent



performances among different training sessions with different
initialization seeds. Multiple training sessions with different
initialization seeds and selection of the best one obtained are
needed no longer. Another advantage is it wide applicability. It
can be applied for virtually any data fitting including training
convolutional and recurrent neural networks and estimating
statistical nonlinear regression models. The third advantage is
its conceptual simplicity and mathematical justification. The
fourth advantage is the possibility of its use jointly with other
methods such as the discriminative unsupervised pretraining.

Statistically pruning connections after stage 2 is also pro-
posed in this paper that reduces data overfitting and enhances
the generalization capability of the neural network under
training.

Numerical experiments show the efficacy of stage 1, stage
2, and pruning. The proposed method comprising GDC and
pruning outperforms discriminative training methods using
SSE or cross entropy in all of our examples including convolu-
tional networks on benchmark datasets. However, the proposed
method does not do as well as the generative training methods
such as the deep belief network (DBN) and deep Boltzmann
machine (DBM). The differences are small but significant.

The numerical experiments convinced us that the differences
are those differences in the generalization capabilities of the
neural network resulting from training with GDC and those
of DBNs and DBMs. Therefore, on the top of the list of
future work is the exploration of methods for reducing data
overfitting such as drop-out and network regularization. The
mathematical simplicity of GDC is expected to prove useful
here.

////// Gradual deconvexification (GDC) comprising two
stages is proposed for training neural networks. An im-
portant advantage of the propose method is the consistent
performances among different training sessions with different
initialization seeds. Multiple training sessions with different
initialization seeds and selection of the best one obtained are
needed no longer. Another advantage is it wide applicability. It
can be applied for virtually any data fitting including training
convolutional and recurrent neural networks and estimating
statistical nonlinear regression models. The third advantage is
its conceptual simplicity and mathematical justification. The
fourth advantage is the possibility of its use jointly with other
methods such as the discriminative unsupervised pretraining.

Statistically pruning connections after GDC is also proposed
in this paper that reduces data overfitting and enhances the
generalization capability of the neural network under training.

The proposed method comprising GDC and pruning out-
performs discriminative training methods using SSE or cross
entropy in all of our examples including convolutional net-
works on benchmark datasets. However, the proposed method
does not do as well as the generative training methods such as
the deep belief network (DBN) and deep Boltzmann machine
(DBM). The differences are small but significant.

The numerical experiments convinced us that the differences
are those differences in the generalization capabilities of the
neural network resulting from training with GDC and those

of DBNs and DBMs. Therefore, the most important future
work for us is the exploration of methods for reducing data
overfitting such as drop-out and network regularization. //////
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