
Shading Language Overview

Michael McCool

April 26, 2004

Programmable Graphics Processing Units (GPUs) have become widespread.
They now support floating-point computations and general programming mod-
els. A shading language is a domain-specific programming language for speci-
fying shading computations. In this section of the course notes, we will review
several high-level real-time shading languages for programming modern GPUs.
These languages have evolved from academic experiments into necessary tools
for real-time graphics.

Historically, the idea of a shading language is often credited to Cook [3].
Pixar’s RenderMan shading language was developed shortly thereafter and has
become a standard in the offline domain [4, 14, 1, 11]. The RenderMan shad-
ing language has strongly influenced the design of modern real-time shading
languages, particularly the idea of uniform and varying parameters. However,
the RenderMan standard, although originally intended as a hardware API, is
no longer used as such, and modern GPU shading languages need to target the
hardware architecture of modern GPUs.

The SGI Interactive Shading Language [10] compiles a shader specification
to a multipass implementation, but does not generate complex shader kernels,
only primitive passes. The Stanford Real-Time Shading Language was one of the
first attempts to build a shading language specifically designed for the shading
units of graphics processors [12, 7]. It is so far unique in that it supported a
single shader for programming both vertex and fragment units.

NVIDIA’s Cg [6] language was one of the earlier commercially available
shading languages to run on commodity GPU hardware. Although developed
by NVIDIA, it supports multiple hardware platforms, and is the only commer-
cial shading language to support both DirectX and OpenGL. It is related to
a number of other tools, including CgFX, which is used to specify multipass
algorithms.

Microsoft’s HLSL for DirectX was originally similar to Cg but has since
then diverged. The Direct3D Effects system is similar to CgFX, and permits
the specification of multipass algorithms.

The OpenGL standards group recently approved the OpenGL 2.0 Shading
Language [5, 13], frequently called GLSL. This shading language will be inte-
grated into the next generation of the OpenGL API and is intended to become
the standard-supported way to program GPUs under the OpenGL API.

5 – 1



Brook for GPUs [2] is a scientific computing language for GPUs. It is aimed
specifically at general-purpose computation on GPUs, and is built on top of Cg.
Brook includes buffer and system management capabilities so it is possible to
use Brook to implement a computation without having to use a graphics API.

Sh is an open-source shading language [8, 9]. It takes a metaprogramming
approach to the problem and is embedded in C++. It supports close integration
between the host application and shaders. Like Brook, it also supports a stream
model of computation for general-purpose programming.

References

[1] Anthony A. Apodaca and Larry Gritz. Advanced RenderMan: Creating
CGI for Motion Pictures. Morgan Kaufmann, 2000.

[2] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, and Pat Hanrahan. Brook for GPUs: Stream Comput-
ing on Graphics Hardware. ACM Transactions on Graphics (Proc. ACM
SIGGRAPH), 23(3), August 2004.

[3] Robert L. Cook. Shade trees. In Proc. ACM SIGGRAPH, pages 223–231,
July 1984.

[4] Pat Hanrahan and Jim Lawson. A language for shading and lighting cal-
culations. In Computer Graphics (SIGGRAPH ’90 Proceedings), pages
289–298, August 1990.

[5] John Kessenich, Dave Baldwin, and Randi Rost. OpenGL 2.0 Shading
Language, 1.051 edition, February 2003.

[6] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.
Cg: A system for programming graphics hardware in a c-like language.
ACM Transactions on Graphics (Proc. ACM SIGGRAPH), 22(3):896–907,
July 2003.

[7] William R. Mark and Kekoa Proudfoot. Compiling to a VLIW fragment
pipeline. In Graphics Hardware 2001. SIGGRAPH/Eurographics, April
2001.

[8] Michael McCool, Zheng Qin, and Tiberiu Popa. Shader Metaprogramming.
In Proc. of SIGGRAPH/Eurographics Graphics Hardware, pages 57–68,
September 2002.

[9] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and Kevin
Moule. Shader Algebra. In Proc. ACM SIGGRAPH, August 2004.

[10] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive
multi-pass programmable shading. In Proc. SIGGRAPH, pages 425–432,
July 2000.

5 – 2



[11] Pixar. The RenderMan Interface, version 3.2, July 2000.

[12] K. Proudfoot, W. R. Mark, P. Hanrahan, and S. Tzvetkov. A real-time
procedural shading system for programmable graphics hardware. In Proc.
SIGGRAPH, August 2001.

[13] Randi J. Rost. OpenGL Shading Language. Addison-Wesley, 2004.

[14] Steve Upstill. The RenderMan companion: A Programmer’s Guide to Re-
alistic Computer Graphics. Addison-Wesley, 1990.

5 – 3



5 – 4


