
GPU Shading and Rendering:
Introduction & Graphics Hardware

Marc Olano

Computer Science and Electrical Engineering
University of Maryland, Baltimore County

SIGGRAPH 2005



Schedule

Shading Technolgy

8:30 Intro/Hardware (Olano)

9:25 Compilers (Bleiweiss)

Shading Languages

10:30 GLSL (Olano)

10:55 Cg (Kilgard)

11:20 HLSL (Sander)

11:45 Sh (McCool)

GPU Rendering

1:45 Rendering
Algorithms (Hart)

2:35 GPU Production
Rendering (Gritz)

Hardware Systems

3:45 ATI (Sander)

4:25 NVIDIA (Kilgard)

5:05 Panel Q&A (all)



Part I

Introdution



What is a GPU?

• Graphics Processing Unit
• Graphics accelerator
• Parallel processing unit

• We’re doing graphics, what is it good for?
• Better real-time graphics
• Faster non-real-time graphics



What is a GPU?

• Graphics Processing Unit
• Graphics accelerator
• Parallel processing unit

• We’re doing graphics, what is it good for?
• Better real-time graphics
• Faster non-real-time graphics



What is a GPU?

• Graphics Processing Unit
• Graphics accelerator
• Parallel processing unit

• We’re doing graphics, what is it good for?
• Better real-time graphics
• Faster non-real-time graphics



What is a GPU?

• Graphics Processing Unit
• Graphics accelerator
• Parallel processing unit

• We’re doing graphics, what is it good for?
• Better real-time graphics
• Faster non-real-time graphics



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



Some examples

• More realistic appearance
• Bump mapping, Anisotropic, Precomputed radiance transfer,

...

• Non-realistic appearance
• Cartoon, Sketch, Illustration, ...

• Animated appearance
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How is this possible?

• GPUs are programmable!
• Per-vertex programs
• Per-fragment programs
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• Tons of machine-specific differences

• Answer:
• Simple model of machine
• High-level language for procedures
• Well-defined procedure input & output
• System connects procedures
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• Block interfaces well

defined
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• System handles
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Hardware
Model

Vertex

Fragment Texture

• Vertex shading
• Transform

• Procedural transformation

• Skinning

• Shade

• Per-vertex shading

• Computed texture

coordinates
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Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Texture

• Render to texture
• Rendered shadow &

environment maps
• Multi-pass fragment shading

[Proudfoot et al., 2001]



Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Buffers

• Render to vertex array / buffer
objects

• Geometry images
[Gu et al., 2002]

• Multi-pass vertex shading
• Merge vertex & fragment

capabilities
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Noise Characteristics

• Random
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• Same argument always produces same value
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• Most energy in one octave (e.g. between f & 2f)

1 2 3 4 5 6 7



What is this Noise? Perlin noise Modifications

Noise Characteristics

• Random
• No correlation between distant values

• Repeatable/deterministic
• Same argument always produces same value

• Band-limited
• Most energy in one octave (e.g. between f & 2f)

1 2 3 4 5 6 7



What is this Noise? Perlin noise Modifications

Noise Characteristics

• Random
• No correlation between distant values

• Repeatable/deterministic
• Same argument always produces same value

• Band-limited
• Most energy in one octave (e.g. between f & 2f)

1 2 3 4 5 6 7



What is this Noise? Perlin noise Modifications

Gradient Noise
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• Perlin Improved noise [Perlin, 2002]
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1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original Improved



What is this Noise? Perlin noise Modifications

Gradient Noise

• Original Perlin noise [Perlin, 1985]

• Perlin Improved noise [Perlin, 2002]

• Lattice based
• Value=0 at integer lattice points
• Gradient defined at integer lattice
• Interpolate between

• 1/2 to 1 cycle each unit

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original Improved



What is this Noise? Perlin noise Modifications

Gradient Noise

• Original Perlin noise [Perlin, 1985]

• Perlin Improved noise [Perlin, 2002]

• Lattice based
• Value=0 at integer lattice points
• Gradient defined at integer lattice
• Interpolate between

• 1/2 to 1 cycle each unit

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original Improved



What is this Noise? Perlin noise Modifications

Value Noise
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• Value defined at integer lattice points
• Interpolate between

• At most 1/2 cycle each unit
• Significant low-frequency content
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What is this Noise? Perlin noise Modifications

Hardware Noise

• Value noise
• PixelFlow [Lastra et al., 1995]
• Perlin Noise Pixel Shaders [Hart, 2001]
• Noise textures

• Gradient noise
• Hardware [Perlin, 2001]
• Complex composition [Perlin, 2004]
• Shader implementation [Green, 2005]
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What is this Noise? Perlin noise Modifications

Noise Details

• Subclass of gradient noise
• Original Perlin
• Perlin Improved
• All of our proposed modifications
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Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)
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Gradient

• Random vector at each lattice point is a function of ~pi

g(~pi )

• A function with that gradient

grad(~p) = g(~pi ) • ~pf

= g x(~pi ) ∗ x + g y (~pi ) ∗ y + g z(~pi ) ∗ z
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• Interpolate nearest 2n gradient functions
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• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)
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~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Hash

• n-D gradient function built from 1D components

g(~pi )

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash
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Outline

What is this Noise?

Perlin noise

Modifications
Corner Gradients
Factorization
Hash



What is this Noise? Perlin noise Modifications

Gradient Vectors of n-D Noise

• Original: on the surface of a n-sphere
• Found by hash of ~pi into gradient table

• Improved: at the edges of an n-cube
• Found by decoding bits of hash of ~pi
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What is this Noise? Perlin noise Modifications

Gradients of noise(x,y,0) or noise(x,0)

• Why?
• Cheaper low-D noise matches slice of higher-D
• Reuse textures (for full noise or partial computation)

• Original: new short gradient vectors

• Improved: gradients in new directions
• Possibly including 0 gradient vector!
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• Why?
• Cheaper low-D noise matches slice of higher-D
• Reuse textures (for full noise or partial computation)

• Original: new short gradient vectors
• Improved: gradients in new directions

• Possibly including 0 gradient vector!



What is this Noise? Perlin noise Modifications

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!
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Corner Gradients

• Simple binary selection from hash bits
±x ,±y ,±z

• Perlin mentions “clumping” for corner gradient selection
• Not very noticeable in practice
• Already happens in any integer plane of improved noise
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Corner Gradients

• Simple binary selection from hash bits
±x ,±y ,±z

• Perlin mentions “clumping” for corner gradient selection
• Not very noticeable in practice
• Already happens in any integer plane of improved noise

Edge Centers Corner



What is this Noise? Perlin noise Modifications

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,+ ∗ z
+ ∗ (z − 1))
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• Factor into lower-D textures
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What is this Noise? Perlin noise Modifications

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,xy-term(Z0)+xy-term(Z0) ∗ z
xy-term(Z1)+xy-term(Z1) ∗ (z − 1))



What is this Noise? Perlin noise Modifications

Factorization Details

noise(~p) = flerp(z ,zconst(~px , ~py , Z0)+zgrad(~px , ~py , Z0) ∗ z ,

zconst(~px , ~py , Z1)+zgrad(~px , ~py , Z1) ∗ (z − 1))

• With nested hash,

zconst(~px , ~py , Z0)= zconst(~px , ~py + hash(Z0))
zgrad (~px , ~py , Z0)= zgrad (~px , ~py + hash(Z0))

• With corner gradients, zconst = noise!
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What is this Noise? Perlin noise Modifications

Perlin’s Hash

• 256-element permutation array
• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise
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Alternative Hash

• Many choices; I kept 1D chaining

• Desired features
• Low correlation of hash output for nearby inputs
• Computable without lookup

• Use a random number generator?
• Seed
• Successive calls give uncorrelated values
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What is this Noise? Perlin noise Modifications

Random Number Generator Hash

• Hash argument is seed
• Most RNG are highly correlated for nearby seeds

• Hash argument is number of times to call
• Most RNG are expensive (or require n calls) to get nth number
• Should noise(30) be 30 times slower than noise(1)?

permute table hash using seed=X
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Random Number Generator Hash

• Hash argument is seed
• Most RNG are highly correlated for nearby seeds

• Hash argument is number of times to call
• Most RNG are expensive (or require n calls) to get nth number
• Should noise(30) be 30 times slower than noise(1)?

permute table hash using X th random number
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Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

523*527
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Blum-Blum Shub
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M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...
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Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

61
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Modified Noise

• Square and mod hash
• M = 61

• Corner gradient selection
• One 2D texture for both 1D and 2D

• Factor
• Construct 3D and 4D from 2 or 4 2D texture lookups
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Comparison

Perlin original Perlin improved

Corner gradients Corner+Hash
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Using Noise

3D noise 3D turbulence

Wood Marble
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