
GPU Shading and Rendering:
Introduction & Graphics Hardware

Marc Olano

Computer Science and Electrical Engineering
University of Maryland, Baltimore County

SIGGRAPH 2005



Schedule

Shading Technolgy

8:30 Intro/Hardware (Olano)

9:25 Compilers (Bleiweiss)

Shading Languages

10:30 GLSL (Olano)

10:55 Cg (Kilgard)

11:20 HLSL (Sander)

11:45 Sh (McCool)

GPU Rendering

1:45 Rendering
Algorithms (Hart)

2:35 GPU Production
Rendering (Gritz)

Hardware Systems

3:45 ATI (Sander)

4:25 NVIDIA (Kilgard)

5:05 Panel Q&A (all)



Part I

Introdution



What is a GPU?

• Graphics Processing Unit
• Graphics accelerator
• Parallel processing unit

• We’re doing graphics, what is it good for?
• Better real-time graphics
• Faster non-real-time graphics



What is a GPU?

• Graphics Processing Unit
• Graphics accelerator
• Parallel processing unit

• We’re doing graphics, what is it good for?
• Better real-time graphics
• Faster non-real-time graphics



What is a GPU?

• Graphics Processing Unit
• Graphics accelerator
• Parallel processing unit

• We’re doing graphics, what is it good for?
• Better real-time graphics
• Faster non-real-time graphics



What is a GPU?

• Graphics Processing Unit
• Graphics accelerator
• Parallel processing unit

• We’re doing graphics, what is it good for?
• Better real-time graphics
• Faster non-real-time graphics



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



What is Shading?

• What color are the pixels

• Programmable
• Flexible Appearance
• Arbitrary computation

• Procedural
• Simple procedures
• High-level language



Some examples

• More realistic appearance
• Bump mapping, Anisotropic, Precomputed radiance transfer,

...

• Non-realistic appearance
• Cartoon, Sketch, Illustration, ...

• Animated appearance
• Skinning, Water, Clouds, ...

• Visualization
• Data on surfaces, Volume rendering, ...



Some examples

• More realistic appearance
• Bump mapping, Anisotropic, Precomputed radiance transfer,

...

• Non-realistic appearance
• Cartoon, Sketch, Illustration, ...

• Animated appearance
• Skinning, Water, Clouds, ...

• Visualization
• Data on surfaces, Volume rendering, ...



Some examples

• More realistic appearance
• Bump mapping, Anisotropic, Precomputed radiance transfer,

...

• Non-realistic appearance
• Cartoon, Sketch, Illustration, ...

• Animated appearance
• Skinning, Water, Clouds, ...

• Visualization
• Data on surfaces, Volume rendering, ...



Some examples

• More realistic appearance
• Bump mapping, Anisotropic, Precomputed radiance transfer,

...

• Non-realistic appearance
• Cartoon, Sketch, Illustration, ...

• Animated appearance
• Skinning, Water, Clouds, ...

• Visualization
• Data on surfaces, Volume rendering, ...



What is Rendering?

• The rest of the problem!

• In our case, using GPU for other than polygon rendering
• Curved surfaces
• Ray tracing
• Point based rendering
• ...



What is Rendering?

• The rest of the problem!

• In our case, using GPU for other than polygon rendering
• Curved surfaces
• Ray tracing
• Point based rendering
• ...



What is Rendering?

• The rest of the problem!

• In our case, using GPU for other than polygon rendering
• Curved surfaces
• Ray tracing
• Point based rendering
• ...



Non-Real Time vs. Real-Time

Real-Time Non-Real-Time

Tens of frames per second Seconds to hours per frame
Thousand instruction shaders Thousands line shaders
Limited computation, texture,
memory, ...

“Unlimited” computation,
texture, memory, ...



Non-Real Time vs. Real-Time

Real-Time Non-Real-Time

Tens of frames per second Seconds to hours per frame
Thousand instruction shaders Thousands line shaders
Limited computation, texture,
memory, ...

“Unlimited” computation,
texture, memory, ...



Non-Real Time vs. Real-Time

Real-Time Non-Real-Time

Tens of frames per second Seconds to hours per frame
Thousand instruction shaders Thousands line shaders
Limited computation, texture,
memory, ...

“Unlimited” computation,
texture, memory, ...



Non-Real Time vs. Real-Time

Real-Time Non-Real-Time

Tens of frames per second Seconds to hours per frame
Thousand instruction shaders Thousands line shaders
Limited computation, texture,
memory, ...

“Unlimited” computation,
texture, memory, ...



How is this possible?

• GPUs are programmable!
• Per-vertex programs
• Per-fragment programs



Research Languages

• Pixel-Planes 5 [Rhoades et al., 1992]

• PixelFlow/pfman [Olano and Lastra, 1998]

• RTSL [Proudfoot et al., 2001]

• Sh [McCool and Toit, 2004]

• (BrookGPU) [Buck et al., 2004]



Research Languages

• Pixel-Planes 5 [Rhoades et al., 1992]

• PixelFlow/pfman [Olano and Lastra, 1998]

• RTSL [Proudfoot et al., 2001]

• Sh [McCool and Toit, 2004]

• (BrookGPU) [Buck et al., 2004]



Research Languages

• Pixel-Planes 5 [Rhoades et al., 1992]

• PixelFlow/pfman [Olano and Lastra, 1998]

• RTSL [Proudfoot et al., 2001]

• Sh [McCool and Toit, 2004]

• (BrookGPU) [Buck et al., 2004]



Research Languages

• Pixel-Planes 5 [Rhoades et al., 1992]

• PixelFlow/pfman [Olano and Lastra, 1998]

• RTSL [Proudfoot et al., 2001]

• Sh [McCool and Toit, 2004]

• (BrookGPU) [Buck et al., 2004]



Research Languages

• Pixel-Planes 5 [Rhoades et al., 1992]

• PixelFlow/pfman [Olano and Lastra, 1998]

• RTSL [Proudfoot et al., 2001]

• Sh [McCool and Toit, 2004]

• (BrookGPU) [Buck et al., 2004]



Commercial Languages

• GL or DX low-level

• OpenGL Shading Language

• DirectX HLSL

• NVIDIA Cg



Commercial Languages

• GL or DX low-level

• OpenGL Shading Language

• DirectX HLSL

• NVIDIA Cg



Commercial Languages

• GL or DX low-level

• OpenGL Shading Language

• DirectX HLSL

• NVIDIA Cg



Commercial Languages

• GL or DX low-level

• OpenGL Shading Language

• DirectX HLSL

• NVIDIA Cg



Ignoring Hardware Differences

Part II

Graphics Hardware



Ignoring Hardware Differences

Outline

Ignoring Hardware Differences
Simplified Models
RenderMan
Hardware



Ignoring Hardware Differences

Machine Complexity

• Graphics machines are complex

• User does not want to know
• How machine does what it does
• Tons of machine-specific differences

• Answer:
• Simple model of machine
• High-level language for procedures
• Well-defined procedure input & output
• System connects procedures



Ignoring Hardware Differences

Machine Complexity

• Graphics machines are complex

• User does not want to know
• How machine does what it does
• Tons of machine-specific differences

• Answer:
• Simple model of machine
• High-level language for procedures
• Well-defined procedure input & output
• System connects procedures



Ignoring Hardware Differences

Machine Complexity

• Graphics machines are complex

• User does not want to know
• How machine does what it does
• Tons of machine-specific differences

• Answer:
• Simple model of machine
• High-level language for procedures
• Well-defined procedure input & output
• System connects procedures



Ignoring Hardware Differences

Machine Complexity

• Graphics machines are complex

• User does not want to know
• How machine does what it does
• Tons of machine-specific differences

• Answer:
• Simple model of machine
• High-level language for procedures
• Well-defined procedure input & output
• System connects procedures



Ignoring Hardware Differences

Machine Complexity

• Graphics machines are complex

• User does not want to know
• How machine does what it does
• Tons of machine-specific differences

• Answer:
• Simple model of machine
• High-level language for procedures
• Well-defined procedure input & output
• System connects procedures



Ignoring Hardware Differences

Machine Complexity

• Graphics machines are complex

• User does not want to know
• How machine does what it does
• Tons of machine-specific differences

• Answer:
• Simple model of machine
• High-level language for procedures
• Well-defined procedure input & output
• System connects procedures



Ignoring Hardware Differences

Machine Complexity

• Graphics machines are complex

• User does not want to know
• How machine does what it does
• Tons of machine-specific differences

• Answer:
• Simple model of machine
• High-level language for procedures
• Well-defined procedure input & output
• System connects procedures



Ignoring Hardware Differences

Simplified Machine

• User’s mental model

• Hide details

• Device independent

• Procedural stages



Ignoring Hardware Differences

Simplified Machine

• User’s mental model

• Hide details

• Device independent

• Procedural stages



Ignoring Hardware Differences

Simplified Machine

• User’s mental model

• Hide details

• Device independent

• Procedural stages



Ignoring Hardware Differences

Simplified Machine

• User’s mental model

• Hide details

• Device independent

• Procedural stages



Ignoring Hardware Differences

RenderMan
Model

Model

Transform

Displacement

Shade Light

Volume

Imager

• “Abstract” interface
• Blocks = procedures
• Block interfaces well

defined

• Connections
• Inputs & outputs don’t

have to match
• System handles

conversion



Ignoring Hardware Differences

RenderMan
Model

Model

Transform

Displacement

Shade Light

Volume

Imager

• “Abstract” interface
• Blocks = procedures
• Block interfaces well

defined

• Connections
• Inputs & outputs don’t

have to match
• System handles

conversion



Ignoring Hardware Differences

RenderMan
Shader types

Model

Transform

Displacement

Shade Light

Volume

Imager



Ignoring Hardware Differences

RenderMan
Shader types

Model

Transform

Displacement

Shade Light

Volume

Imager



Ignoring Hardware Differences

RenderMan
Shader types

Model

Transform

Displacement

Shade Light

Volume

Imager



Ignoring Hardware Differences

RenderMan
Shader types

Model

Transform

Displacement

Shade Light

Volume

Imager



Ignoring Hardware Differences

RenderMan
Shader types

Model

Transform

Displacement

Shade Light

Volume

Imager



Ignoring Hardware Differences

RenderMan
Shader types

Model

Transform

Displacement

Shade Light

Volume

Imager



Ignoring Hardware Differences

RenderMan
Shader types

Model

Transform

Displacement

Shade Light

Volume

Imager

Katsuaki Hiramitsu
www.edit.ne.jp/˜katsu/



Ignoring Hardware Differences

RenderMan
Model

Model

Transform

Displacement

Shade Light

Volume

Imager

• What it says:
• Input and output of each

block
• What each block should

do

• What it doesn’t say:
• Order or grouping of

processing



Ignoring Hardware Differences

RenderMan
Model

Model

Transform

Displacement

Shade Light

Volume

Imager

• What it says:
• Input and output of each

block
• What each block should

do

• What it doesn’t say:
• Order or grouping of

processing



Ignoring Hardware Differences

RenderMan
REYES

Model

Transform

Displacement

Shade Light

Volume

Imager

Object

Object / Sample

Image / Pixel



Ignoring Hardware Differences

RenderMan
Ray Tracing

Model

Transform

Displacement

Shade Light

Volume

Imager

Ray

Image / Pixel



Ignoring Hardware Differences

RenderMan
SGI Multi-pass RenderMan

Model

Transform

Displacement

Shade Light

Volume

Imager

Object

Object / Pass / Pixel

Image / Pixel



Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Texture

• Vertex shading
• Transform

• Procedural transformation

• Skinning

• Shade

• Per-vertex shading

• Computed texture

coordinates



Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Texture

• Fragment shading
• Per-fragment shading
• Computed and dependent

texture



Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Texture

• Render to texture
• Rendered shadow &

environment maps
• Multi-pass fragment shading

[Proudfoot et al., 2001]



Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Buffers

• Render to vertex array / buffer
objects

• Geometry images
[Gu et al., 2002]

• Multi-pass vertex shading
• Merge vertex & fragment

capabilities



Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Buffers

• Vertex texture
• Texture-based vertex

displacement
• Tabulated functions



Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Buffers

• It’s all about the memory

• What it says:
• Input and output of each

block
• What each block should do

• What it doesn’t say:
• Vertex processing order
• Fragment processing order
• Interleaving of vertex and

fragment



Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Buffers

• It’s all about the memory

• What it says:
• Input and output of each

block
• What each block should do

• What it doesn’t say:
• Vertex processing order
• Fragment processing order
• Interleaving of vertex and

fragment



Ignoring Hardware Differences

Hardware
Model

Vertex

Fragment Buffers

• It’s all about the memory

• What it says:
• Input and output of each

block
• What each block should do

• What it doesn’t say:
• Vertex processing order
• Fragment processing order
• Interleaving of vertex and

fragment



Ignoring Hardware Differences

No, but really, what’s in there?

Vertex

Fragment Buffers

• Some other stuff,

• Parallelism,

• And more parallelism



Ignoring Hardware Differences

No, but really, what’s in there?

Vertex

Fragment Buffers

Triangle

Zbuf / Blend

• Some other stuff,

• Parallelism,

• And more parallelism



Ignoring Hardware Differences

No, but really, what’s in there?

Vertex

Fragment Buffers

Triangle

Zbuf / Blend

VerVer

FragmFragmFragmFragmFragmFragmFragmFragmFragmFragmFragmentFragmententententent

VerVerVertexVertexVertexVertexVertexVertextextex

• Some other stuff,

• Parallelism,

• And more parallelism



Ignoring Hardware Differences

No, but really, what’s in there?

Vertex

Fragment Buffers

Triangle

Zbuf / Blend

VerVer

FragmFragmFragmFragmFragmFragmFragmFragmFragmFragmFragmentFragmententententent

VerVerVertexVertexVertexVertexVertexVertextextex

• Some other stuff,

• Parallelism,

• And more parallelism



What is this Noise? Perlin noise Modifications

Part III

Noise



What is this Noise? Perlin noise Modifications

Outline

What is this Noise?

Perlin noise

Modifications



What is this Noise? Perlin noise Modifications

Why Noise?

• Introduced by [Perlin, 1985]
• Heavily used in production animation
• Technical Achievement Oscar in 1997

• “Salt,” adds spice to shaders



What is this Noise? Perlin noise Modifications

Why Noise?

• Introduced by [Perlin, 1985]
• Heavily used in production animation
• Technical Achievement Oscar in 1997

• “Salt,” adds spice to shaders

+ =



What is this Noise? Perlin noise Modifications

Noise Characteristics

• Random
• No correlation between distant values

• Repeatable/deterministic
• Same argument always produces same value

• Band-limited
• Most energy in one octave (e.g. between f & 2f)

1 2 3 4 5 6 7



What is this Noise? Perlin noise Modifications

Noise Characteristics

• Random
• No correlation between distant values

• Repeatable/deterministic
• Same argument always produces same value

• Band-limited
• Most energy in one octave (e.g. between f & 2f)

1 2 3 4 5 6 7



What is this Noise? Perlin noise Modifications

Noise Characteristics

• Random
• No correlation between distant values

• Repeatable/deterministic
• Same argument always produces same value

• Band-limited
• Most energy in one octave (e.g. between f & 2f)

1 2 3 4 5 6 7



What is this Noise? Perlin noise Modifications

Gradient Noise

• Original Perlin noise [Perlin, 1985]

• Perlin Improved noise [Perlin, 2002]

• Lattice based
• Value=0 at integer lattice points
• Gradient defined at integer lattice
• Interpolate between

• 1/2 to 1 cycle each unit

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original Improved



What is this Noise? Perlin noise Modifications

Gradient Noise

• Original Perlin noise [Perlin, 1985]

• Perlin Improved noise [Perlin, 2002]

• Lattice based
• Value=0 at integer lattice points
• Gradient defined at integer lattice
• Interpolate between

• 1/2 to 1 cycle each unit

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original Improved



What is this Noise? Perlin noise Modifications

Gradient Noise

• Original Perlin noise [Perlin, 1985]

• Perlin Improved noise [Perlin, 2002]

• Lattice based
• Value=0 at integer lattice points
• Gradient defined at integer lattice
• Interpolate between

• 1/2 to 1 cycle each unit

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Original Improved



What is this Noise? Perlin noise Modifications

Value Noise

• Lattice based
• Value defined at integer lattice points
• Interpolate between

• At most 1/2 cycle each unit
• Significant low-frequency content

• Easy hardware implementation with lower quality

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Linear Interp Cubic Interp



What is this Noise? Perlin noise Modifications

Value Noise

• Lattice based
• Value defined at integer lattice points
• Interpolate between

• At most 1/2 cycle each unit
• Significant low-frequency content

• Easy hardware implementation with lower quality

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Linear Interp Cubic Interp



What is this Noise? Perlin noise Modifications

Value Noise

• Lattice based
• Value defined at integer lattice points
• Interpolate between

• At most 1/2 cycle each unit
• Significant low-frequency content

• Easy hardware implementation with lower quality

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Linear Interp Cubic Interp



What is this Noise? Perlin noise Modifications

Value Noise

• Lattice based
• Value defined at integer lattice points
• Interpolate between

• At most 1/2 cycle each unit
• Significant low-frequency content

• Easy hardware implementation with lower quality

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Linear Interp Cubic Interp



What is this Noise? Perlin noise Modifications

Hardware Noise

• Value noise
• PixelFlow [Lastra et al., 1995]
• Perlin Noise Pixel Shaders [Hart, 2001]
• Noise textures

• Gradient noise
• Hardware [Perlin, 2001]
• Complex composition [Perlin, 2004]
• Shader implementation [Green, 2005]



What is this Noise? Perlin noise Modifications

Outline

What is this Noise?

Perlin noise

Modifications



What is this Noise? Perlin noise Modifications

Noise Details

• Subclass of gradient noise
• Original Perlin
• Perlin Improved
• All of our proposed modifications



What is this Noise? Perlin noise Modifications

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)



What is this Noise? Perlin noise Modifications

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)



What is this Noise? Perlin noise Modifications

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)

X

Y



What is this Noise? Perlin noise Modifications

Find the Lattice

• Lattice-based noise: must find nearest lattice points

• Point ~p = (~px , ~py , ~pz)

• has integer lattice location
~pi = (⌊~px⌋, ⌊~py⌋, ⌊~pz⌋) = (X , Y , Z )

• and fractional location in cell
~pf = ~p − ~pi = (x , y , z)

x

yX

Y



What is this Noise? Perlin noise Modifications

Gradient

• Random vector at each lattice point is a function of ~pi

g(~pi )

• A function with that gradient

grad(~p) = g(~pi ) • ~pf

= g x(~pi ) ∗ x + g y (~pi ) ∗ y + g z(~pi ) ∗ z



What is this Noise? Perlin noise Modifications

Gradient

• Random vector at each lattice point is a function of ~pi

g(~pi )

• A function with that gradient

grad(~p) = g(~pi ) • ~pf

= g x(~pi ) ∗ x + g y (~pi ) ∗ y + g z(~pi ) ∗ z



What is this Noise? Perlin noise Modifications

Gradient

• Random vector at each lattice point is a function of ~pi

g(~pi )

• A function with that gradient

grad(~p) = g(~pi ) • ~pf

= g x(~pi ) ∗ x + g y (~pi ) ∗ y + g z(~pi ) ∗ z



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Interpolate

• Interpolate nearest 2n gradient functions

• 2D noise(~p) is influenced by
~pi + (0, 0) ; ~pi + (0, 1) ; ~pi + (1, 0) ; ~pi + (1, 1)

• Linear interpolation
• lerp(t, a, b) = (1 − t) a + t b

• Smooth interpolation

• fade(t) =

{

3t2 − 2t3 for original noise

10t3 − 15t4 + 6t5 for improved noise

• flerp(t) = lerp(fade(t), a, b)



What is this Noise? Perlin noise Modifications

Hash

• n-D gradient function built from 1D components

g(~pi )

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



What is this Noise? Perlin noise Modifications

Hash

• n-D gradient function built from 1D components

g(hash(X , Y , Z ))

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



What is this Noise? Perlin noise Modifications

Hash

• n-D gradient function built from 1D components

g(hash(Z + hash(X , Y )))

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



What is this Noise? Perlin noise Modifications

Hash

• n-D gradient function built from 1D components

g(hash(Z + hash(Y + hash(X ))))

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



What is this Noise? Perlin noise Modifications

Hash

• n-D gradient function built from 1D components

g(hash(Z + hash(Y + hash(X ))))

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



What is this Noise? Perlin noise Modifications

Hash

• n-D gradient function built from 1D components

g(hash(Z + hash(Y + hash(X ))))

• Both original and improved use a permutation table hash

• Original: g is a table of unit vectors

• Improved: g is derived from bits of final hash



What is this Noise? Perlin noise Modifications

Outline

What is this Noise?

Perlin noise

Modifications
Corner Gradients
Factorization
Hash



What is this Noise? Perlin noise Modifications

Gradient Vectors of n-D Noise

• Original: on the surface of a n-sphere
• Found by hash of ~pi into gradient table

• Improved: at the edges of an n-cube
• Found by decoding bits of hash of ~pi



What is this Noise? Perlin noise Modifications

Gradient Vectors of n-D Noise

• Original: on the surface of a n-sphere
• Found by hash of ~pi into gradient table

• Improved: at the edges of an n-cube
• Found by decoding bits of hash of ~pi



What is this Noise? Perlin noise Modifications

Gradients of noise(x,y,0) or noise(x,0)

• Why?
• Cheaper low-D noise matches slice of higher-D
• Reuse textures (for full noise or partial computation)

• Original: new short gradient vectors

• Improved: gradients in new directions
• Possibly including 0 gradient vector!



What is this Noise? Perlin noise Modifications

Gradients of noise(x,y,0) or noise(x,0)

• Why?
• Cheaper low-D noise matches slice of higher-D
• Reuse textures (for full noise or partial computation)

• Original: new short gradient vectors
• Improved: gradients in new directions

• Possibly including 0 gradient vector!



What is this Noise? Perlin noise Modifications

Gradients of noise(x,y,0) or noise(x,0)

• Why?
• Cheaper low-D noise matches slice of higher-D
• Reuse textures (for full noise or partial computation)

• Original: new short gradient vectors
• Improved: gradients in new directions

• Possibly including 0 gradient vector!



What is this Noise? Perlin noise Modifications

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



What is this Noise? Perlin noise Modifications

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



What is this Noise? Perlin noise Modifications

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



What is this Noise? Perlin noise Modifications

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



What is this Noise? Perlin noise Modifications

Solution?

• Observe: use gradient function, not vector alone

grad = g x x + g y y + g z z

• In any integer plane, fractional z = 0

grad = g x x + g y y + 0

• Any choice keeping projection of vectors the same will work
• Improved noise uses cube edge centers
• Instead use cube corners!



What is this Noise? Perlin noise Modifications

Corner Gradients

• Simple binary selection from hash bits
±x ,±y ,±z

• Perlin mentions “clumping” for corner gradient selection
• Not very noticeable in practice
• Already happens in any integer plane of improved noise



What is this Noise? Perlin noise Modifications

Corner Gradients

• Simple binary selection from hash bits
±x ,±y ,±z

• Perlin mentions “clumping” for corner gradient selection
• Not very noticeable in practice
• Already happens in any integer plane of improved noise

Edge Centers Corner



What is this Noise? Perlin noise Modifications

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,+ ∗ z
+ ∗ (z − 1))



What is this Noise? Perlin noise Modifications

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,+ ∗ z
+ ∗ (z − 1))



What is this Noise? Perlin noise Modifications

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,+ ∗ z
+ ∗ (z − 1))



What is this Noise? Perlin noise Modifications

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,+ ∗ z
+ ∗ (z − 1))



What is this Noise? Perlin noise Modifications

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,xyz-term+xyz-term ∗ z
xyz-term+xyz-term ∗ (z − 1))



What is this Noise? Perlin noise Modifications

Separable Computation

• Like to store computation in texture
• Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets big, 4D impossible

• Factor into lower-D textures
• (e.g. write noise(~px , ~py , ~pz) as several x/y terms)

noise(~px , ~py , ~pz) = flerp(z ,xy-term(Z0)+xy-term(Z0) ∗ z
xy-term(Z1)+xy-term(Z1) ∗ (z − 1))



What is this Noise? Perlin noise Modifications

Factorization Details

noise(~p) = flerp(z ,zconst(~px , ~py , Z0)+zgrad(~px , ~py , Z0) ∗ z ,

zconst(~px , ~py , Z1)+zgrad(~px , ~py , Z1) ∗ (z − 1))

• With nested hash,

zconst(~px , ~py , Z0)= zconst(~px , ~py + hash(Z0))
zgrad (~px , ~py , Z0)= zgrad (~px , ~py + hash(Z0))

• With corner gradients, zconst = noise!



What is this Noise? Perlin noise Modifications

Factorization Details

noise(~p) = flerp(z ,zconst(~px , ~py , Z0)+zgrad(~px , ~py , Z0) ∗ z ,

zconst(~px , ~py , Z1)+zgrad(~px , ~py , Z1) ∗ (z − 1))

• With nested hash,

zconst(~px , ~py , Z0)= zconst(~px , ~py + hash(Z0))
zgrad (~px , ~py , Z0)= zgrad (~px , ~py + hash(Z0))

• With corner gradients, zconst = noise!



What is this Noise? Perlin noise Modifications

Factorization Details

noise(~p) = flerp(z ,zconst(~px , ~py , Z0)+zgrad(~px , ~py , Z0) ∗ z ,

zconst(~px , ~py , Z1)+zgrad(~px , ~py , Z1) ∗ (z − 1))

• With nested hash,

zconst(~px , ~py , Z0)= zconst(~px , ~py + hash(Z0))
zgrad (~px , ~py , Z0)= zgrad (~px , ~py + hash(Z0))

• With corner gradients, zconst = noise!



What is this Noise? Perlin noise Modifications

Perlin’s Hash

• 256-element permutation array
• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



What is this Noise? Perlin noise Modifications

Perlin’s Hash

• 256-element permutation array
• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



What is this Noise? Perlin noise Modifications

Perlin’s Hash

• 256-element permutation array
• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



What is this Noise? Perlin noise Modifications

Perlin’s Hash

• 256-element permutation array
• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



What is this Noise? Perlin noise Modifications

Perlin’s Hash

• 256-element permutation array
• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



What is this Noise? Perlin noise Modifications

Perlin’s Hash

• 256-element permutation array
• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



What is this Noise? Perlin noise Modifications

Perlin’s Hash

• 256-element permutation array
• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



What is this Noise? Perlin noise Modifications

Perlin’s Hash

• 256-element permutation array
• Turns each integer 0-255 into a different integer 0-255

• Chained lookups
g(hash(Z + hash(Y + hash(X ))))

• Must compute for each lattice point around ~p

• Even with a 2D hash(Y + hash(X )) texture, that’s
• 2 hash lookups for 1D noise
• 4 hash lookups for 2D noise
• 12 hash lookups for 3D noise
• 20 hash lookups for 4D noise



What is this Noise? Perlin noise Modifications

Alternative Hash

• Many choices; I kept 1D chaining

• Desired features
• Low correlation of hash output for nearby inputs
• Computable without lookup

• Use a random number generator?
• Seed
• Successive calls give uncorrelated values



What is this Noise? Perlin noise Modifications

Alternative Hash

• Many choices; I kept 1D chaining

• Desired features
• Low correlation of hash output for nearby inputs
• Computable without lookup

• Use a random number generator?
• Seed
• Successive calls give uncorrelated values



What is this Noise? Perlin noise Modifications

Alternative Hash

• Many choices; I kept 1D chaining

• Desired features
• Low correlation of hash output for nearby inputs
• Computable without lookup

• Use a random number generator?
• Seed
• Successive calls give uncorrelated values



What is this Noise? Perlin noise Modifications

Random Number Generator Hash

• Hash argument is seed
• Most RNG are highly correlated for nearby seeds

• Hash argument is number of times to call
• Most RNG are expensive (or require n calls) to get nth number
• Should noise(30) be 30 times slower than noise(1)?

permute table hash using seed=X



What is this Noise? Perlin noise Modifications

Random Number Generator Hash

• Hash argument is seed
• Most RNG are highly correlated for nearby seeds

• Hash argument is number of times to call
• Most RNG are expensive (or require n calls) to get nth number
• Should noise(30) be 30 times slower than noise(1)?

permute table hash using X th random number



What is this Noise? Perlin noise Modifications

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

523*527



What is this Noise? Perlin noise Modifications

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

523*527



What is this Noise? Perlin noise Modifications

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

523*527



What is this Noise? Perlin noise Modifications

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

29*31



What is this Noise? Perlin noise Modifications

Blum-Blum Shub

xn+1 = x2
i mod M

M = product of two large primes

• Uncorrelated for nearby seeds...

• But large M is bad for hardware...

• But reasonable results for smaller M...

• And square and mod is simple to compute!

61



What is this Noise? Perlin noise Modifications

Modified Noise

• Square and mod hash
• M = 61

• Corner gradient selection
• One 2D texture for both 1D and 2D

• Factor
• Construct 3D and 4D from 2 or 4 2D texture lookups



What is this Noise? Perlin noise Modifications

Comparison

Perlin original Perlin improved

Corner gradients Corner+Hash



What is this Noise? Perlin noise Modifications

Using Noise

3D noise 3D turbulence

Wood Marble



What is this Noise? Perlin noise Modifications

Buck, I., Foley, T., Horn, D., Sugerman, J., and pat Hanrahan
(2004).
Brook for GPUs: Stream computing on graphics hardware.
ACM Transactions on Graphics, 23(3).

Green, S. (2005).
Implementing improved Perlin noise.
In Pharr, M., editor, GPU Gems 2, chapter 26.
Addison-Wesley.

Gu, X., Gortler, S. J., and Hoppe, H. (2002).
Geometry images.
ACM Transactions on Graphics (Proceedings of SIGGRAPH
2002), 21(3):355–361.

Hart, J. C. (2001).
Perlin noise pixel shaders.
In Akeley, K. and Neumann, U., editors, Graphics Hardware
2001, pages 87–94, Los Angeles, CA.
SIGGRAPH/EUROGRAPHICS, ACM, New York.



What is this Noise? Perlin noise Modifications

Lastra, A., Molnar, S., Olano, M., and Wang, Y. (1995).
Real-time programmable shading.
In I3D ’95: Proceedings of the 1995 symposium on Interactive
3D graphics. ACM Press.

McCool, M. and Toit, S. D. (2004).
Metaprogramming GPUs with Sh.
AK Peters.

Olano, M. and Lastra, A. (1998).
A shading language on graphics hardware: The pixelflow
shading system.
In Proc. SIGGRAPH, pages 159–168.

Perlin, K. (1985).
An image synthesizer.
Computer Graphics (Proceedings of SIGGRAPH 85),
19(3):287–296.

Perlin, K. (2001).



What is this Noise? Perlin noise Modifications

Noise hardware.
In Olano, M., editor, Real-Time Shading SIGGRAPH Course
Notes.

Perlin, K. (2002).
Improving noise.
In SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, pages
681–682. ACM Press.

Perlin, K. (2004).
Implementing improved Perlin noise.
In Fernando, R., editor, GPU Gems, chapter 5.
Addison-Wesley.

Proudfoot, K., Mark, W. R., Hanrahan, P., and Tzvetkov, S.
(2001).
A real-time procedural shading system for programmable
graphics hardware.
In Proc. ACM SIGGRAPH.



What is this Noise? Perlin noise Modifications

Rhoades, J., Turk, G., Bell, A., State, A., Neumann, U., and
Varshney, A. (1992).
Real-time procedural textures.
In Zeltzer, D., editor, 1992 Symposium on Interactive 3D
Graphics, pages 95–100. ACM SIGGRAPH.


	Ignoring Hardware Differences
	Simplified Models
	RenderMan
	Hardware

	What is this Noise?
	Perlin noise
	Modifications
	Corner Gradients
	Factorization
	Hash


