20
Y. Peng, Z. Ding, S. Zhang & R. Pan
19

BN Reasoning with Uncertain Evidences

International Journal of Uncertainty, Fuzziness and Knowledge-Based ystems

© World Scientific Publishing Company

Bayesian Network Revision with probabilistic constraints
YUN PENG

University of Maryland Baltimore County, Computer Science and Electrical Engineering
1000 Hilltop Circle, Baltimore, MD 21250 USA
ZHONGLI DING

Google Inc.
Mountain View, CA 94043, USA
SHENYONG ZHANG

East China Research Institute of Electronic Engineering
Hefei, Anhui 230031, China
RONG PAN

BloomReach, Inc.,
Mountain View, CA 94040
Received (received date)
Revised (revised date)
Accepted (accepted date)

Abstract-- This paper deals with an important probabilistic knowledge integration problem: revising a Bayesian network (BN) to satisfy a set of probability constraints representing new or more specific knowledge. We propose to solve this problem by adopting IPFP (iterative proportional fitting procedure) to BN. The resulting algorithm E-IPFP integrates the constraints by only changing the conditional probability tables (CPT) of the given BN while preserving the network structure; and the probability distribution of the revised BN is as close as possible to that of the original BN. Two variations of E-IPFP are also proposed: 1) E-IPFP-SMOOTH which deals with the situation where the probabilistic constraints are inconsistent with each other or with the network structure of the given BN; and 2) D-IPFP which reduces the computational cost by decomposing a global E-IPFP into a set of smaller local E-IPFP problems.
Keywords: Bayesian networks, knowledge integration, iterative proportional fitting procedure.
1. INTRODUCTION
Consider a probabilistic knowledge base in the form of a Bayesian network (BN) G of n variables
[image: image1.wmf](,,)

in

xxx

=

L

. Denoting the set of parents of variable
[image: image2.wmf]i

x

 as
[image: image3.wmf]i

p

, the BN consists of two parts: 1)
[image: image4.wmf]{(,)}

Sii

Gx

p

=

, the network structure that captures the interdependencies among variables in G; and 2)
[image: image5.wmf]{(|)}

Pii

GPx

p

=

, the set of conditional probability tables (CPTs) that represents the degree of the interdependencies. It is assumed that
[image: image6.wmf](|,)(|)

iiii

PxuPx

pp

=

 where u is any variable other than descents of xi. Base on this conditional independence assumption, the joint probability distribution (JPD) of G can be computed by the following chain rule [12]

[image: image7.wmf]1

()(|).

n

iii

PxPx

p

=

=P

 (1)

The knowledge base G may need to be revised when more up-to-date or more specific information of the domain or parts of the domain becomes available. This information is often given in the form of lower dimensional distributions
[image: image8.wmf](),

j

j

Qyx

Í

 called probabilistic constraints, or constraints for short. For example, considering a BN for heart disease diagnosis whose variables includes all important factors affecting this disease, including drinking, smoking, among other things, and the BN has the marginals P1(drinking, heart-disease) and P2(smoking, heart-disease) relating these factors to heart disease. A more recent survey concerning effects of drinking on people’s health, which may employ better survey methods or be drawn from a particular population, can generate a more accurate or more specific correlation between heart disease and drinking behavior, represented as a joint distribution Q1(drinking, heart-disease). Similarly, a distribution Q2(smoking, heart-disease) can be found from another survey concerning effects of smoking on people’s health. To integrate into the diagnosis system the knowledge of Q1 and Q2, which are typically different from P1 and P2, the BN needs to be revised so that its distribution satisfies these constraints.
It is desirable that the revision is restrained to
[image: image9.wmf]P

G

 (the CPTs) while keeping the structure
[image: image10.wmf]S

G

 unchanged. This is because, among other things, the qualitative knowledge of
[image: image11.wmf]S

G

 is more reliable and stable than the quantitative knowledge of
[image: image12.wmf]P

G

. It is also preferred to minimize the change when revising G by these constraints so that the existing knowledge is preserved as much as possible.
We propose to solve this problem by adopting Iterative Proportional Fitting Procedure (IPFP). IPFP is a mathematical procedure that iteratively modifies a JPD to satisfy a set of probability constraints while maintaining minimum Kullback-Leibler distance (also known as I-divergence [3, 7, 18]) to the original distribution. The procedure repeatedly iterates over the constraints and modifies the current JPD using one constraint at a time until convergence. One would think our task of BN revision can be accomplished by first applying IPFP to P(x), the JPD of the given BN, and then generate CPTs from the converging JPD. This approach does not work well for at least three reasons. First, the revised JPD resulted from the IPFP, although satisfying all the constraints, may not always be consistent with the interdependencies imposed by the network structure, and thus cannot be used to generate new CPTs properly. Secondly, IPFP converges only if all constraints are consistent with each other, it thus cannot be applied to inconsistent constraints. Thirdly, because in each iteration IPFP modifies every entry of P(x) whose size is exponential in the number of variables in the BN, it becomes computationally intractable with large BNs.
In this paper, we present our solutions to these problems. The first problem is resolved by algorithm E-IPFP, which extends IPFP by casting the structural invariance as a new probability constraint. The second problem is dealt with by algorithm E-IPFP-SMOOTH, which modifies both the current JPD as well as the constraints in each iteration so that the inconsistency is gradually reduced or smoothened. The third problem is eased by algorithm D-IPFP, which decomposes a global E-IPFP into a set of smaller, local E-IPFP problems, each of which corresponds to one constraint and only involves variables that are directly relevant to those in that constraint.
The rest of this paper is organized as follows. Section 2 states precisely the BN revision problems we intend to solve. Section 3 gives a brief introduction to IPFP, which is the basis of our algorithms. E-IPFP and its convergence proof are given in Section 4. Section 5 describes E-IPFP-SMOOTH for constraints that are inconsistent with each other or with the structure of the given BN. Section 6 presents D-IPFP together with computer experiments demonstrating its effect in saving computing time. Section 7 concludes with comments on related works and suggestions for future research.

2. The Problem
We adopt the following notations for the rest of this paper. To distinguish variables and their instantiations, we use capital letters X , Y, Z, … for a set of variables, and x an instantiation of X. Individual variables are indicated by subscripts, for example, Xi is a variable in X and xi its instantiation. Capital letters P, Q, R, … are for probability distributions, and bold P, Q, R …. for sets of distributions. A BN of variables X is denoted as G(x),
[image: image13.wmf](){(,)}

Sii

Gxx

p

=

 denotes the structure (i.e., the DAG of G(x)), and
[image: image14.wmf](){(|)}

Pii

GxPx

p

=

 the set of conditional probability tables (CPTs) of G(x). The JPD of G(x) is
[image: image15.wmf]1

()(|)

n

iii

PxPx

p

=

=P

.
[image: image16.wmf]S

G

P

denotes a set of JPDs sharing the network structure
[image: image17.wmf]S

G

. A probability constraint
[image: image18.wmf]()

j

j

Ry

 to X is a distribution on variables
[image: image19.wmf]j

YX

Í

. R =
[image: image20.wmf]{()}

j

j

Ry

 denotes a set of constraints, and
[image: image21.wmf]R

P

the set of all JPDs that satisfy all constraints in R.
Definition 1. A JPD P(x) is said to satisfy constraint
[image: image22.wmf]()

j

j

Ry

 if
[image: image23.wmf]()()

jj

j

PyRy

=

.
We use I-divergence (also known as Kullback-Leibler distance) to measure the distance between two distributions P and Q on X [3, 7, 18].
Definition 2. I-divergence from JPD P(x) to Q(x) is defined as

[image: image24.wmf]()0

()

()logif

()

(||)

otherwise

Px

Px

PxPQ

Qx

IPQ

>

ì

å<<

ï

=

í

ï

+¥

î

 (2)
where
[image: image25.wmf]Q

P

<<

 means Q dominates P (i.e.,
[image: image26.wmf]{|()0}{'|(')0}

xPxxQx

>Í>

). Note that
[image: image27.wmf]0

)

||

(

³

Q

P

I

 for all P and Q, the equality holds only if P = Q.
Definition 3. Q(x) is said to be an I-projection of P(x) on the set of JPD
[image: image28.wmf]()

x

P

 if

[image: image29.wmf](||)min(||)

Q

IQPIQP

Î

=

P

%

%

.
The problem of BN revision we are to solve is stated formally as follows. For a given
[image: image30.wmf]()(,)

sP

GxGG

=

with JPD P(x) and a set of constraints
[image: image31.wmf]12

12

{(),(),,()}

m

m

RyRyRy

=

R

L

, construct a new BN
[image: image32.wmf]''

'(,)

SP

GGG

=

 with JPD
[image: image33.wmf]'()

Px

 meeting the following conditions:

C1: Constraint satisfaction:
[image: image34.wmf]'()() ()

jjj

jj

PyRyRy

="Î

R

;

C2: Structural invariance:
[image: image35.wmf]'

SS

GG

=

;

C3: Minimality:
[image: image36.wmf]('||)

IPP

 is as small as possible.

Definition 4. A set of constraints
[image: image37.wmf]12

12

{(),(),()}

m

m

RyRyRy

=

R

L

 is said to be consistent with each other if
[image: image38.wmf]R

.

¹Æ

P

 R is said to be consistent with
[image: image39.wmf]S

G

 if
[image: image40.wmf]R

.

S

G

Ç¹Æ

PP

Note that, if R is consistent with
[image: image41.wmf]S

G

 then condition C3 requires that
[image: image42.wmf]'

P

 be an I-projection of P on
[image: image43.wmf]R

P

.
Definition 5.
[image: image44.wmf])

|

(

i

i

x

P

p

is called a CPT extracted from
[image: image45.wmf])

(

x

P

 according to
[image: image46.wmf]()

S

Gx

 if
[image: image47.wmf]i

p

 is determined by
[image: image48.wmf]()

S

Gx

. A BN
[image: image49.wmf]'

()

Gx

 is said to be extracted from P(x) according to
[image: image50.wmf]()

S

Gx

 if
[image: image51.wmf]'

SS

GG

=

 and every CPT in
[image: image52.wmf]'

P

G

is extracted from P(x) according to
[image: image53.wmf]()

S

Gx

.
For a given P(x) and
[image: image54.wmf]()

S

Gx

, extracting CPTs
[image: image55.wmf])

|

(

i

i

x

P

p

 is unique and this can be done by computing
[image: image56.wmf])

(

i

P

p

 and
[image: image57.wmf])

,

(

i

i

x

P

p

 from P(x) through marginalization. Also note that the JPD
[image: image58.wmf]1

'

()(|)

n

iii

PxPx

p

=

=P

 of
[image: image59.wmf]'

()

Gx

 might not be equal to P(x) even though the conditional distributions of
[image: image60.wmf]i

x

, given
[image: image61.wmf]i

p

 are the same in both P and
[image: image62.wmf]'

P

. This, as can be seen later in Section 4, is because certain conditional interdependencies in
[image: image63.wmf]'

P

, dictated by
[image: image64.wmf]()

S

Gx

, do not hold for P. Conversely, if
[image: image65.wmf]'

()()

PxPx

=

 then P(x) satisfies C2.
3. A Brief Introduction to IPFP
Iterative Proportional Fitting Procedure (IPFP) first appeared in the literature in [6], and shortly after was used as a procedure to estimate cell frequencies in contingency tables under some marginal constraints [4]. Csiszar [3] provided a convergence proof for IPFP based on I-divergence geometry. Vomlel rewrote a discrete version of the proof [18]. IPFP was extended in [1, 2] as Conditional Iterative Proportional Fitting Procedure (CIPFP) to also take conditional distributions as constraints, and the convergence was established.

IPFP has recently been suggested as a tool for modifying a JPD by probability constraints [18]. Specifically, for a set of constraints
[image: image66.wmf]12

12

{(),(),,()}

m

m

RyRyRy

=

R

L

 and an initial JPD Q0, the IPFP procedure is carried out by iteratively modifying the JPDs according to the following formula, each time using one constraint
[image: image67.wmf]()

j

j

Ry

in R:

[image: image68.wmf]1

1

1

0()0

()

()

()

()

j

k

j

j

k

k

j

k

ifQy

Ry

Qx

Qxotherwise

Qy

-

-

-

=

ì

ï

=

í

×

ï

î

 (3)

where
[image: image69.wmf]((1)mod)1

jkm

=-+

 determines the constraint used at iteration k , and m is the number of constraints in R.

What (3) does at step k is to change
[image: image70.wmf])

(

1

x

Q

k

-

 to
[image: image71.wmf])

(

x

Q

k

 so that
[image: image72.wmf]()()

jj

kj

QyRy

=

. It has been shown that, at each step of IPFP,
[image: image73.wmf]k

Q

 is the I-projection of
[image: image74.wmf]1

k

Q

-

on
[image: image75.wmf]j

R

P

for the chosen constraint
[image: image76.wmf]()

j

j

Ry

[18]. For a given initial distribution
[image: image77.wmf])

(

0

x

Q

 and a set of consistent constraints R, IPFP converges to
[image: image78.wmf])

(

*

x

Q

 which is an I-projection of
[image: image79.wmf]0

Q

 on
[image: image80.wmf]R

P

. In other words,
[image: image81.wmf])

(

*

x

Q

satisfies our requirements C1 and C3. For clarity (with the understanding that
[image: image82.wmf]0

)

(

=

x

Q

k

 if
[image: image83.wmf]1

()0

j

k

Qy

-

=

), in the rest of this paper we write the above formula as

[image: image84.wmf]1

1

()

()()

()

j

j

kk

j

k

Ry

QxQx

Qy

-

-

=×

 (3-1)
4. Algorithm E-IPFP

For a given
[image: image85.wmf](,)

sP

GGG

=

and
[image: image86.wmf]1

1

{(),,()}

m

m

RyRy

=

R

L

, our task is to find a JPD
[image: image87.wmf])

(

*

x

Q

such that 1)
[image: image88.wmf]*

()

R

Qx

Î

P

 (meeting C1); 2)
[image: image89.wmf]*

()

S

G

Qx

Î

P

(meeting C2); and 3)
[image: image90.wmf])

(

*

x

Q

is as close to the JPD of G as possible. Since our methods are based on IPFP, C3 will be achieved to a degree by the iterative projections. In the rest of this paper, we will focus on C1 and C2.
One may think that the integration can be done by first applying IPFP to the JPD of G,
[image: image91.wmf]01

()(|)

n

iii

QxPx

p

=

=P

, using constraints in R until it converges to JPD
[image: image92.wmf])

(

*

x

Q

, and then extracting CPTs
[image: image93.wmf]*

(|)

ii

Qx

p

 from
[image: image94.wmf])

(

*

x

Q

 according to
[image: image95.wmf]()

S

Gx

. However this would not work, as can be seen by a simple example in Figure 1.
[image: image96.png]3
b,mmm mm
ghlb R
Sls|s|s|3|s|8|s|s
=S
8
|t | e 1 e 1|)
e | |t e 1 e)
] | | | e e e)
hEE hEE
@ ©
hEE hEE
< el [< |e]e
=)
Pk
=)

(a). A three node BN, its CPTs, and its JPD Q0(x).
[image: image97.png]T F
0.5243 | 04757
alBlclatabe] [, B AlB|C] Q@be)
T|T|T 0.16000 T F T|T|T 0.1305
T|T|F 0.00667 T |0.3179 | 0.6821 T|T|F 0.0362
T|F|T 0.25053 F | 0.4905 | 0.5095 T|F|T 0.2800
T|F|F 0.10706 T|F|F 0.0776
FIT|T 0.20000 A C FIT|T 0.1420
F|T|F 0.03333 T F F|T|F 0.0914
F|F|T 0.08947 T |0.7831 | 0.2169 F|F|T 0.1475
F|F|F 0.15294 F_|0.6085 | 0.3915 F|F|F 0.0949

(b) CPTs extracted from the converging Q1, and the JPD Q’ generated from these CPTs.
Figure 1. A three node BN and its JPD after IPFP with constraint R1(b, c).

Figure 1(a) gives a simple BN of three binary variables A, B, and C, its initial CPTs and its JPD
[image: image98.wmf]0

(,,)

Qabc

. This BN will be used as an illustrative example throughout of this paper. The JPD
[image: image99.wmf]1

(,,)

Qabc

 (on the left of Figure 1(b)) is obtained by modifying the original JPD of this BN with constraint R1(b, c) = (0.36, 0.04, 0.34, 0.26) by (3) of IPFP. One can easily verify that
[image: image100.wmf]1

(,,)

Qabc

 satisfies R1. The I-divergence from
[image: image101.wmf]*

Q

 to the
[image: image102.wmf]0

Q

 is 0.1674, which is minimum among all JPD that satisfy R1.
New CPTs for A, B, and C (in the middle of Figure 1b) extracted from Q1 according to the network structure give a new JPD
[image: image103.wmf]111

'(,,)()(|)(|)

QabcQaQbaQca

=××

 (on the right of Figure 1(b)). Note that
[image: image104.wmf]'

Q

is different from
[image: image105.wmf]1

Q

, and it does not satisfy constraint R1 any more. This is because IPFP does not preserve the network structure when modifying the JPD by (3). In particular, note that the conditional independence between B and C, given A, given in the original BN in this example does not hold in
[image: image106.wmf]1

Q

. Therefore,
[image: image107.wmf]1

Q

 meets C1 and C3 but not C2 while
[image: image108.wmf]'

Q

 satisfies C2 but fails C1. In other words, IPFP works well if our purpose is to integrate constraints into a JPD but is inadequate if we also want to preserve the variable interdependencies given in the original BN.
4.1. Structure constraint
To overcome this problem, E-IPFP extends the standard IPFP by treating the BN structure as an additional constraint, called structure constraint,

[image: image109.wmf]11

()(|)

i

mkii

XX

RxQx

p

+-

Î

=P

. (4)

where
[image: image110.wmf](,)

iiS

xG

p

Î

. By (4)
[image: image111.wmf]1

()

m

Rx

+

 is the JPD of a BN whose CPTs are extracted from
[image: image112.wmf])

(

1

x

Q

k

-

 according to the network structure. Unlike all constraints in R, which are typically low dimensional distributions, this structure constraint is on all variables in X. By (3) and (4), this constraint, when applied at iteration k, changes
[image: image113.wmf])

(

1

x

Q

k

-

 to
[image: image114.wmf]111

()()(|)

n

kmikii

QxRxQx

p

+=-

==P

, and thus forcing
[image: image115.wmf]()

k

Qx

 meeting C2, the structural invariance requirement. Therefore, when applying IPFP with constraints in R plus
[image: image116.wmf]1

()

m

Rx

+

, both C1 and C2 are satisfied by the converging JPD. The algorithm E-IPFP is stated as follows

[image: image117]
Note that E-IPFP is exactly the same as IPFP except Step 2.3 in which we first extract the CPT for each variable from
[image: image118.wmf])

(

1

x

Q

k

-

 according to the network structure and then form and apply the structure constraint as given in (4). For practical purpose, convergence of E-IPFP can be determined by testing, after every m+1 iterations (i.e., at the end of Step 2.3), if the difference between
[image: image119.wmf])

(

x

Q

k

 and
[image: image120.wmf](1)

()

km

Qx

-+

 is below some given threshold by some metrics such as I-divergence or total variation.
4.2. Convergence of E-IPFP

During the iteration process in E-IPFP all constraints remain constant except
[image: image121.wmf]1

+

m

R

, which changes its value after every iteration of the outer loop (Step 2). In other words, the I-projection on
[image: image122.wmf]1

PP

mS

RG

+

Í

 is chasing a moving target. Moreover, it can be easily shown that
[image: image123.wmf]S

G

P

itself is not convex while convexity of
[image: image124.wmf]j

R

P

 for all constraints Rj is the basis for IPFP’s convergence [3, 18]. Therefore, the convergence proof for standard IPFP does not apply when the structure constraint is added.

Now we analyze the convergence of E-IPFP. In an earlier work [11] we have shown that, for the standard IPFP on initial JPD
[image: image125.wmf]0

()

Qx

with a set of consistent constraints,
[image: image126.wmf]12

{,,}

m

RRR

=

R

L

, the converging JPD Q* can be obtained by modifying
[image: image127.wmf]0

()

Qx

 by a single composite constraint R’(y), where
[image: image128.wmf]12

m

yyyy

=ÈÈ

L

. This composite constraint can be computed by applying IPFP to
[image: image129.wmf]0

()

Qy

 with
[image: image130.wmf]12

{,,}

m

RRR

=

R

L

. Therefore, it suffices to prove the convergence of E-IPFP with R containing a single constraint.
Denote the following:

[image: image131.wmf]0

 ()(|)

i

xxii

QxPx

p

Î

·=P

: JPD of the given BN
[image: image132.wmf](,)

sP

GGG

=

;

· R(y): the constraint;

[image: image133.wmf]100()

0

()

 ()(): the I-Projection of () to ;

()

Ry

Ry

QxQxQx

Qy

·=

P

[image: image134.wmf]2112

 ()(|): the structure constraint extrac

ted from , it is clear

iS

xxiiG

QxQxQQ

p

Î

·=PÎ

P

；

[image: image135.wmf]322()

2

()

 ()(): the I-Projection of () back to .

()

Ry

Ry

QxQxQx

Qy

·=

P

Points of Q0 through Q3 are depicted in Figure 2 below.

[image: image136.png]

Figure 2. Successive JPDs from E-IPFP

Without loss of generality, the convergence of E-IPFP can be established by showing

[image: image137.wmf]1032

(||)(||),

IQQIQQ

³

 (5)

i.e., in successive iterations the I-divergence between the two end-points of the I-projection to
[image: image138.wmf]()

Ry

P

is monotonically decreasing. Since
[image: image139.wmf]13()

,

Ry

QQ

Î

P

and
[image: image140.wmf]3

Q

 is an I-projection of Q2 to
[image: image141.wmf]()

Ry

P

while Q1 is not, we have by Definition 3

[image: image142.wmf]1232

(||)(||)

IQQIQQ

³

Therefore, (5) holds if

[image: image143.wmf]1012

(||)(||)

IQQIQQ

³

 (6)

Denoting

[image: image144.wmf]1012

()(||)(||),

xIQQIQQ

D=-

 (7)

the convergence of E-IPFP is given by the theorem below. The proof is given in the appendix.

Theorem 1. For any given BN
[image: image145.wmf](,)

sP

GGG

=

 and R(y),
[image: image146.wmf]()0

x

D³

.
By Theorem 1, E-IPFP moves alternately between two sequences of JPDs (Q0, Q2,…) and (Q1, Q3,…), which are points in the two sets
[image: image147.wmf]S

G

P

and
[image: image148.wmf]()

Ry

P

, respectively. At convergence, the two sequences approach Q2k and Q2k+1, respectively. If R(y) is consistent with GS, then the two sequences merge into one and both C1 and C2 are met. If R(y) is inconsistent with GS, then the distance between Q2k and Q2k+1 is greater than 0 since
[image: image149.wmf]()

S

GRy

Ç=Æ

PP

, and in this case we say E-IPFP converges to a limit cycle of Q2k and Q2k+1.
When E-IPFP is applied to the example in Figure 1, it converges to a single JPD after 27 iterations with
[image: image150.wmf]()1.5809

xE

D=-

. Here each iteration goes through both constraint R1(b, c) and the structure constraint once. The converging JPD and the three CPTs extracted from the converging JPD are given in Figure 3 below. It can be seen that 1) the constraint R1(b,c) is satisfied by
[image: image151.wmf]*(,,)

Qabc

, i.e., C1 is satisfied; 2) although R1 only involves variables B and C, all three tables are modified from their original values; and 3)
[image: image152.wmf]*(,,)*()*(|)*(|)

QabcQaQbaQca

=

, i.e., C2 is satisfied. The I-divergence from Q* to the JPD of the original BN is 0.5557, which is larger than the I-divergence of 0.1674 for the JPD from standard IPFP (see Figure 1). This is to be expected because one more constraint (the structure constraint) is used in E-IPFP.
[image: image153.png]T F
0525404706
A[B[C] Q@b

N B T|T|T| o343
T F T[T[F| ooss
T _|06795 | 03205 TIF T | o
F_|008% | 09145 TTFTF oo
o F]T[T| ooer
A ¥ F|T|F| oo
T | 09544 | 0.0456 FIF|T 0.1781
F_|04138 | 05862 FIF|F| o2

Figure 3. E-IPFP result for the single constraint R1(b, c)
5. Inconsistent Constraints
When constraints are inconsistent either with each other or with the BN structure, there does not exist a JPD that satisfies all constraints and BN structure. Therefore, E-IPFP will not converge to a single point but rather it oscillates between some JPDs each of which satisfies some constraints but not others. At this point, we could stop the attempt to integrate the constraints into the given BN and try to resolve the inconsistency first. Alternatively, we can try to find an approximate solution that satisfies the constraints as much as possible. An easy solution for this would be to take the average of these oscillating JPDs. This may work for IPFP for general JPDs but not for E-IPFP because averaging will destroy the interdependencies given in GS, thus failing C2. We have developed an algorithm SMOOTH to deal with inconsistent constraints for IPFP in general JPD [21, 14]. Now we adopt it to E-IPFP for BNs.

Note that, both IPFP and E-IPFP only modify the joint distribution
[image: image154.wmf]1

()

k

Qx

-

 while keeping the constraints in R unchanged. Algorithm SMOOTH differs in that it makes the modification bi-directional: at each step, not only
[image: image155.wmf]1

()

k

Qx

-

 is modified to satisfy the constraint but the constraint is also modified to be closer to
[image: image156.wmf]1

()

k

Qx

-

. Specifically, before
[image: image157.wmf])

(

1

x

Q

k

-

is to be modified by constraint
[image: image158.wmf]()

j

j

Ry

 at step k, SMOOTH will first modify the constraint by

[image: image159.wmf]1

'

()()(1)()

jjj

jjk

RyRyQy

aa

-

=+-

 (8)
where
[image: image160.wmf]01

a

<

=

 is the smoothing factor.
(8) modifies
[image: image161.wmf]()

j

j

Ry

to include a small portion of
[image: image162.wmf]1

()

j

k

Qy

-

, a marginal from the JPD resulted from step k – 1. Since
[image: image163.wmf]1

k

Q

-

can be seen as the result of a sequence of revisions by all other constraints, intuitively, (8) has the effect of pulling
[image: image164.wmf]j

R

P

 closer to
[image: image165.wmf],

i

R

ij

¹

P

, thus reducing or smoothening the inconsistency among the constraints.
Incorporating SMOOTH into E-IPFP, we have algorithm E-IPFP-SMOOTH:

[image: image166]
Algorithm E-IPFP-SMOOTH differs from E-IPFP only in Step 2.2 where it modifies the selected constraint by (8) before the I-projection over this constraint is performed. As a result, the BN structure is preserved as with E-IPFP, but the constraints are only approximately satisfied. Also note that the smoothing (Step 2.2) only applies to real constraints in R, not the structure constraint Rm+1. To ensure that the smoothing is unbiased α should be chosen as very close to 1. However, when α is too close to 1, the convergence becomes very slow with a long tail of Qk of little changes. Therefore, when the process gets closer to the convergence point, we can afford to use smaller α for a faster convergence. The best schedule for decreasing
[image: image167.wmf]a

from our experiments is to use a sigmoid function [14]:

[image: image168.wmf]1

1

1exp(/)

AkB

a

=-

+-

 (9)

With large A and small B, α is close to 1 at the beginning (k is small), and close to 0 when k becomes very large. α decreases very slowly at the two ends, but fast in the middle. Parameter A controls how long
[image: image169.wmf]a

 is to remain close to 1 (longer for larger A) and B controls how fast
[image: image170.wmf]a

decreases in the middle (faster for smaller B).
To illustrate E-IPFP-SMOOTH, we apply the algorithm to the BN given in Figure 1 with two constraints: R1(b,c) = (0.36, 0.04, 0.34, 0.26) and R2(a) = (0.1,0.9). Although there exists some JPD Q(a, b, c) that satisfies both R1 and R2, it can be shown that no BN with this given structure can satisfy both. In other words, R = (R1, R2) is inconsistent with the BN structure GS. The running results of this example using both E-IPFP and E-IPFP-SMOOTH with a constant (= 0.95 are given in Figure 4 below.
[image: image171.png]alblel QUJ |QGkt)|QGk+2)
TIT|T 0.12624 0.10000 | 0.10000
TI|T|F 0.00000 0.00000 | 0.00000
T|F|T 0.00000 0.00000 | 0.00000
T|F|F 0.00000 0.00000 | 0.00000
FIT|T 0.23376 0.24078 | 0.18516
FIT|F 0.04000 0.04120 | 0.09682
FIF|T 0.34000 0.35021 | 0.40583
FIF|F 0.26000 0.26781 | 0.21219

(a) Three successive JPDs from E-IPFP after 60 iterations
[image: image172.png]T
01213 | 0.8787

A |R2(a) 2 ot A | B [C[ex(ab,c)

T | 01000 T [o T[T [T oosm AT ¥

F [os000 F | 077 T T | F 00087 08008 | 0.1952
T F T 002319 F | 03506 | 0.6494

B|CRIGM|[B[C R [T[F[F][00009

T T | 0.3600 T T | 02957 F T T 0.20230

T F | 0.0400 T F | 01095 F T F 0.10572 A T F

F T | 0.3400 F T | 0.3980 F F T 0.37478 0.9612 | 0.0388

F|r[o20 | [F[F[owms F | F | F| owsss F | osses | 03832

(b) Single JPD Q* from E-IPFP-SMOOTH after 80 iterations.
Figure 4. Results for E-IPFP and E-IPFP-SMOOTH with constraints inconsistent with the network structure.
It can be seen from Figure 4(a) that, because R is inconsistent with GS, E-IPFP does not converge to a single JPD but rather cycles through three JPDs where Q(k) satisfies R1(b, c) but not R2(a), Q(k+1) satisfies R2(a) but not R1(b, c), Q(k+2) satisfies the structure constraint and R2(a) but not R1(b, c). However, when E-IPFP-SMOOTH is applied (Figure 4(b)), it converges to a single JPD Q* (in the middle). It can be verified using the CPTs extracted from Q* on the right of Figure 4(b) that Q* satisfies the structure constraint. On the other hand, since the two constraints are modified in each iteration, Q* does not satisfy them, as can be seen from the small differences between R1(b, c) and Q*(b, c) and between R2(a) and Q*(a) given on the left of Figure 4(b).

E-IPFP-SMOOTH can also be applied to integrate constraints that are inconsistent with each other, as shown in the next example which uses the constraint R1(b, c) as before and a new constraint R3(a, b) = (0.06, 0.14, 0.54, 0.26). Note that the marginals R1(b) = (0.4, 0.6) but R3(b) = (0.6, 0.4), therefore no JPD, let along any BN, can satisfy both R1 and R3. Again, E-IPFP converges to a cycle of three JPDs in 60 iterations and E-IPFP-SMOOTH to a single JPD Q* in 120 iterations. The results are given in Figure 5 below.

[image: image173.png]Q(k)

Q1)

Q(kt2)

0.00000

0.00000

0.00000

0.03408

0.06000

0.06000

0.00000

0.00000

0.00000

025101

014000

014000

036000

053127

052959

000552

0.00873

001041

034000

025330

025499

o 12 2 [|t [t o o [

o 2 | | |t [o [oo

o s 2 | |t [t [t [

000899

0.00670

000501

(a) Three JPDs from E-IPFP after 60 iterations
[image: image174.png]T F
A B R3Ga,b) [A[B][or(ab) 0.24687 [0.75313
T 1 Joosooo | [T [T [oosimo
T[] F Jowooo| [T [F [o117 Al 1C lar(ab o) [y B
T[T|T | oo
F T | 054000 F[T] oa7o TTT 7 | e T F
F F 0.26000 F | F | 030602 a T | 0.2094 | 0.7906
TP T oo F | 05937 | 0.083
B] ¢ RiGo| [BIcler®,o) | [T][F|F]| o1ses
T T Joseooo | [T[T [oaoor F | T T | 03943 A [
T| F Joosoo| [T [F [oosson FT|F | ooarer T F
F| T oz | [F [T [osms F|F|T | o2 T | 02004 | 0.7996
F F 0.26000 F|F 0.18868 FI|F|F 0.03263 F | 0.8934 | 0.1066

(b) Single JPD from E-IPFP-SMOOTH after 120 iterations

Figure 5. Results for E-IPFP and E-IPFP-SMOOTH with inconsistent constraints.
Convergence of SMOOTH with standard IPFP for two constraints that are inconsistent with each other has been established earlier [14]. Now we show E-IPFP-SMOOTH convergence for constraints that are inconsistent with the BN structure GS. Similar to Theorem 1 we show it for a single constraint R(y) that is inconsistent with GS.
Theorem 2. For any given BN
[image: image175.wmf](,)

sP

GGG

=

and constraint R(y) inconsistent with GS, E-IPFP-SMOOTH converges to Q* consistent with GS.
Recall that from Theorem 1 we have
[image: image176.wmf]1032

(||)(||)

IQQIQQ

³

, where, as shown in Figure 2, Q3 is an I-projection of Q2 to
[image: image177.wmf]()

Ry

P

if E-IPFP is used. Now with E-IPFP-SMOOTH, R(y) is modified by (8) to

[image: image178.wmf]2

'()()(1)()

RyRyQy

aa

=+-

 (10)
Let
[image: image179.wmf]3

'

Q

 be the I-projection of Q2 to
[image: image180.wmf]'()

Ry

P

using
[image: image181.wmf]'

()

Ry

. The convergence of E-IPFP-SMOOTH can then be established by showing
[image: image182.wmf]'

1032

(||)(||)

IQQIQQ

³

. This can be done by showing that

[image: image183.wmf]'

3232

(||)(||)

IQQIQQ

³

 (11)
Intuitively, since
[image: image184.wmf]'

()

Ry

contains a portion of Q2(y),
[image: image185.wmf]3

'

()

Qx

 would be more similar and closer to Q2(x) than
[image: image186.wmf]3

()

Qx

, so (11) holds. The formal proof of Theorem 2 is given in the appendix.

6. D-IPFP
When
[image: image187.wmf])

(

1

x

Q

k

-

 is modified by
[image: image188.wmf]()

j

j

Ry

by (3) of IPFP, it checks each entry in
[image: image189.wmf])

(

1

x

Q

k

-

 against every entry of
[image: image190.wmf]()

j

j

Ry

. The cost of (3) can thus be roughly estimated as
[image: image191.wmf]||||

(22)

j

XY

O

×

, which is huge when |X| is large, making the process computationally intractable for BN of large size. Since by the chain rule of (1) the joint distribution of a BN is a product of distributions of much smaller size (i.e., its CPTs), the cost of E-IPFP may be reduced if we can make use of the interdependencies of the variables represented by the network structure. This has motivated the development of algorithm D-IPFP which decomposes the global E-IPFP, the one involving all variables in X, into a set of local E-IPFP, each for one constraint
[image: image192.wmf]()

j

j

Ry

, on a small subnet of G that contains
[image: image193.wmf].

j

Y

First we show that algorithm E-IPFP only changes CPTs for variables in the given constraints and their ancestors. Consider a BN G(x) with JPD
[image: image194.wmf]00

()(|)

i

XXii

QxQx

p

Î

=P

 and a single constraint R(y) consistent with GS. Let D1 be the set of all variables in Y and their ancestors and D2 = X \ D1. Variables in D1 and their CPTs form a BN, which is a subnet of G(x), denoted G(d1), with JPD
[image: image195.wmf]1

010

()(|)

i

XDii

QdQx

p

Î

=P

. When applying (3) to
[image: image196.wmf]1

()

k

Qx

-

with constraint R(y) we have

[image: image197.wmf]12

111

11

()()

()()[(|)][(|)]

()()

ij

kkkiikjj

XDXD

kk

RyRy

QxQxQxQx

QyQy

pp

ÎÎ

--

==PP

 (12)
Since
[image: image198.wmf]1

()

k

Qy

-

is completely determined by CPTs of variables in D1, applying (3) on
[image: image199.wmf]1

()

k

Qx

-

of G is equivalent to on the subnet G(d1) while keeping CPTs for variables in D2 unchanged. Therefore, when the structure constraint is applied (step 2.3 of E-IPFP), only CPTs for variables in D1 need to be revised. If D1 is a small subset of X, substantial saving can be achieved by doing E-IPFP on the subnet G(d1). However, when D1 is large, the computation is still intractable. To further reduce the complexity, we have developed D-IPFP in which E-IPFP is performed in a further restricted subnet containing only variables in Y and their parents.
6.1. Algorithm D-IPFP
Let
[image: image200.wmf]()\

j

XYj

SY

p

Î

=

U

 i.e., S contains parents of all variables in Y except those that are also in Y. We call S the cap of Y. D1 can be partitioned into three parts: Y, S, and
[image: image201.wmf]31

\()

DDYS

=È

. (Examples of Y and related S, D1, D2, D3 are given in Subsection 6.2 for a 15 variable BN of Figure 6). For subnet G(d1), S d-separates Y and D3 and thus Y and D3 are independent of each other, given S. In other words, Y is capped by S and, when S is instantiated or its distribution is fixed, any change on Y is shielded from spreading to any variable in D3. By this conditional independence, the JPD for G(d1) can be expressed as

[image: image202.wmf]13333

()(,,)(,|)()(|)(|)()(|)(,)

QdQysdQydsQsQysQdsQsQysQds

====

Since
[image: image203.wmf]3

(,)

Qds

 does not contain any variable in Y,
[image: image204.wmf]3

3

(,)(|)

j

XDSjj

QdsQx

p

ÎÈ

=P

 and
[image: image205.wmf](|)(|)

i

XYii

QysQx

p

Î

=P

. Combining this with (12), when R(y) is used at step k we have

[image: image206.wmf]12

1111

\

11

()()

()()[(|)][(|)][(|)].

()()

jl

kkkkjjkll

XDYXD

kk

RyRy

QxQxQysQxQx

QyQy

pp

ÎÎ

--

==PP

 (13)
This suggests that we can keep all CPTs for variables not in Y unchanged and use E-IPFP to modify only those for
[image: image207.wmf]i

XY

Î

as given in the first term in (13). One problem arises: since
[image: image208.wmf]1

(|)

k

Qys

-

is a conditional distribution but Qk-1(y) is not conditioned under s, the first term in (13), is in general not a probability distribution. This can be resolved by normalization

[image: image209.wmf]'

11

1

()

(|)(|)

()

kkk

k

Ry

QysQys

Qy

b

--

-

=

 (14)
with normalization factor

[image: image210.wmf]11

1

()

1/(|)

()

kyk

k

Ry

Qys

Qy

b

--

-

=å

. (15)

Take a closer look at this term. Let

[image: image211.wmf]'

1

1

()

(,)(,),

()

kk

k

Ry

QysQys

Qy

-

-

=

 then

[image: image212.wmf]'

1

1

'

1

()

()

(|)(|).

()()

k

kk

kk

Qs

Ry

QysQys

QyQs

-

-

-

=

 (16)
Comparing (14) and (16), we have
[image: image213.wmf]'

11

()/().

kkk

QsQs

b

--

=

 From (16) we can see that
[image: image214.wmf]'

(|)

k

Qys

 is computed by applying two constraints to
[image: image215.wmf]1

(|)

k

Qys

-

, first is R(y), the second is
[image: image216.wmf]1

()

k

Qs

-

, called cap constraint since it forces the marginal of S to remain to its current value of
[image: image217.wmf]1

()

k

Qs

-

and thus caps the changes in Y’s CPTs from spreading to variables in D3. For efficiency reason, we suggest using (15) to compute
[image: image218.wmf]1

k

b

-

 to avoid computing
[image: image219.wmf]'

().

k

Qs

.
Note that, 1) the JPD after the second modification (using the cap constraint) may not satisfy constraint R(y), and 2) to extract CPTs from
[image: image220.wmf]'

(|)

k

Qys

, the structure constraint for variables in Y needs to be applied to modify CPTs for variables in Y while keeping CPTs for all other variables constant. This is the core of algorithm D-IPFP, which is given below where the cap of
[image: image221.wmf]j

Y

 for each constraint
[image: image222.wmf]()

j

j

Ry

, is denoted as
[image: image223.wmf]j

S

.

[image: image224]
Step 2.2 in D-IPFP applies two constraints,
[image: image225.wmf]()

j

j

Ry

 and the cap constraint (by
[image: image226.wmf]1

k

b

-

). Step 2.3 applies the structure constraint for variables in
[image: image227.wmf]j

Y

. Note that, each iteration (Step 2 in D-IPFP) only applies the three constraints once, not iterates to convergence for the given
[image: image228.wmf]()

j

j

Ry

. We made this choice for efficiency reason because
[image: image229.wmf]1

()

j

k

Qs

-

 may be changed after applications of other constraints in R if their constraint variables or their caps overlap with that of other constraints.
The convergence of D-IPFP could be established analogous to the convergence proof of E-IPFP (i.e., merging all constraints in R into a single constraint) using equations of (13), (14) and (16). However, the formal proof has been evading us at this moment.

Also note that, D-IPFP is a trade-off between accuracy and computing cost. Because D-IPFP introduces additional constraints
[image: image230.wmf]1

()

j

k

Qs

-

for each
[image: image231.wmf]()

j

j

Ry

in R, the converging distribution from D-IPFP, although satisfying all constraints, would have higher I-divergence to the JPD of the original BN than that of E-IPFP.
D-IPFP can be easily modified, analogous to Step 2.2 of E-IPFP-SMOOTH, to deal with inconsistent constraints.

6.2. Experiments
To empirically validate the algorithms and to get a sense of how expensive this approach may be, we have conducted experiments of limited scope with an artificially composed BN of 15 discrete variables. The network structure is given in Figure 6 below. For a hypothetical constraint on Y = {F, L, M}, we have S = {E, B, C}, D1 = {F, L, M, E, B, C, A, R, D}, D2 = {H, K, G, N, Q, J }, and D3 = {A, R, D}.
Three sets of 4, 8, and 16 constraints, respectively, are selected for the experiments. These constraints are consistent with each other and with the network structure. The number of variables in a constraint ranges from 1 to 3, the size of the subnet associated with a constraint (
[image: image232.wmf]||||

jj

YS

+

) ranges from 2 to 8. Therefore a saving in computational time by D-IPFP would be in the order of
[image: image233.wmf]1587

22.

-

=

[image: image234.png]

Figure 6: The network of 15 variables for the experiments comparing performance of E-IPFP and D-IPFP
Both E-IPFP and D-IPFP were run for each of the three sets of constraints. The program is a brute force implementation of the two algorithms without any optimization. The results are given in Table 1 below.
Table 1: Experiment Results

	# of Cons.
	# Iterations

(E-IPFP|D-IPFP)
	Exec. Time

(E-IPFP|D-IPFP)
	I-divergence

 (E-IPFP|D-IPFP)

	4
	8
	27
	1264s
	1.93s
	0.08113
	0.27492

	8
	13
	54
	1752s
	11.53s
	0.56442
	0.72217

	16
	120
	32
	13821s
	10.20s
	2.53847
	3.33719

Each of the 6 experimental runs converged to a joint distribution that satisfies all given constraints and is consistent with the network structure. As expected, D-IPFP is significantly faster than E-IPFP with moderately larger I-divergences. The rate of speedup is roughly in the theoretically estimated range (
[image: image235.wmf]7

2

), the performance variation among the three sets of constraints is primarily due to the number of iterations each run takes.
7. Conclusions

In this paper, we developed algorithm E-IPFP that adopts IPFP for the purpose of revising a probabilistic knowledge base represented as a BN by a set of low dimensional probabilistic constraints. The revision is done by only modifying the conditional probability tables of the BN while leaving the network structure intact. E-IPFP is extended to E-IPFP-SMOOTH to deal with the situation when the constraints are inconsistent with each other or with the BN structure. We have also showed that a significant saving in computational cost can be achieved by decomposing the global E-IPFP into local ones with much smaller scale, as described in algorithm D-IPFP. Convergence of these algorithms is also analyzed. Computer experiments of limited scope were conducted to validate the analysis results.

Several pieces of existing work are particularly relevant to this work, besides those related to the development of the original IPFP and proofs of its convergence that were cited earlier. Vomlel studied in detail how IPFP can be used for probabilistic knowledge integration [18]. However, this works applies IPFP to update JPDs, not to JPDs represented as BNs. Several works have extended IPFP to BN, including Valtorta et al [17, 8] and our earlier works [11, 14]. In these works, IPFP is used to support belief update in BN by a set of soft evidences that are observed simultaneously. Those soft evidences are in the form of low dimensional distributions and are taken as constraints by IPFP style computing. However, these works were not concerned themselves with revising the BN itself. In other words, the methods developed in those works are BN inference methods, not methods for knowledge integration and revision.
The issue of inconsistent constraints has been studied by others. It has been reported by others [18, 19] and observed by us that when constraints are inconsistent, IPFP will not converge but oscillate. Vomlel [19] developed an algorithm, named GEMA, to deal with inconsistent constraints when using IPFP to modify a JPD. We have developed algorithm SMOOTH [21, 14] for the belief update in BN by inconsistent constraints. Algorithm E-IPFP-SMOOTH incorporates SMOOTH into E-IPFP for modifying CPTs of a BN.
We are continuing our investigation of knowledge integration for inconsistent constraints. When constraints are inconsistent with each other, some error or noise must exist in some of these constraints, or the meanings/semantics of some variables take different interpretations in different constraints. It is desirable to take into consideration of the degree of trust or semantic difference one has on each of these constraints during the integration. This can be easily accomplished by allowing different smoothing factor (for each constraint, with larger (for those believed to have higher fidelity or closer semantics. Smoothing factors may also be used to deal with another form of inconsistency where the JPD of the revised BN is too far away from the original BN.
Structural inconsistency is a more difficult matter. When constraints from highly trusted sources exhibit significant inconsistency with the given BN structure, it is an indication that the given BN structure is no longer an accurate model of the domain. In such a situation, it is more desirable to modify the BN structure than changing the constraints as E-IPFP-SMOOTH does. The modification of BN structure may involve adding/removing arcs and/or nodes in the original BN. We are actively exploring the idea of adding nodes for “hidden variable”, whose effects on other variables were not considered when the original BN was constructed but whose presence might account for the difference or inconsistency between the constraints and the given BN structure.
Efficiency of our approach also requires additional investigation. As shown in our experiments, IPFP based methods are in general very expensive. The convergence time of E-IPFP in our experiments with a small BN (15 nodes) and moderate number of constraints is in the order of hours. Even the performance of D-IPFP can be bad if some constraints involve larger number of variables. Complexity can be further reduced if we can divide a large constraint into smaller ones by exploring interdependence between the variables in the constraint (possibly based on the network structure). Vomlel [18] has also studied the behavior of IPFP with input set generated by decomposable generating class. If such input set can be properly ordered, IPFP may converge in a small number of cycles. This kind of input set roughly corresponds to ordering constraints for a BN in such a way that the constraint involving ancestors are applied before those involving descendants, if such order can be determined. Several related works may also be of interest to readers who are concerned with the complexity of IPFP and that of its applications to BN, these include the method proposed for space efficient implementation of IPFP [5], methods for decomposing a large BN into small BNs [9, 20], and methods for effective approximation of IPFP with BN junction trees [8, 10, 16].
Acknowledgment

This work was supported in part by NIST awards 60NANB6D6206 and 70NANB9H9145, NSF award IIS-0326460, and the China Scholarship Council (CSC).

Appendix

Proof of Theorem 1.

By induction on
[image: image236.wmf]||

x

, the number of variables in the given G.

Base case:
[image: image237.wmf]||1

x

=

, a BN with a single variable x1, with constraint
[image: image238.wmf]1

()

Rx

. It is trivial that
[image: image239.wmf]21111

()()()

QxQxRx

==

. Substituting these into (7)

[image: image240.wmf]10111101

()(()||())(()||())(()||())0,

xIRxQxIRxRxIRxQx

D=-=³

where the last inequality comes from the fact that I-divergence is always non-negative.

Inductive assumption:
[image: image241.wmf]12

(,,...,)0

n

xxx

D³

 for any
[image: image242.wmf]1

n

³

.
Inductive proof: show that
[image: image243.wmf]012

(,,,...,)0

n

xxxx

D³

. Without loss of generality, let
[image: image244.wmf]0

x

 be a root node of the BN. For clarity, let
[image: image245.wmf]12

(,,...,)

n

xxxx

=

. By (7) and (2),

[image: image246.wmf]00

0

1010

01010

,,

0020

20

10

,

00

(,)(,)

(,)(,)log(,)log

(,)(,)

(,)

 (,)log

 (A1)

(,)

xxxx

xx

QxxQxx

xxQxxQxx

QxxQxx

Qxx

Qxx

Qxx

D=-

=

åå

å

[image: image247.wmf]0

(,)

xx

D

can been seen to be a sum of two parts:

[image: image248.wmf]0

00

2020

010

,

0000

2020

1010

,,

0000

()(|)

(,)(,)log

()(|)

()(|)

 (,)log(,)log.

 (A2)

()(|)

xx

xxxx

QxQxx

xxQxx

QxQxx

QxQxx

QxxQxx

QxQxx

D=

=+

å

åå

Let these two parts be called
[image: image249.wmf]1020

(,) and (,).

xxxx

DD

 Now we show that both
[image: image250.wmf]1

D

and
[image: image251.wmf]2

D

 are nonnegative.
First, note that since x0 is a root note, its CPT (i.e., its marginal) will not be changed when Q2 is generated from Q1 by applying the structure constraint, so Q2(x0) = Q1(x0). Substituting Q2(x0) by Q1(x0) we have

[image: image252.wmf]0

0

0

10

10

10

,

00

10

10

00

10

101000

00

 (,)

()

= (,)log

()

()

((,))log

()

()

()log(()||())0

 (A3)

()

xx

xx

x

xx

Qx

Qxx

Qx

Qx

Qxx

Qx

Qx

QxIQxQx

Qx

D

=

==³

å

åå

å

Now consider
[image: image253.wmf]2

D

.

Case 1.
[image: image254.wmf]0

.

xy

Î

 Let
[image: image255.wmf]{

}

0

'\

yyx

=

, then
[image: image256.wmf]0

()(,')

RyRxy

=

. Since
[image: image257.wmf]101010

(,)()(|)

QxxQxQxx

=×

 and

[image: image258.wmf]000

10000000

000000

(,')('|)()

(,)(,)()(|)

(,')('|)()

RxyRyxRx

QxxQxxQxQxx

QxyQyxQx

=×=

and
[image: image259.wmf]100

()()

QxRx

=

 (because
[image: image260.wmf]1

Q

 is an I-Projection of
[image: image261.wmf]0

Q

 to
[image: image262.wmf]0

(,')

Rxy

P

), we have

[image: image263.wmf]0

1000

00

('|)

(|)(|)

('|)

Ryx

QxxQxx

Qyx

=

.
Note that, for any arbitrary particular state
[image: image264.wmf]*

0

x

 of variable
[image: image265.wmf]0

X

,
[image: image266.wmf]**

000

(|)(|)

i

xxii

QxxQx

p

Î

=P

 is a BN of x, where

[image: image267.wmf]*

*

0000

0

0

(|,)ifisachildof;

(|) (A4

)

(|)otherwise.

iii

ii

ii

Qxxxxx

Qx

Qx

p

p

p

ì

=

ï

=

í

ï

î

Therefore,
[image: image268.wmf]*

10

(|)

Qxx

 is an I-Projection of
[image: image269.wmf]*

00

(|)

Qxx

 to
[image: image270.wmf]*

0

('|)

Ryx

P

 from which CPTs of
[image: image271.wmf]*

20

(|)

Qxx

 are extracted. Then by inductive assumption

[image: image272.wmf]*

**

20

100

*

00

(|)

(|)log(|)0;

(|)

x

Qxx

Qxxxx

Qxx

=D³

å

and

[image: image273.wmf]0

0

20

2010

,

00

20

1010

00

(|)

(,)(,)log

(|)

(|)

()(|)log0

 (A5)

(|)

xx

xx

Qxx

xxQxx

Qxx

Qxx

QxQxx

Qxx

D=

=³

å

åå

Case 2.
[image: image274.wmf]0

xy

Ï

. By definition of
[image: image275.wmf]1

Q

, we have

[image: image276.wmf]00

1000

010

()()

(|)(|)

()()

RyQx

QxxQxx

QyQx

=

.

Since
[image: image277.wmf]00

000

00

(|)

()()

(|)

Qyx

QyQx

Qxy

=

, so

[image: image278.wmf]*

00

100000

100000

()(|)

()

(|)(|)(|)

()(|)(|)

RyQxy

Ry

QxxQxxQxx

QxQyxQyx

==

 (A6)
where
[image: image279.wmf]*

00

10

(|)

()()

()

Qxy

RyRy

Qx

=

.

Now show that
[image: image280.wmf]*

()

Ry

 is a PD of y. Let
[image: image281.wmf]'\

xxy

=

, then

[image: image282.wmf]0000001010

''

00

()()

(|)()(,)(,,')(,,')(,).

()()

xx

RyRy

QxyRyQxyQxyxQxyxQxy

QyQy

×====

åå

So
[image: image283.wmf]*

10

10

10

(,)

()(|)

()

Qxy

RyQyx

Qx

==

 is a PD.

Therefore, for any given
[image: image284.wmf]*

0

x

, by (A6),
[image: image285.wmf]*

10

(|)

Qxx

 is an I-Projection of
[image: image286.wmf]*

00

(|)

Qxx

 to
[image: image287.wmf]*

()

Ry

P

. Then by inductive assumption and analogous to (A5), we have

[image: image288.wmf]00

2020

20101010

,

0000

(|)(|)

(,)(,)log=()(|)log0.

(|)(|)

xxxx

QxxQxx

xxQxxQxQxx

QxxQxx

D=³

ååå

 (A7)
Combining (A2), (A3), (A5) and (A7),
[image: image289.wmf]0

(,)0.

xx

D³

 (
Proof of Theorem 2.

We prove the theorem by showing that the inequality (11) holds. By (3) and (10),

[image: image290.wmf]'

2

32232

22

()(1)()

'()

()()()()(1)()

()()

RyQy

Ry

QxQxQxQxQy

QyQy

aa

aa

+-

=×=×=+-

 (A8)

[image: image291.wmf]'

32

(||)

IQQ

 is thus a function of (, denoted,
[image: image292.wmf]().

f

a

 When (= 0,
[image: image293.wmf]'

32

()()

QxQx

=

and
[image: image294.wmf](0)0

f

=

; when (= 1,
[image: image295.wmf]'

33

()()

QxQx

=

and
[image: image296.wmf]32

(1)(||)

fIQQ

=

, which is greater than 0 if
[image: image297.wmf]2

()()

RyQy

¹

. By (A8), the derivative of
[image: image298.wmf]()

f

a

[image: image299.wmf]'

32

32

32

2

32

32

2

32

32

32

3

32

()

((()||())/

()(1)()

(()(1)())log/

()

()(1)()

(()())log

()

()()

 (()(1)())

()(1)()

()(1

(()())log

x

x

x

x

f

IQxQx

QxQx

QxQx

Qx

QxQx

QxQx

Qx

QxQx

QxQx

QxQx

Qx

QxQx

a

a

a

aa

aaa

aa

aa

aa

a

¶

=¶¶

¶

+-

=¶+-¶

+-

=-

-

++-

+-

+

=-

S

S

S

S

2

32

2

32

32

2

)()

()()

()

()(1)()

(()())log

 (A9)

()

x

x

Qx

QxQx

Qx

QxQx

QxQx

Qx

a

aa

-

+-

+-

=-

S

S

（）

where the last equality comes from
[image: image300.wmf]3232

()()()()110.

xxx

QxQxQxQx

-=-=-=

SSS

（）

Note that each entry in the summary of (A9) is strictly positive because

if
[image: image301.wmf]32322

()() then ()(1)()(),

QxQxQxQxQx

aa

>+->

 and
if
[image: image302.wmf]32322

()() then ()(1)()().

QxQxQxQxQx

aa

<+-<

This means that when (increases from 0 toward 1,
[image: image303.wmf]'

32

(||)

IQQ

 strictly increases from 0 toward
[image: image304.wmf]32

(||)

IQQ

, and thus
[image: image305.wmf]'

3232

(||)(||)

IQQIQQ

<

 for any
[image: image306.wmf]01

a

<

=

.The only time this derivative equals zero is when
[image: image307.wmf]32

QQ

=

 This proves (11).
Also note that the above is true for all pairs
[image: image308.wmf]212

(,),

kk

QQ

+

during the successive iterations, so
[image: image309.wmf]212

 when .

kk

QQk

+

®®¥

 Since Q2k are consistent with GS, the algorithm converges to a single JPD consistent with GS. (
References

1. H.H. Bock, “A Conditional Iterative Proportional Fitting (CIPF) Algorithm with Applications in the Statistical Analysis of Discrete Spatial Data”, Bull. ISI, Contributed papers of 47th Session in Paris, vol. 1, pp. 141-142, 1989.

2. E. Cramer, “Probability Measures with Given Marginals and Conditionals: I­projections and Conditional Iterative Proportional Fitting”, Statistics and Decisions, vol. 18, pp. 311-329, 2000.

3. I. Csiszar, “I-divergence Geometry of Probability Distributions and Minimization Problems”, The Annuals of Probability, vol. 3, no. 1, pp. 146-158, Feb. 1975.

4. W.E. Deming and F.F. Stephan, “On a Least Square Adjustment of a Sampled Frequency Table when the Expected Marginal Totals are Known”, Ann. Math. Statist. Vol. 11, pp. 427-444, 1940.

5. R. Jiroušek ans S. Přeučil, “On the effective implementation of the iterative proportional fitting procedure”, Computational Statistics & Data Analysis, vol. 19, pp. 177-189, 1995.

6. R. Kruithof, Telefoonverkeersrekening, De Ingenieur, vol 52, pp. 15-25, 1937.

7. S. Kullback and R.A. Leibler, “On Information and Sufficiency”, Ann. Math. Statist., vol. 22, pp. 79-86, 1951.

8. S. Langevin and M. Valtorta, “Performance Evaluation of Algorithms for Soft Evidential Update in Bayesian Networks: First Results”, in the Proceedings of the Second International Conference on Scalable Uncertainty Management (SUM-08), Naples, Italy, October 1-3, 2008, pp. 284-297.

9. S. Langevin, M. Valtorta, and M. Bloemeke, “Agent-encapsulated Bayesian Networks and the Rumor Problem”, in the Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS-10), Volume 1, Toronto, Canada, May 10-14, 2010, pp. 1553-1555.
10. A.L. Madsen and F.V. Jensen, “Lazy propagation: A junction tree inference algorithm based on lazy evaluation”, Artificial Intelligence, Vol. 113, pp. 203–245, 1999.

11. R. Pan, Y. Peng and Z. Ding, “Belief Update in Bayesian Networks Using Uncertain Evidence”, in the Proceedings of the IEEE International Conference on Tools with Artificial Intelligence (ICTAI-2006), Washington, DC,13 – 15, Nov. 2006
12. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo: Morgan Kaufman, 1988.

13. Y. Peng and Z. Ding, “Modifying Bayesian Networks by Probability Constraints”, Proc. 21st Conference on Uncertainty in Artificial Intelligence, July 2005, Edinburgh.

14. Y. Peng, S. Zhang, and R. Pan, “Bayesian Network Reasoning with Uncertain Evidences”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18 (5), 539-564, 2010.

15. Peng, Y. and Zhang, S: “Integrating Probability Constraints into Bayesian Nets”, in The Proceedings of 9th European Conference on Artificial Intelligence (ECAI2010), Lisbon, Portugal, August, 2010.

16. Y.W. Teh and M. Welling, “On Improving the Efficiency of the Iterative Proportional Fitting Procedure”, in the Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, Florida, January 3-6, 2003.

17. M. Valtorta, Y. Kim, and J. Vomlel, “Soft Evidential Update for Probabilistic Multiagent Systems”, International Journal of Approximate Reasoning, vol. 29, no. 1, pp. 71-106, 2002.

18. J. Vomlel, “Methods of Probabilistic Knowledge Integration”, PhD Thesis, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Dec 1999.

19. J. Vomlel, “Integrating Inconsistent Data in a Probabilistic Model”, Journal of Applied Non-Classical Logics, vol. 14, no. 3, pp. 1 – 20, 2004.
20. Y. Xiang, “A probabilistic framework for cooperative multi-agent distributed interpretation and optimization of communication”, Artificial Intelligence, Vol. 86, pp. 295–342, 1996.

21. S. Zhang, and Y. Peng, “An Efficient Method for Probabilistic Knowledge Integration”, in Proceedings of The 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-2008), Dayton, Ohio, Nov. 3-5, 2008.
E-IPFP(� EMBED Equation.3 ���, � EMBED Equation.3 ���)

1. � EMBED Equation.3 ��� where � EMBED Equation.3 ���;

2. Starting with k = 1, repeat the following steps until convergence

 2.1. j = ((k-1) mod (m+1)) + 1;

 2.2. if j < m+1

 � EMBED Equation.3 ���

 2.3. else

 extract � EMBED Equation.3 ���from � EMBED Equation.3 ��� according to� EMBED Equation.3 ���;

 � EMBED Equation.3 ���;

 2.4. k = k+1;

3. return � EMBED Equation.3 ��� with � EMBED Equation.3 ���;

E-IPFP-SMOOTH(� EMBED Equation.3 ���, � EMBED Equation.3 ���)

� EMBED Equation.3 ��� where � EMBED Equation.3 ���;

Starting with k = 1, repeat the following procedure until convergence

 2.1. j = ((k-1) mod (m+1)) + 1;

if j < m+1

 � EMBED Equation.DSMT4 ���

 � EMBED Equation.3 ���

 2.3. else

 extract � EMBED Equation.3 ���from � EMBED Equation.3 ���according to � EMBED Equation.3 ���;

 � EMBED Equation.3 ���;

 2.4. k = k+1;

 3. return � EMBED Equation.3 ��� with � EMBED Equation.3 ���;

D-IPFP(� EMBED Equation.3 ���, � EMBED Equation.3 ���)

� EMBED Equation.3 ��� where � EMBED Equation.3 ���;

Starting with k = 1, repeat the following procedure until convergence

 2.1. j = ((k-1) mod (m+1)) + 1;

 � EMBED Equation.3 ���

 � EMBED Equation.3 ���

 2.4. k = k+1;

return � EMBED Equation.3 ��� with � EMBED Equation.3 ���;

1

[image: image310.wmf]()(,)

sP

GxGG

=

[image: image311.wmf]12

{,,}

m

RRR

=

R

L

[image: image312.wmf]01

()(|)

n

iii

QxPx

p

=

=P

[image: image313.wmf](|)

iiP

PxG

p

Î

[image: image314.wmf]1

1

()

()();

()

j

j

kk

j

k

Ry

QxQx

Qy

-

-

=×

[image: image315.wmf]1

(|)

kii

Qx

p

-

[image: image316.wmf]1

()

k

Qx

-

[image: image317.wmf]S

G

[image: image318.wmf])

|

(

)

(

1

1

i

i

k

n

i

k

x

Q

x

Q

p

P

=

-

=

[image: image319.wmf]'

'(,)

SP

GGG

=

[image: image320.wmf]'

{(|)}

Pkii

GQx

p

=

[image: image321.wmf]()(,)

sP

GxGG

=

[image: image322.wmf]12

{,,}

m

RRR

=

R

L

[image: image323.wmf]01

()(|)

n

iii

QxPx

p

=

=P

[image: image324.wmf](|)

iiP

PxG

p

Î

[image: image325.wmf]1

()()(1)();

jjj

jjk

RyRyQy

aa

-

=+-

[image: image326.wmf]1

1

()

()();

()

j

j

kk

j

k

Ry

QxQx

Qy

-

-

=×

[image: image327.wmf]1

(|)

kii

Qx

p

-

[image: image328.wmf]1

()

k

Qx

-

[image: image329.wmf]S

G

[image: image330.wmf])

|

(

)

(

1

1

i

i

k

n

i

k

x

Q

x

Q

p

P

=

-

=

[image: image331.wmf]'

'(,)

SP

GGG

=

[image: image332.wmf]'

{(|)}

Pkii

GQx

p

=

[image: image333.wmf]()(,)

sP

GxGG

=

[image: image334.wmf]12

{,,}

m

RRRR

=

L

[image: image335.wmf]01

()(|)

n

iii

QxPx

p

=

=P

[image: image336.wmf](|)

iiP

PxG

p

Î

[image: image337.wmf]11

1

()

2.2 (|)(|);

()

j

j

jjjj

kkk

j

k

Ry

QysQys

Qy

b

--

-

¢

=××

[image: image338.wmf]1

 (|)(|)

2.3

j

kijkiii

QxQxXY

pp

-

¢

="Î

[image: image339.wmf]'

'(,)

SP

GGG

=

[image: image340.wmf]'

{(|)}

Pkii

GQx

p

=

_1353841170.unknown

_1372256775.unknown

_1373452496.unknown

_1376487923.unknown

_1377440297.unknown

_1386155766.unknown

_1386688515.unknown

_1387033059.unknown

_1386155812.unknown

_1377442913.unknown

_1377443241.unknown

_1377441169.unknown

_1377441184.unknown

_1376749131.unknown

_1377440049.unknown

_1377440202.unknown

_1377406284.unknown

_1377436472.unknown

_1377438988.unknown

_1376755002.unknown

_1376741562.unknown

_1376745129.unknown

_1376491600.unknown

_1376718873.unknown

_1373475180.unknown

_1373476144.unknown

_1373476430.unknown

_1376369946.unknown

_1376371392.unknown

_1376371423.unknown

_1376370045.unknown

_1376369902.unknown

_1373476208.unknown

_1373475662.unknown

_1373476043.unknown

_1373475510.unknown

_1373453809.unknown

_1373472527.unknown

_1373473216.unknown

_1373452757.unknown

_1373452954.unknown

_1372688199.unknown

_1372955455.unknown

_1372956491.unknown

_1373115907.unknown

_1373116799.unknown

_1373117458.unknown

_1373124961.unknown

_1373116697.unknown

_1373115672.unknown

_1372955530.unknown

_1372956226.unknown

_1372696393.unknown

_1372954885.unknown

_1372954970.unknown

_1372955365.unknown

_1372954821.unknown

_1372696939.unknown

_1372688927.unknown

_1372694313.unknown

_1372688264.unknown

_1372501886.unknown

_1372688108.unknown

_1372688162.unknown

_1372502122.unknown

_1372504617.unknown

_1372511017.unknown

_1372502830.unknown

_1372502067.unknown

_1372499525.unknown

_1372499562.unknown

_1372256988.unknown

_1354375737.unknown

_1371046239.unknown

_1371053615.unknown

_1371055580.unknown

_1371654974.unknown

_1372247957.unknown

_1372247991.unknown

_1371656975.unknown

_1371659096.unknown

_1371575806.unknown

_1371575853.unknown

_1371055644.unknown

_1371054015.unknown

_1371055486.unknown

_1371053654.unknown

_1371047253.unknown

_1371052353.unknown

_1371047213.unknown

_1354446116.unknown

_1354456786.unknown

_1354627648.unknown

_1354627976.unknown

_1371044982.unknown

_1354627686.unknown

_1354459521.unknown

_1354450738.unknown

_1354451736.unknown

_1354450579.unknown

_1354377540.unknown

_1354380557.unknown

_1354445932.unknown

_1354379865.unknown

_1354375918.unknown

_1354376811.unknown

_1354375889.unknown

_1353850338.unknown

_1353917134.unknown

_1354375076.unknown

_1354375728.unknown

_1354375355.unknown

_1354014689.unknown

_1354014788.unknown

_1354009432.unknown

_1354009798.unknown

_1354008499.unknown

_1353856622.unknown

_1353914052.unknown

_1353850517.unknown

_1353845765.unknown

_1353846055.unknown

_1353846446.unknown

_1353847008.unknown

_1353849721.unknown

_1353846774.unknown

_1353846303.unknown

_1353845839.unknown

_1353845652.unknown

_1353845712.unknown

_1353842112.unknown

_1353844624.unknown

_1353841643.unknown

_1323702632.unknown

_1327936375.unknown

_1328267261.unknown

_1352720106.unknown

_1353424991.unknown

_1353840420.unknown

_1353840752.unknown

_1353840998.unknown

_1353500251.unknown

_1353501459.unknown

_1353499742.unknown

_1353499250.unknown

_1353499711.unknown

_1353425240.unknown

_1353421312.unknown

_1353421547.unknown

_1353420085.unknown

_1352560222.unknown

_1352566342.unknown

_1352717071.unknown

_1352717087.unknown

_1352716281.unknown

_1352564906.unknown

_1352564310.unknown

_1352564894.unknown

_1328278996.unknown

_1328358138.unknown

_1328382454.unknown

_1328382460.unknown

_1328382556.unknown

_1328381720.unknown

_1328279820.unknown

_1328281832.unknown

_1328279007.unknown

_1328279412.unknown

_1328268739.unknown

_1328268752.unknown

_1328267799.unknown

_1328147258.unknown

_1328154779.unknown

_1328155695.unknown

_1328156064.unknown

_1328156485.unknown

_1328208355.unknown

_1328156190.unknown

_1328155802.unknown

_1328155277.unknown

_1328155634.unknown

_1328155207.unknown

_1328152834.unknown

_1328153874.unknown

_1328153010.unknown

_1328152826.unknown

_1328103191.unknown

_1328104042.unknown

_1328147161.unknown

_1328103331.unknown

_1328103477.unknown

_1327937850.unknown

_1327924045.unknown

_1327933465.unknown

_1327935001.unknown

_1327935922.unknown

_1327929418.unknown

_1327929449.unknown

_1327929479.unknown

_1327924376.unknown

_1327929367.unknown

_1327924166.unknown

_1327924108.unknown

_1327210927.unknown

_1327229316.unknown

_1327235334.unknown

_1327244624.unknown

_1327924028.unknown

_1327235543.unknown

_1327233489.unknown

_1327229197.unknown

_1327211836.unknown

_1323771213.unknown

_1324130310.unknown

_1327210815.unknown

_1323771288.unknown

_1323771166.unknown

_1321597787.unknown

_1321598378.unknown

_1322306956.unknown

_1323700655.unknown

_1323701824.unknown

_1322308206.unknown

_1322309216.unknown

_1323700629.unknown

_1322308921.unknown

_1322307393.unknown

_1321600035.unknown

_1321600843.unknown

_1321601130.unknown

_1321600873.unknown

_1321600334.unknown

_1321598677.unknown

_1321599520.unknown

_1321599977.unknown

_1321599988.unknown

_1321598697.unknown

_1321598651.unknown

_1321598097.unknown

_1321598273.unknown

_1321598274.unknown

_1321598135.unknown

_1321598021.unknown

_1321598086.unknown

_1321597798.unknown

_1172929325.unknown

_1173019085.unknown

_1321597363.unknown

_1321597710.unknown

_1273582670.unknown

_1321597221.unknown

_1173019307.unknown

_1172929856.unknown

_1173017968.unknown

_1173019076.unknown

_1172930429.unknown

_1172929838.unknown

_1172835407.unknown

_1172929175.unknown

_1172929301.unknown

_1172835636.unknown

_1172836863.unknown

_1172835616.unknown

_1172834237.unknown

_1172835026.unknown

_1172677468.unknown

_1172677562.unknown

_1172677884.unknown

_1172677446.unknown

_1172664314.unknown

