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Abstract

Conversations are a useful means of structuring communicative in-

teractions among agents. The value of a conversation-based approach is

largely determined by the conversational model it uses. Finite State Ma-

chines, used heavily to date for this purpose, are not su�cient for complex

agent interactions requiring a notion of concurrency. We propose the use

of Colored Petri Nets as a model underlying a language for conversation

speci�cation. This carries the relative simplicity and graphical represen-

tation of the former approach, along with greater expressive power and

support for concurrency. The construction of such a language, Protolin-

gua, is currently being investigated within the framework of the Jackal

agent development environment.

1 Introduction

Conversations are a useful means of structuring communicative interactions
among agents, by organizing messages into relevant contexts and providing a
common guide to all parties. The value of a conversation-based approach is
largely determined by the conversational model it uses. The presence of an
underlying formal model supports the use of structured design techniques and
formal analysis, greatly facilitating development, composition and reuse. Most
conversation-modeling projects to date have used or extended �nite state ma-
chines (FSM) in various ways, and for good reason. FSMs are simple, depict the

ow of action/communication in an intuitive way, and are su�cient for many
sequential interactions. However, they are not adequately expressive to model
more complex interactions, especially those with some degree of concurrency.
Colored Petri Nets (CPN) [9, 10, 11] are a well known and established model of
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concurrency, and can support the expression of a greater range of interaction.
In addition, CPNs, like DFAs, have an intuitive graphical representation, are
relatively simple to implement, and are accompanied by a variety of techniques
and tools for formal analysis and design.

We have explored the use of model-based conversation speci�cation in the
context of multi agent system (MAS) support for manufacturing integration [17].
Agents in our system are constructed using the Jackal agent development plat-
form [6], and communicate using the KQML agent communication language.
Jackal, primarily a tool for communication, supports conversation-based mes-
sage management through the use of abstract conversation speci�cations, which
are interpreted relative to some appropriate model. Conversation speci�cations,
or protocols, can describe anything from simple message/acknowledgment in-
teractions to complex negotiations.

In the next section, we present a motivation for using conversations to or-
ganize agent interaction. Next, we present CPNs, the model we propose to use,
in more detail. Following this, we discuss the implementation of these ideas
in a real MAS framework. Finally, we present two examples of CPN use: the
�rst, speci�cation of a simple KQML register conversation, and the next, a more
sophisticated negotiation interaction.

2 Conversation-Based Interaction Protocols

The study of agent communication languages (ACLs) is one of the pillars of
current agent research. KQML and the FIPA ACL are the leading candidates
as standards for specifying the encoding and transfer of messages among agents.
While KQML is good for message-passing among agents, the message-passing
level is not actually a very good one to exploit directly in building a system of
cooperating agents. After all, when an agent sends a message, it has expecta-
tions about how the recipient will respond to the message. Those expectations
are not encoded in the message itself; a higher-level structure must be used to
encode them. The need for such conversation policies is increasingly recognized
by the KQML community, and has been formally recognized in the latest FIPA
draft standard [8, 7].

It is common in KQML-based systems to provide a message handler that
examines the message performative to determine what action to take in response
to the message. Such a method for handling incoming messages is adequate for
very simple agents, but breaks down as the range of interactions in which an
agent might participate increases. Missing from the traditional message-level
processing is a notion of message context.

A notion growing in popularity is that the unit of communication between
agents should be the conversation. A conversation is a pattern of message ex-
change that two (or more) agents agree to follow in communicating with one
another. In e�ect, a conversation is a communications protocol, albeit one that
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may be initiated through negotiation, and may be short-lived relative to the way
we are accustomed to thinking about protocols. A conversation lends context
to the sending and receipt of messages, facilitating interpretation that is more
meaningful. The adoption of conversation-based communication carries with
it numerous advantages to the developer. There is a better �t with intuitive
models of how agents will interact than is found in message-based communica-
tion. There is also a closer match to the way that network research approaches
protocols, which allows both theoretical and practical results from that �eld to
be applied to agent systems. Since conversation structure is separated from the
actions to be taken by an agent engaged in the conversation, this facilitates the
reuse of conversations in multiple contexts.

To date, little work has been devoted to the problem of conversation speci�-
cation and implementation for mediated architectures. Strides must be taken in
the toward facilitating the construction and reuse of conversations. An ontology
of conversations and conversation libraries would advance this goal, as would
solutions to the following questions:

1. Conversation speci�cation: How can conversations best be described so
that they are accessible both to people and to machines?

2. Conversation sharing: How can an agent use a conversation speci�cation
standard to describe the conversations in which it is willing to engage, and
to learn what conversations are supported by other agents?

3. Conversation aggregation: How can sets of conversations be used as agent
`APIs' to describe classes of capabilities that de�ne a particular service?

2.1 Conversation Speci�cation

A speci�cation of a conversation that could be shared among agents must con-
tain several kinds of information about the conversation and about the agents
that will use it. First, the sequence of messages must be speci�ed. Tradition-
ally, deterministic �nite-state automata (DFAs) have been used for this purpose;
DFAs can express a variety of behaviors while remaining conceptually simple.
For more sophisticated interactions, however, it is desirable to use a formal-
ism with more support for concurrency and veri�cation. This is the motivation
behind our investigation of CPNs as an alternative mechanism for more sophis-
ticated conversation speci�cation. Next, the set of roles that agents engaging
in a conversation may play must be enumerated. Many conversations will be
dialogues, and will specify just two roles; however conversations with more than
two roles are equally important, representing the coordination of communication
among several agents in pursuit of a single common goal.

DFAs and roles dictate the syntax of a conversation, but say nothing about
the conversation's semantics. The ability of an agent to read a description of a
conversation, then engage in such a conversation, demands that the description
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specify the conversation's semantics. To be useful though, such a speci�cation
must not rely on a full-blown, highly expressive knowledge representation lan-
guage. We believe that a simple ontology of common goals and actions, together
with a way to relate entries in the ontology to the roles, states, and transitions
of the conversation speci�cation, will be adequate for most purposes. This ap-
proach sacri�ces expressiveness for simplicity and ease of implementation. It is
nonetheless perfectly compatible with attempts to relate conversation policy to
the semantics of underlying performatives, as proposed for example by [3].

These capabilities will allow the easy speci�cation of individual conversa-
tions. To develop systems of conversations though, developers must have the
ability to extend existing conversations through specialization and composi-
tion. Specialization is the ability to create new versions of a conversation that
are more detailed than the original version; it is akin to the idea of subclass-
ing in an object-oriented language. Composition is the ability to combine two
conversations into a new, compound conversation. Development of these two
capabilities will entail the creation of syntax for expressing a new conversation
in terms of existing conversations, and for linking the appropriate pieces of the
component conversations. It will also demand solution of a variety of technical
problems, such as naming con
icts, and the merger of semantic descriptions of
the conversations.

2.2 Conversation Sharing

A standardized conversation language, as proposed above, dictates how conver-
sations will be represented; however, it does not say how such representations
are shared among agents. While the details of how conversation sharing is ac-
complished are more mundane than those of conversation representation, they
are nevertheless crucial to the viability of dynamic conversation-based systems.
Three questions present themselves:

� How can an agent map from the name of a conversation to the speci�cation of

that conversation?

� How can one agent communicate to another the identity of the conversation it

is using?

� How can an agent determine what conversations are handled by a service provider

that does not yet know of the agent's interest?

2.3 Conversations Sets as APIs

The set of conversations in which an agent will participate de�nes an interface
to that agent. Thus, standardized sets of conversations can serve as abstract
agent interfaces (AAIs), in much the same way that standardized sets of function
calls or method invocations serve as APIs in the traditional approach to system-
building. That is, an interface to a particular class of service can be speci�ed

4



by identifying a collection of one or more conversations in which the provider
of such a service agrees to participate. Any agent that wishes to provide this
class of service need only implement the appropriate set of conversations. To be
practical, a naming scheme will need to be developed for referring to such sets of
conversations, and one or more agents will be needed to track the development
and dissolution of particular AAIs. In addition to a mechanism for establishing
and maintaining AAIs, standard roles and ontologies, applicable to a variety of
applications, will need to be created.

There has been little work on communication languages from a practitioner's
point of view. If we set aside work on network transport protocols or protocols
in distributed computing (e.g., CORBA) as being too low-level for the purposes
of intelligent agents, the remainder of the relevant research may be divided
into two categories. The �rst deals with theoretical constructs and formalisms
that address the issue of agency in general and communication in particular, as
a dimension of agent behavior (e.g., AOP [19]). The second addresses agent
languages and associated communication languages that have evolved somewhat
to applications (e.g., TELESCRIPT [20]). In both cases, the bulk of the work
on communication languages has been part of a broader project that commits
to speci�c architectures.

Agent communication languages like KQML provide a much richer set of in-
teraction primitives (e.g., KQML's performatives), support a richer set of com-
munication protocols (e.g., point-to-point, brokering, recommending, broadcast-
ing, multicasting, etc.), work with richer content languages (e.g., KIF), and are
more readily extensible than any of the systems described above. However, as
discussed above, KQML lacks organization at the conversation level that lends
context to the messages it expresses and transmits. Limited work has been done
on implementing conversations for software agents, and almost none has been
done on expressing those conversations. As early as 1986, Winograd and Flo-
res [21] used state transition diagrams to describe conversations. The COOL
system [2] has perhaps the most detailed current �nite state automata model
to describe agent conversations. Each arc in a COOL state transition diagram
represents a message transmission, a message receipt, or both. One consequence
of this policy is that two di�erent agents must use di�erent automata to engage
in the same conversation. COOL also uses an :intent slot to allow the recipient
to decide which conversation structure to use in understanding the message.
This is a simple way to express the semantics of the conversation, though it is
not su�cient for sophisticated reasoning about and sharing of conversations.

Other conversationmodels that have been developed include those of Parunak
[16], Chauhan [4], who uses COOL as the basis for his multi-agent development
system, Kuwabara et al. [12], who add inheritance to conversations, Nodine
and Unruh [15], who use conversation speci�cations to enforce correct con-
versational behavior by agents, Bradshaw [3], who introduces the notion of
a conversation suite as a collection of commonly-used conversations known by
many agents, and Labrou [14], who uses de�nite clause grammars to specify
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conversations. While each of these makes contributions to our general under-
standing of conversations, none show how descriptions of conversations might
be shared by agents and used directly by them in implementing conversations.

2.4 De�ning Common Agent Services via Conversations

A signi�cant impediment to the development of agent systems is the lack of
basic standard agent services that can be easily built on top of the conversa-
tion architecture. Examples of such services are: name and address resolution;
authentication and security services; brokerage services; registration and group
formation; message tracking and logging; communication and interaction; vi-
sualization; proxy services; auction services; work
ow services; coordination
services; and performance monitoring services. Services such as these have
typically been implemented as needed in individual agent development environ-
ments. Two such examples are an agent name server and an intelligent broker.

3 Colored Petri Nets

Petri Nets (PN), or Place Transition Nets, are a well known formalism for
modeling concurrency. A PN is a directed, connected, bipartite graph in which
each node is either a place or a transitions. Tokens occupy places. When there is
at least one token in every place connected to a transition, we say that transition
is enabled. Any enabled transitionmay �re, removing one token from every input
place, and depositing one token in each output place. Petri nets have been used
extensively in the analysis of networks and concurrent systems. For a more
complete introduction, see [1].

Colored Petri Nets (CPN) di�er from PNs in one signi�cant respect; tokens
are not simply blank markers, but have data associated with them. A token's
color is a schema, or tuple de�nition. Places are then sets of tuples, called color
sets. Arcs specify the schema they carry, and can also specify basic boolean
conditions. Speci�cally, arcs exiting a place may have an associated boolean
function, called a guard, which enforces some constraints on tuple elements.
Likewise, arcs entering a place may have an associated transformation function,
which maps an actions output to some other tuple. This notation is demon-
strated in examples below. CPNs are formally equivalent to traditional PNs;
however, the richer notation makes it possible to model interactions in CPNs
where it would be impractical to do so with PNs.

CPNs have great value for conversational modeling, in that:

� They are relatively simple formal model.

� They have a graphical representation.

� They support concurrency, which is necessary for many non-trivial inter-
actions.
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� They are well researched and understood, and have been applied to many
real-world applications.

� Many tools and techniques exist for the design and analysis of CPN-based
systems.

4 Putting Colored Petri Nets to Work

Currently, we are investigating the value of CPNs in a general framework for
agent interaction speci�cation. Within this scheme, agents use a common lan-
guage, Protolingua, for manipulating CPN-based conversations. Protolingua
itself is very sparse, and relies on the use of a basic interface de�nition language
(IDL) for the association of well known functions and data types with a CPN
framework. Agents use Protolingua interpreters to execute various protocols.
Protolingua has been kept simple in order to facilitate the porting of interpreters
to most or all platforms.

One advantage to this approach is that a variety of interpreter implementa-
tions may be used, and the agent may trade resources for conversational 'power'.
A very simple CPN interpreter may be able to e�ciently execute very small or
simple protocols; an agent may chose to use this in most interactions, while
employing more expensive and e�cient interpreters for more complex negotia-
tions. In addition to using direct CPN simulators, CPN speci�cations have a
very natural embedding in a general rule-based framework.

To clarify the relationship between agents, interpreters, and protocols, let us
assume that a Java-based agent would like to converse with another agent, and
that it has determined, through assumption, negotiation, or other means, that it
needs to use protocol xyz. It can obtain the declarative speci�cation for xyz, if
it does not already have it, from the other agent or from some third party; let's
say a protocol server identi�ed through a broker. Xyz contains the wire-frame
speci�cation of the protocol (arcs, places, transition), plus schema and functions
given in the IDL. The agent can then obtain (as it did the speci�cation) the
executable attachments and type speci�cations appropriate for its interpreter
(in this case, Java classes and associated methods), and then use the protocol
to engage the other agent.

This very CORBA-like approach allows the use of very lightweight, universal
interpreters without restricting the expressiveness of the protocols used. If types
and actions are appropriately speci�ed, they should be suitable for analysis, or
translation into some analyzable form. For example, we are using DesignCPN,
a tool from Aarhus University, Denmark, for high level design and analysis of
protocols. This system uses an extension of ML, CPN-ML, as its modeling
language. We plan to translate developed protocols into Protolingua and Java
extensions, and restrict modi�cation in such a way that the protocols can be
translated back into CPN-ML for additional analysis.
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5 Example: Conversation Protocol

From its inception, Jackal has used JDFA, a loose Extended Finite State Ma-
chine (EFSM), to model conversations [6, 18]. The base model is a Deterministic
Finite State Automaton (DFA), but the tokens of the system are messages and
message templates, rather than simply characters from an alphabet. Messages
match template messages (with arbitrary match complexity) to determine arc
selection. A local read/write store is available to the machine.

CPNs make it possible to formalize much of the extra-model extensions of
DFAs. To make this concrete, we take the example of a standard JDFA repre-
sentation of a KQML register conversation, as speci�ed in [13], and reformulate
it as a CPN. The graphic JDFA representation is depicted in Figure 1.

(reply)

(sorry)

(error)(register)
Start Register Done

Figure 1: Diagrammatic Representation of KQML Register Conversation in
JDFA

There are a number of ways to formulate any conversation, depending on
the requirements of the user. This conversation has only one �nal state, but in
some situations, it may be desirable to have the �nal state of the conversation
denote the result of the interaction.

Some aspects of the model which are implicit under the DFA model must
be made explicit under CPNs. The DFA allows a system to be in one state at
a time, and to progress from one state to the next. Hence, the point at which
an input is applied is clear, and that aspect is omitted from the diagrammatic
representation. Since a CPN can always accept input at any location, we must
make that explicit in the model.

We will use an abbreviated message which contains the following compo-
nents, listed with their associated variable names: performative(p), sender(s),
receiver(r), reply-with(id), in-reply-to(re), and content(c).

We denote the two receiving states as places of the same names (Figure 2).
Places here represent receipt locations for messages. As no message is ever
received in the initial state, we do not include a corresponding place. Instead,
we use a a source place. This is implicit in the DFA representation. It must
serve as input to every action, and could represent the input pool for the entire
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collection of conversations, or just this one. Note that the source has links to
every place, but there is no path corresponding to the 
ow of state transitions,
as in the DFA-based model.

The match conditions on the various arcs of the DFA we represent by actions
preceding each existing place. Note that this one-to-one correspondence is not
necessary. Actionsmay conditionally place tokens in di�erent places, and several
actions may concurrently deposit tokens in the same place.

DoneRegister M2M1In

<p,s,r,id,re,c>

<p,s,r,id,re,c> <p,s,r,id,re,c><p,s,r,id,re,c>

Figure 2: Source feeds all states in the model.

Various constants constrain the actions of the net, such as performative.
These are typical represented as color sets in CPN, rather than hard-coded
constraints. Other constraints are implemented as guards. The �rst, and most
signi�cant, ensures that the message sequence is observed, as prescribed by the
message IDs. This not only assures that messages are delivered to the correct
location, but in order, and only once. Not all conversations follow a simple,
linear thread, however. We might, for example, want to send a message and
allow an arbitrary number of asynchronous replies before responding (as is the
case in a typical subscribe). In this case, we allow IDs to collect in a place, and
remove them only when replies to them will no longer be accept. Finally, places
interposed between actions implement global constraints, such as alternating
sender and receiver.

We add a place after the �nal message transaction to denote some arbitrary
action not implemented by the conversation protocol (that is, not by an arc-
association action). This may be some event internal to the interpreter, or a
signal to the executing agent itself. A procedural attachment at this location
would not violate the conversational semantics as long as it did not in turn
in
uence the course of the conversation.

This CPN is generally equivalent to the JDFA depiction above. In addition
to modeling what is present in the JDFA, it also models mechanisms implicit
in the machinery, such as message ordering. Also, the JDFA incorporates much
which is beyond the underlying formal DFA model, and thus cannot be subjected
to veri�cation. The CPN captures all of the same mechanisms within the formal
model.

9



DoneRegister M2M1In

<p,s,r,id,re,c>

<p,s,r,id,re,c> <p,s,r,id,re,c><p,s,r,id,re,c>

register
reply,
error,
sorry

p
p

I re
id

S

R

s

s
r

r
if p=reply action1
else if p=error action2
else action3 A

color In = with p | s | r | id | re | l | o | c
color Register = In
color Done = In
color S = with s
color R = with r
color I = with id
color A = with a

Figure 3: The �nal CPN speci�cation, with complete notation.

6 Example: Negotiation Protocol

In this section we present a simple negotiation protocol proposed in [5]. The
CPN diagram in Figure 4 describes the pair-wise negotiation process in a simple
MAS, which consists of two functional agents bargaining for goods. The mes-
sages used are based on the FIPA ACL negotiation performative set, extended
with �ve new performatives: accept-proposal, CFP, proposal, reject-proposal
and terminate.

The diagram depicts three places places: Inactive, Waiting, and Thinking,
which re
ect the states of the agents during a negotiation process1. Both agents
in this simple MAS have similar architecture, di�ering primarily in the number
of places/states. This di�erence arises from the roles they play in the negotiation
process. The agent that begins the negotiation, called the buyer agent, which is
shown on the left side of the diagram, has the responsibility of handling message
failures. For this, it has an extra 'wait' state, and timing machinery not present
in the other agent. For simplicity, some constraints have been omitted from this
diagram; for example, constraints on message types, as depicted in the previous
example.

In this system, both agents are initially waiting in the Inactive places. The
buyer initiates the negotiation process by sending a call for proposals (CFP) to
some seller, and its state changes from Inactive to Waiting. The buyer is waiting

1It is not always the case with such a model that speci�c nodes correspond to states of the

system or particular agents. More often the state of the system is described by the combined

state of all places.
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Figure 4: Pair-wise negotiation process for a MAS constituted of two functional
agents.

for a response ( proposal, accept-proposal, reject-proposal or terminate). On
receipt, its state changes from Inactive to Thinking, at which point it must
determine how it should reply. Once it replies, completing the cycle, it returns
to the Inactive state. We have inserted a rudimentary timeout mechanism which
uses a delay function to name messages which have likely failed in the Timeout
place. This enables the exception action to stop the buyer from waiting, and
forward information about this exception to the agent in the Thinking state.

Note that this protocol models concurrent pairwise interactions between a
buyer and any number of sellers.

7 Summary

The use of conversation policies greatly facilitates the development of systems
of interacting agents. While FSMs have proven their value over time in this en-
deavor, we feel that inherent limitations necessitate the use of a model support-
ing concurrency for the more complex interactions now arising. CPNs provide
many of the bene�ts of FSMs, while allowing greater expression and concur-
rency. Using the Jackal agent development platform, we hope to demonstrate
the value of CPNs as the underlying model for a protocol speci�cation language,
Protolingua.
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