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Abstract-- This paper deals with an important probabilistic knowledge integration problem: revising a Bayesian network (BN) to satisfy a set of probability constraints representing new or more specific knowledge. We propose to solve this problem by adopting IPFP (iterative proportional fitting procedure) to BN. The resulting algorithm E-IPFP integrates the constraints by only changing the conditional probability tables (CPT) of the given BN while preserving the network structure; and the probability distribution of the revised BN is as close as possible to that of the original BN. Two variations of E-IPFP are also proposed: 1) E-IPFP-SMOOTH which deals with the situation where the probabilistic constraints are inconsistent with each other or with the network structure of the given BN; and 2) D-IPFP which reduces the computational cost by decomposing a global E-IPFP into a set of smaller local E-IPFP problems. 
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1. INTRODUCTION 
Consider a probabilistic knowledge base in the form of a Bayesian network (BN) G of n variables
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, the BN consists of two parts: 1) 
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, the network structure that captures the interdependencies among variables in G; and 2) 
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, the set of conditional probability tables (CPTs) that represents the degree of the interdependencies. It is assumed that
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 where u is any variable other than descents of xi. Base on this conditional independence assumption, the joint probability distribution (JPD) of G can be computed by the following chain rule [12] 
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The knowledge base G may need to be revised when more up-to-date or more specific information of the domain or parts of the domain becomes available. This information is often given in the form of lower dimensional distributions 
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 called probabilistic constraints, or constraints for short. For example, considering a BN for heart disease diagnosis whose variables includes all important factors affecting this disease, including drinking, smoking, among other things, and the BN has the marginals P1(drinking, heart-disease) and P2(smoking, heart-disease) relating these factors to heart disease. A more recent survey concerning effects of drinking on people’s health, which may employ better survey methods or be drawn from a particular population, can generate a more accurate or more specific correlation between heart disease and drinking behavior, represented as a joint distribution Q1(drinking, heart-disease). Similarly, a distribution Q2(smoking, heart-disease) can be found from another survey concerning effects of smoking on people’s health. To integrate into the diagnosis system the knowledge of Q1 and Q2, which are typically different from P1 and P2, the BN needs to be revised so that its distribution satisfies these constraints.
It is desirable that the revision is restrained to 
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 (the CPTs) while keeping the structure 
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 unchanged. This is because, among other things, the qualitative knowledge of 
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 is more reliable and stable than the quantitative knowledge of 
[image: image12.wmf]P

G

. It is also preferred to minimize the change when revising G by these constraints so that the existing knowledge is preserved as much as possible.
We propose to solve this problem by adopting Iterative Proportional Fitting Procedure (IPFP). IPFP is a mathematical procedure that iteratively modifies a JPD to satisfy a set of probability constraints while maintaining minimum Kullback-Leibler distance (also known as I-divergence [3, 7, 18]) to the original distribution. The procedure repeatedly iterates over the constraints and modifies the current JPD using one constraint at a time until convergence. One would think our task of BN revision can be accomplished by first applying IPFP to P(x), the JPD of the given BN, and then generate CPTs from the converging JPD. This approach does not work well for at least three reasons. First, the revised JPD resulted from the IPFP, although satisfying all the constraints, may not always be consistent with the interdependencies imposed by the network structure, and thus cannot be used to generate new CPTs properly. Secondly, IPFP converges only if all constraints are consistent with each other, it thus cannot be applied to inconsistent constraints. Thirdly, because in each iteration IPFP modifies every entry of P(x) whose size is exponential in the number of variables in the BN, it becomes computationally intractable with large BNs.  
In this paper, we present our solutions to these problems. The first problem is resolved by algorithm E-IPFP, which extends IPFP by casting the structural invariance as a new probability constraint. The second problem is dealt with by algorithm E-IPFP-SMOOTH, which modifies both the current JPD as well as the constraints in each iteration so that the inconsistency is gradually reduced or smoothened. The third problem is eased by algorithm D-IPFP, which decomposes a global E-IPFP into a set of smaller, local E-IPFP problems, each of which corresponds to one constraint and only involves variables that are directly relevant to those in that constraint.
The rest of this paper is organized as follows. Section 2 states precisely the BN revision problems we intend to solve. Section 3 gives a brief introduction to IPFP, which is the basis of our algorithms. E-IPFP and its convergence proof are given in Section 4. Section 5 describes E-IPFP-SMOOTH for constraints that are inconsistent with each other or with the structure of the given BN. Section 6 presents D-IPFP together with computer experiments demonstrating its effect in saving computing time. Section 7 concludes with comments on related works and suggestions for future research.

2. The Problem 
We adopt the following notations for the rest of this paper. To distinguish variables and their instantiations, we use capital letters X , Y, Z, … for a set of variables, and x an instantiation of X. Individual variables are indicated by subscripts, for example, Xi is a variable in X and xi its instantiation. Capital letters P, Q, R, … are for probability distributions, and bold P, Q, R …. for sets of distributions. A BN of variables X is denoted as G(x), 
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 the set of conditional probability tables (CPTs) of G(x). The JPD of G(x) is
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denotes a set of JPDs sharing the network structure 
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. A probability constraint 
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 denotes a set of constraints, and 
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the set of all JPDs that satisfy all constraints in R. 
Definition 1. A JPD P(x) is said to satisfy constraint 
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We use I-divergence (also known as Kullback-Leibler distance) to measure the distance between two distributions P and Q on X [3, 7, 18]. 
Definition 2. I-divergence from JPD P(x) to Q(x) is defined as
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where 
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 for all P and Q, the equality holds only if P = Q.
Definition 3. Q(x) is said to be an I-projection  of P(x) on the set of JPD 
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The problem of BN revision we are to solve is stated formally as follows. For a given 
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with JPD P(x) and a set of constraints 
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, construct a new BN 
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C1: Constraint satisfaction: 
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C2: Structural invariance: 
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C3: Minimality: 
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 is as small as possible.

Definition 4. A set of constraints 
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Note that, if R is consistent with 
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Definition 5. 
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is called a CPT extracted from 
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For a given P(x) and
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 from P(x) through marginalization. Also note that the JPD 
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3. A Brief Introduction to IPFP
Iterative Proportional Fitting Procedure (IPFP) first appeared in the literature in [6], and shortly after was used as a procedure to estimate cell frequencies in contingency tables under some marginal constraints [4]. Csiszar [3] provided a convergence proof for IPFP based on I-divergence geometry. Vomlel rewrote a discrete version of the proof [18]. IPFP was extended in [1, 2] as Conditional Iterative Proportional Fitting Procedure (CIPFP) to also take conditional distributions as constraints, and the convergence was established. 

IPFP has recently been suggested as a tool for modifying a JPD by probability constraints [18]. Specifically, for a set of constraints 
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 and an initial JPD Q0, the IPFP procedure is carried out by iteratively modifying the JPDs according to the following formula, each time using one constraint
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where 
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 determines the constraint used at iteration k , and m is the number of constraints in R. 

What (3) does at step k is to change 
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4. Algorithm E-IPFP

For a given 
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, our task is to find a JPD 
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is as close to the JPD of G as possible. Since our methods are based on IPFP, C3 will be achieved to a degree by the iterative projections. In the rest of this paper, we will focus on C1 and C2.
One may think that the integration can be done by first applying IPFP to the JPD of G, 
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(a).  A three node BN, its CPTs, and its JPD Q0(x).
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(b)  CPTs extracted from the converging Q1, and the JPD Q’ generated from these CPTs.
Figure 1.  A three node BN and its JPD after IPFP with constraint R1(b, c).

Figure 1(a)  gives a simple BN of three binary variables A, B, and C, its initial CPTs and its JPD 
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 (on the left of Figure 1(b)) is obtained by modifying the original JPD of this BN with constraint R1(b, c) = (0.36, 0.04, 0.34, 0.26) by (3) of IPFP. One can easily verify that 
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New CPTs for A, B, and C (in the middle of Figure 1b) extracted from Q1 according to the network structure give a new JPD 
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 (on the right of Figure 1(b)).  Note that 
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, and it does not satisfy constraint R1 any more. This is because IPFP does not preserve the network structure when modifying the JPD by (3). In particular, note that the conditional independence between B and C, given A, given in the original BN in this example does not hold in 
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 satisfies C2 but fails C1. In other words, IPFP works well if our purpose is to integrate constraints into a JPD but is inadequate if we also want to preserve the variable interdependencies given in the original BN. 
4.1. Structure constraint
To overcome this problem, E-IPFP extends the standard IPFP by treating the BN structure as an additional constraint, called structure constraint, 
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 is the JPD of a BN whose CPTs are extracted from 
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 according to the network structure. Unlike all constraints in R, which are typically low dimensional distributions, this structure constraint is on all variables in X. By (3) and (4), this constraint, when applied at iteration k, changes 
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 meeting C2, the structural invariance requirement. Therefore, when applying IPFP with constraints in R plus
[image: image116.wmf]1

()

m

Rx

+

, both C1 and C2 are satisfied by the converging JPD. The algorithm E-IPFP is stated as follows
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 according to the network structure and then form and apply the structure constraint as given in (4). For practical purpose, convergence of E-IPFP can be determined by testing, after every m+1 iterations (i.e., at the end of Step 2.3), if the difference between 
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 is below some given threshold by some metrics such as I-divergence or total variation. 
4.2. Convergence of E-IPFP

During the iteration process in E-IPFP all constraints remain constant except
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 for all constraints Rj is the basis for IPFP’s convergence [3, 18]. Therefore, the convergence proof for standard IPFP does not apply when the structure constraint is added.

Now we analyze the convergence of E-IPFP. In an earlier work [11] we have shown that, for the standard IPFP on initial JPD 
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, the converging JPD Q* can be obtained by modifying 
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. Therefore, it suffices to prove the convergence of E-IPFP with R containing a single constraint. 
Denote the following:
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Points of Q0 through Q3 are depicted in Figure 2 below.
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Figure 2.  Successive JPDs from E-IPFP

Without loss of generality, the convergence of E-IPFP can be established by showing
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i.e., in successive iterations the I-divergence between the two end-points of the I-projection to 
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Therefore, (5) holds if 
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Denoting
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the convergence of E-IPFP is given by the theorem below. The proof is given in the appendix. 

Theorem 1. For any given BN 
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By Theorem 1, E-IPFP moves alternately between two sequences of JPDs (Q0, Q2,…) and (Q1, Q3,…), which are points in the two sets 
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, and in this case we say E-IPFP converges to a limit cycle of Q2k and Q2k+1.  
When E-IPFP is applied to the example in Figure 1, it converges to a single JPD after 27 iterations with
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. Here each iteration goes through both constraint R1(b, c) and the structure constraint once. The converging JPD and the three CPTs extracted from the converging JPD are given in Figure 3 below. It can be seen that 1) the constraint R1(b,c) is satisfied by 
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, i.e., C1 is satisfied; 2) although R1 only involves variables B and C, all three tables are modified from their original values; and 3) 
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, i.e., C2 is satisfied. The I-divergence from Q* to the JPD of the original BN is 0.5557, which is larger than the I-divergence of 0.1674 for the JPD from standard IPFP (see Figure 1). This is to be expected because one more constraint (the structure constraint) is used in E-IPFP. 
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Figure 3. E-IPFP result for the single constraint R1(b, c) 
5. Inconsistent Constraints 
When constraints are inconsistent either with each other or with the BN structure, there does not exist a JPD that satisfies all constraints and BN structure. Therefore, E-IPFP will not converge to a single point but rather it oscillates between some JPDs each of which satisfies some constraints but not others. At this point, we could stop the attempt to integrate the constraints into the given BN and try to resolve the inconsistency first. Alternatively, we can try to find an approximate solution that satisfies the constraints as much as possible. An easy solution for this would be to take the average of these oscillating JPDs. This may work for IPFP for general JPDs but not for E-IPFP because averaging will destroy the interdependencies given in GS, thus failing C2. We have developed an algorithm SMOOTH to deal with inconsistent constraints for IPFP in general JPD [21, 14]. Now we adopt it to E-IPFP for BNs. 

Note that, both IPFP and E-IPFP only modify the joint distribution 
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 while keeping the constraints in R unchanged. Algorithm SMOOTH differs in that it makes the modification bi-directional: at each step, not only 
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where 
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(8) modifies 
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, a marginal from the JPD resulted from step k – 1. Since 
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can be seen as the result of a sequence of revisions by all other constraints, intuitively, (8) has the effect of pulling 
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, thus reducing or smoothening the inconsistency among the constraints. 
Incorporating SMOOTH into E-IPFP, we have algorithm E-IPFP-SMOOTH: 


[image: image166]
Algorithm E-IPFP-SMOOTH differs from E-IPFP only in Step 2.2 where it modifies the selected constraint by (8) before the I-projection over this constraint is performed. As a result, the BN structure is preserved as with E-IPFP, but the constraints are only approximately satisfied. Also note that the smoothing (Step 2.2) only applies to real constraints in R, not the structure constraint Rm+1. To ensure that the smoothing is unbiased α should be chosen as very close to 1. However, when α is too close to 1, the convergence becomes very slow with a long tail of Qk of little changes. Therefore, when the process gets closer to the convergence point, we can afford to use smaller α for a faster convergence. The best schedule for decreasing
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With large A and small B, α is close to 1 at the beginning (k is small), and close to 0 when k becomes very large. α decreases very slowly at the two ends, but fast in the middle. Parameter A controls how long 
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 is to remain close to 1 (longer for larger A) and B controls how fast 
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decreases in the middle (faster for smaller B). 
To illustrate E-IPFP-SMOOTH, we apply the algorithm to the BN given in Figure 1 with two constraints: R1(b,c) = (0.36, 0.04, 0.34, 0.26)  and R2(a) = (0.1,0.9). Although there exists some JPD Q(a, b, c) that satisfies both R1 and R2, it can be shown that no BN with this given structure can satisfy both. In other words, R = (R1, R2) is inconsistent with the BN structure GS. The running results of this example using both E-IPFP and E-IPFP-SMOOTH with a constant ( = 0.95 are given in Figure 4 below. 
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(a) Three successive JPDs from E-IPFP after 60 iterations
[image: image172.png]T
01213 | 0.8787

A |R2(a) 2 ot A | B [C[ex(ab,c)

T | 01000 T [ o T[T [T oosm AT ¥

F [ os000 F | 077 T T | F 00087 08008 | 0.1952
T F T 002319 F | 03506 | 0.6494

B|CRIGM|[B[C R [ T[F[F][ 00009

T T | 0.3600 T T | 02957 F T T 0.20230

T F | 0.0400 T F | 01095 F T F 0.10572 A T F

F T | 0.3400 F T | 0.3980 F F T 0.37478 0.9612 | 0.0388

F|r[o20 | [F[F[owms F | F | F| owsss F | osses | 03832





(b) Single JPD Q* from E-IPFP-SMOOTH after 80 iterations. 
Figure 4. Results for E-IPFP and E-IPFP-SMOOTH with constraints inconsistent with the network structure.
It can be seen from Figure 4(a) that, because R is inconsistent with GS, E-IPFP does not converge to a single JPD but rather cycles through three JPDs where Q(k) satisfies R1(b, c) but not R2(a), Q(k+1) satisfies R2(a) but not R1(b, c), Q(k+2) satisfies the structure constraint and R2(a) but not R1(b, c). However, when E-IPFP-SMOOTH is applied (Figure 4(b)), it converges to a single JPD Q* (in the middle). It can be verified using the CPTs extracted from Q* on the right of Figure 4(b) that Q* satisfies the structure constraint. On the other hand, since the two constraints are modified in each iteration, Q* does not satisfy them, as can be seen from the small differences between R1(b, c) and Q*(b, c) and between R2(a) and Q*(a) given on the left of Figure 4(b).

E-IPFP-SMOOTH can also be applied to integrate constraints that are inconsistent with each other, as shown in the next example which uses the constraint R1(b, c) as before and a new constraint R3(a, b) = (0.06, 0.14, 0.54, 0.26). Note that the marginals R1(b) = (0.4, 0.6) but R3(b) = (0.6, 0.4), therefore no JPD, let along any BN, can satisfy both R1 and R3. Again, E-IPFP converges to a cycle of three JPDs in 60 iterations and E-IPFP-SMOOTH to a single JPD Q* in 120 iterations. The results are given in Figure 5 below. 
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(a) Three JPDs from E-IPFP after 60 iterations
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(b) Single JPD from E-IPFP-SMOOTH after 120 iterations

Figure 5. Results for E-IPFP and E-IPFP-SMOOTH with inconsistent constraints.
Convergence of SMOOTH with standard IPFP for two constraints that are inconsistent with each other has been established earlier [14]. Now we show E-IPFP-SMOOTH convergence for constraints that are inconsistent with the BN structure GS. Similar to Theorem 1 we show it for a single constraint R(y) that is inconsistent with GS. 
Theorem 2. For any given BN 
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and constraint R(y) inconsistent with GS, E-IPFP-SMOOTH converges to Q* consistent with GS.
Recall that from Theorem 1 we have
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Let 
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Intuitively, since 
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6. D-IPFP 
When 
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by (3) of IPFP, it checks each entry in 
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. The cost of (3) can thus be roughly estimated as 
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, which is huge when |X| is large, making the process computationally intractable for BN of large size. Since by the chain rule of (1) the joint distribution of a BN is a product of distributions of much smaller size (i.e., its CPTs), the cost of E-IPFP may be reduced if we can make use of the interdependencies of the variables represented by the network structure. This has motivated the development of algorithm D-IPFP which decomposes the global E-IPFP, the one involving all variables in X, into a set of local E-IPFP, each for one constraint 
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First we show that algorithm E-IPFP only changes CPTs for variables in the given constraints and their ancestors.  Consider a BN G(x) with JPD 
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 and a single constraint R(y) consistent with GS. Let D1 be the set of all variables in Y and their ancestors and D2 = X \ D1. Variables in D1 and their CPTs form a BN, which is a subnet of G(x), denoted G(d1), with JPD 
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Since 
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is completely determined by CPTs of variables in D1, applying (3) on 
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of G is equivalent to on the subnet G(d1) while keeping CPTs for variables in D2 unchanged. Therefore, when the structure constraint is applied (step 2.3 of E-IPFP), only CPTs for variables in D1 need to be revised. If D1 is a small subset of X, substantial saving can be achieved by doing E-IPFP on the subnet G(d1). However, when D1 is large, the computation is still intractable. To further reduce the complexity, we have developed D-IPFP in which E-IPFP is performed in a further restricted subnet containing only variables in Y and their parents. 
6.1. Algorithm D-IPFP
Let 
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 i.e., S contains parents of all variables in Y except those that are also in Y. We call S the cap of Y. D1 can be partitioned into three parts: Y, S, and
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. (Examples of Y and related S, D1, D2, D3 are given in Subsection 6.2 for a 15 variable BN of Figure 6). For subnet G(d1), S d-separates Y and D3 and thus Y and D3 are independent of each other, given S. In other words, Y is capped by S and, when S is instantiated or its distribution is fixed, any change on Y is shielded from spreading to any variable in D3. By this conditional independence, the JPD for G(d1) can be expressed as
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. Combining this with (12), when R(y) is used at step k we have
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This suggests that we can keep all CPTs for variables not in Y unchanged and use E-IPFP to modify only those for
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is a conditional distribution but Qk-1(y) is not conditioned under s, the first term in (13), is in general not a probability distribution. This can be resolved by normalization
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with normalization factor 
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Take a closer look at this term. Let 
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Comparing (14) and (16), we have 
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, first is R(y), the second is 
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, called cap constraint since it forces the marginal of S to remain to its current value of 
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and thus caps the changes in Y’s CPTs from spreading to variables in D3. For efficiency reason, we suggest using (15) to compute 
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Note that, 1) the JPD after the second modification (using the cap constraint) may not satisfy constraint R(y), and 2) to extract CPTs from 
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, the structure constraint for variables in Y needs to be applied to modify CPTs for variables in Y while keeping CPTs for all other variables constant. This is the core of algorithm D-IPFP, which is given below where the cap of 
[image: image221.wmf]j

Y

 for each constraint
[image: image222.wmf]()

j

j

Ry

, is denoted as 
[image: image223.wmf]j

S

. 

[image: image224]
Step 2.2 in D-IPFP applies two constraints, 
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). Step 2.3 applies the structure constraint for variables in 
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. Note that, each iteration (Step 2 in D-IPFP) only applies the three constraints once, not iterates to convergence for the given 
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 may be changed after applications of other constraints in R if their constraint variables or their caps overlap with that of other constraints.
The convergence of D-IPFP could be established analogous to the convergence proof of E-IPFP (i.e., merging all constraints in R into a single constraint) using equations of (13), (14) and (16). However, the formal proof has been evading us at this moment.

Also note that, D-IPFP is a trade-off between accuracy and computing cost. Because D-IPFP introduces additional constraints 
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for each 
[image: image231.wmf]()

j

j

Ry

in R, the converging distribution from D-IPFP, although satisfying all constraints, would have higher I-divergence to the JPD of the original BN than that of E-IPFP. 
D-IPFP can be easily modified, analogous to Step 2.2 of E-IPFP-SMOOTH, to deal with inconsistent constraints.

6.2. Experiments
To empirically validate the algorithms and to get a sense of how expensive this approach may be, we have conducted experiments of limited scope with an artificially composed BN of 15 discrete variables. The network structure is given in Figure 6 below. For a hypothetical constraint on Y = {F, L, M}, we have S = {E, B, C}, D1 = {F, L, M, E, B, C, A, R, D}, D2 = {H, K, G, N, Q, J }, and D3 = {A, R, D}.
Three sets of 4, 8, and 16 constraints, respectively, are selected for the experiments. These constraints are consistent with each other and with the network structure. The number of variables in a constraint ranges from 1 to 3, the size of the subnet associated with a constraint (
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) ranges from 2 to 8. Therefore a saving in computational time by D-IPFP would be in the order of 
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Figure 6: The network of 15 variables for the experiments comparing performance of E-IPFP and D-IPFP
Both E-IPFP and D-IPFP were run for each of the three sets of constraints. The program is a brute force implementation of the two algorithms without any optimization. The results are given in Table 1 below.
Table 1: Experiment Results

	# of Cons.
	# Iterations

(E-IPFP|D-IPFP)
	Exec. Time 

(E-IPFP|D-IPFP)
	I-divergence

 (E-IPFP|D-IPFP)

	4
	8   
	27
	1264s
	1.93s
	0.08113
	0.27492

	8
	13
	54
	1752s
	11.53s
	0.56442
	0.72217

	16
	120
	32
	13821s
	10.20s
	2.53847
	3.33719


Each of the 6 experimental runs converged to a joint distribution that satisfies all given constraints and is consistent with the network structure. As expected, D-IPFP is significantly faster than E-IPFP with moderately larger I-divergences. The rate of speedup is roughly in the theoretically estimated range (
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), the performance variation among the three sets of constraints is primarily due to the number of iterations each run takes. 
7. Conclusions

In this paper, we developed algorithm E-IPFP that adopts IPFP for the purpose of revising a probabilistic knowledge base represented as a BN by a set of low dimensional probabilistic constraints. The revision is done by only modifying the conditional probability tables of the BN while leaving the network structure intact. E-IPFP is extended to E-IPFP-SMOOTH to deal with the situation when the constraints are inconsistent with each other or with the BN structure. We have also showed that a significant saving in computational cost can be achieved by decomposing the global E-IPFP into local ones with much smaller scale, as described in algorithm D-IPFP. Convergence of these algorithms is also analyzed. Computer experiments of limited scope were conducted to validate the analysis results. 

Several pieces of existing work are particularly relevant to this work, besides those related to the development of the original IPFP and proofs of its convergence that were cited earlier. Vomlel studied in detail how IPFP can be used for probabilistic knowledge integration [18]. However, this works applies IPFP to update JPDs, not to JPDs represented as BNs. Several works have extended IPFP to BN, including Valtorta et al [17, 8] and our earlier works [11, 14]. In these works, IPFP is used to support belief update in BN by a set of soft evidences that are observed simultaneously. Those soft evidences are in the form of low dimensional distributions and are taken as constraints by IPFP style computing.  However, these works were not concerned themselves with revising the BN itself. In other words, the methods developed in those works are BN inference methods, not methods for knowledge integration and revision. 
The issue of inconsistent constraints has been studied by others. It has been reported by others [18, 19] and observed by us that when constraints are inconsistent, IPFP will not converge but oscillate. Vomlel [19] developed an algorithm, named GEMA, to deal with inconsistent constraints when using IPFP to modify a JPD. We have developed algorithm SMOOTH [21, 14] for the belief update in BN by inconsistent constraints. Algorithm E-IPFP-SMOOTH incorporates SMOOTH into E-IPFP for modifying CPTs of a BN. 
We are continuing our investigation of knowledge integration for inconsistent constraints. When constraints are inconsistent with each other, some error or noise must exist in some of these constraints, or the meanings/semantics of some variables take different interpretations in different constraints. It is desirable to take into consideration of the degree of trust or semantic difference one has on each of these constraints during the integration. This can be easily accomplished by allowing different smoothing factor ( for each constraint, with larger ( for those believed to have higher fidelity or closer semantics. Smoothing factors may also be used to deal with another form of inconsistency where the JPD of the revised BN is too far away from the original BN.
Structural inconsistency is a more difficult matter. When constraints from highly trusted sources exhibit significant inconsistency with the given BN structure, it is an indication that the given BN structure is no longer an accurate model of the domain. In such a situation, it is more desirable to modify the BN structure than changing the constraints as E-IPFP-SMOOTH does. The modification of BN structure may involve adding/removing arcs and/or nodes in the original BN. We are actively exploring the idea of adding nodes for “hidden variable”, whose effects on other variables were not considered when the original BN was constructed but whose presence might account for the difference or inconsistency between the constraints and the given BN structure. 
Efficiency of our approach also requires additional investigation. As shown in our experiments, IPFP based methods are in general very expensive. The convergence time of E-IPFP in our experiments with a small BN (15 nodes) and moderate number of constraints is in the order of hours. Even the performance of D-IPFP can be bad if some constraints involve larger number of variables. Complexity can be further reduced if we can divide a large constraint into smaller ones by exploring interdependence between the variables in the constraint (possibly based on the network structure). Vomlel [18] has also studied the behavior of IPFP with input set generated by decomposable generating class. If such input set can be properly ordered, IPFP may converge in a small number of cycles. This kind of input set roughly corresponds to ordering constraints for a BN in such a way that the constraint involving ancestors are applied before those involving descendants, if such order can be determined. Several related works may also be of interest to readers who are concerned with the complexity of IPFP and that of its applications to BN, these include the method proposed for space efficient implementation of IPFP [5], methods for decomposing a large BN into small BNs [9, 20], and methods for effective approximation of IPFP with BN junction trees [8, 10, 16].
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where the last inequality comes from the fact that I-divergence is always non-negative.
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Let these two parts be called
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First, note that since x0 is a root note, its CPT (i.e., its marginal) will not be changed when Q2 is generated from Q1 by applying the structure constraint, so Q2(x0) = Q1(x0). Substituting Q2(x0) by Q1(x0) we have
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Combining (A2), (A3), (A5) and (A7), 
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Proof of Theorem 2.

We prove the theorem by showing that the inequality (11) holds. By (3) and (10),
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where the last equality comes from 
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Also note that the above is true for all pairs 
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 Since Q2k are consistent with GS, the algorithm converges to a single JPD consistent with GS.                                                                    (                                                                                 
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E-IPFP(� EMBED Equation.3  ���, � EMBED Equation.3  ���) 


1. � EMBED Equation.3  ��� where � EMBED Equation.3  ���;


2. Starting with k = 1, repeat the following steps until convergence 


   2.1. j = ((k-1) mod (m+1)) + 1;


   2.2. if  j < m+1


             � EMBED Equation.3  ���


    2.3. else  


               extract � EMBED Equation.3  ���from � EMBED Equation.3  ��� according to� EMBED Equation.3  ���;


               � EMBED Equation.3  ���;


    2.4. k = k+1;


3. return � EMBED Equation.3  ��� with � EMBED Equation.3  ���; 





      





E-IPFP-SMOOTH(� EMBED Equation.3  ���, � EMBED Equation.3  ���)


� EMBED Equation.3  ��� where � EMBED Equation.3  ���;


Starting with k = 1, repeat the following procedure until convergence 


      2.1. j = ((k-1) mod (m+1)) + 1;


if  j < m+1


      � EMBED Equation.DSMT4  ���


               � EMBED Equation.3  ���


    2.3. else  


              extract � EMBED Equation.3  ���from � EMBED Equation.3  ���according to � EMBED Equation.3  ���;


              � EMBED Equation.3  ���;


   2.4. k = k+1;


 3.  return � EMBED Equation.3  ��� with � EMBED Equation.3  ���;





D-IPFP(� EMBED Equation.3  ���, � EMBED Equation.3  ���) 


� EMBED Equation.3  ��� where � EMBED Equation.3  ���;


Starting with k = 1, repeat the following procedure until convergence 


   2.1. j = ((k-1) mod (m+1)) + 1;


  � EMBED Equation.3  ���


  � EMBED Equation.3  ���


   2.4. k = k+1;


return � EMBED Equation.3  ��� with � EMBED Equation.3  ���; 
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