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Abstract
Over the years, there have been two main branches of computer
graphics image-synthesis research; one focused on interactivity,
the other on image quality. Procedural shading is a powerful tool,
commonly used for creating high-quality images and production
animation. A key aspect of most procedural shading is the use of
a shading language, which allows a high-level description of the
color and shading of each surface. However, shading languages
have been beyond the capabilities of the interactive graphics
hardware community. We have created a parallel graphics multi-
computer, PixelFlow, that can render images at 30 frames per
second using a shading language. This is the first system to be
able to support a shading language in real-time. In this paper, we
describe some of the techniques that make this possible.

CR Categories and Subject Descriptors: D.3.2 [Language
Classifications] Specialized Application Languages; I.3.1
[Computer Graphics] Hardware Architecture; I.3.3 [Computer
Graphics] Picture/Image Generation; I.3.6 [Computer Graphics]
Methodologies and Techniques; I.3.7 [Computer Graphics]
Three-dimensional Graphics and Realism.

Additional Keywords: real-time image generation, procedural
shading, shading language.

1 INTRODUCTION
We have created a SIMD graphics multicomputer, PixelFlow,
which supports procedural shading using a shading language.
Even a small (single chassis) PixelFlow system is capable of
rendering scenes with procedural shading at 30 frames per sec-
ond or more. Figure 1 shows several examples of shaders that
were written in our shading language and rendered on PixelFlow.

In procedural shading, a user (someone other than a system
designer) creates a short procedure, called a shader, to determine
the final color for each point on a surface. The shader is respon-

† Now at Silicon Graphics, Inc., 2011 N. Shoreline Blvd., M/S #590,
Mountain View, CA 94043 (email: olano@engr.sgi.com)
‡ UNC Department of Computer Science, Sitterson Hall, CB #3175, Chapel
Hill, NC 27599 (email: lastra@cs.unc.edu)

sible for color variations across the surface and the interaction of
light with the surface. Shaders can use an assortment of input
appearance parameters, usually including the surface normal,
texture coordinates, texture maps, light direction and colors.

Procedural shading is quite popular in the production industry
where it is commonly used for rendering in feature films and
commercials. The best known examples of this have been ren-
dered using Pixar’s PhotoRealistic RenderMan software
[Upstill90]. A key aspect of RenderMan is its shading language.
The shading language provides a high-level description of each
procedural shader. Shaders written in the RenderMan shading
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Figure 1: Some PixelFlow surface shaders. a) brick. b)
mirror with animated ripple. c) wood planks. d) a vol-
ume-based wood. e) light shining through a paned win-
dow. f) view of a bowling scene.
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language can be used by any compliant renderer, no matter what
rendering method it uses.

There are several reasons to provide procedural shading in-
stead of just image texturing on a real-time graphics system:� It is easy to add noise and random variability to make a

surface look more realistic.� It can be easier to create a procedural shader for a compli-
cated surface than to try to eliminate the distortions caused
by wrapping a flat, scanned texture over the surface.� It is easier to “tweak” a procedural shader than to rescan or
repaint an image texture.� It is often easier to create detail on an object using a proce-
dural shader instead of modifying the object geometry.� A procedurally shaded surface can change with time, dis-
tance, or viewing angle.

Usually procedural shading is associated with images that take a
while to generate – from a few minutes to a day or so. Recently,
graphics hardware reached the point where image texture map-
ping was not just possible, but common; now hardware is reach-
ing the point where shading languages for interactive graphics
are possible.

We have produced a shading language and shading language
compiler for our high-end graphics machine, PixelFlow. This
language is called pfman (pf for PixelFlow, man because it is
similar to Pixar’s RenderMan shading language). One of the
great advantages of a shading language for procedural shading,
particularly on a complex graphics engine, is that it effectively
hides the implementation details from the shader-writer. The
specifics of the graphics architecture are hidden in the shading
language compiler, as are all of the tricks, optimizations, and
special adaptations required by the machine. In this paper, we
describe shading on PixelFlow, the pfman language, and the
optimizations that were necessary to make it run in real-time.

Section 2 is a review of the relevant prior work. Section 3 cov-
ers features of the pfman shading language, paying particular
attention to the ways that it differs from the RenderMan shading
language. Section 4 describes our extensions to the OpenGL API
[Neider93] to support procedural shading. Section 5 gives a brief
overview of the PixelFlow hardware. Section 6 covers our im-
plementation and the optimizations that are done by PixelFlow
and the pfman compiler. Finally, Section 7 has some conclusions.

2 RELATED WORK
Early forms of programmable shading were accomplished by
rewriting the shading code for the renderer (see, for example,
[Max81]). Whitted and Weimer specifically allowed this in their
testbed system [Whitted81]. Their span buffers are an imple-
mentation of a technique now called deferred shading, which we
use on PixelFlow. In this technique, the parameters for shading
are scan converted for a later shading pass. This allowed them to
run multiple shaders on the same scene without having to re-
render. Previous uses of deferred shading for interactive graphics
systems include [Deering88] and [Ellsworth91].

More recently, easier access to procedural shading capabilities
has been provided to the graphics programmer. Cook’s shade
trees [Cook84] were the base of most later shading works. He
turned simple expressions, describing the shading at a point on
the surface, into a parse tree form, which was interpreted. He
introduced the name appearance parameters for the parameters
that affect the shading calculations. He also proposed an or-
thogonal subdivision of types of programmable functions into
displacement, surface shading, light, and atmosphere trees.

Perlin’s image synthesizer extends the simple expressions in
Cook’s shade trees to a full language with control structures
[Perlin85]. He also introduced the powerful Perlin noise func-

tion, which produces random numbers with a band-limited fre-
quency spectrum. This style of noise plays a major role in many
procedural shaders.

The RenderMan shading language [Hanrahan90][Upstill90]
further extends the work of Cook and Perlin. It suggests new
procedures for transformations, image operations, and volume
effects. The shading language is presented as a standard, making
shaders portable to any conforming implementation.

In addition to the shading language, RenderMan also provides
a geometry description library (the RenderMan API) and a geo-
metric file format (called RIB). The reference implementation is
Pixar’s PhotoRealistic RenderMan based on the REYES render-
ing algorithm [Cook87], but other implementations now exist
[Slusallek94][Gritz96].

The same application will run on all of these without change.
RenderMan effectively hides the details of the implementation.
Not only does this allow multiple implementations using com-
pletely different rendering algorithms, but it means the user
writing the application and shaders doesn’t need to know any-
thing about the rendering algorithm being used. Knowledge of
basic graphics concepts suffices.

Previous efforts to support user-written procedural shading on
a real-time graphics system are much more limited. The evolu-
tion of graphics hardware is only just reaching the point where
procedural shading is practical. The only implementation to date
was Pixel-Planes 5, which supported a simple form of procedural
shading [Rhoades92]. The language used by this system was
quite low level. It used an assembly-like interpreted language
with simple operations like copy, add, and multiply and a few
more complex operations like a Perlin noise function. The hard-
ware limitations of Pixel-Planes 5 limited the complexity of the
shaders, and the low-level nature of the language limited its use.

Lastra et. al. [Lastra95] presents previous work on the Pix-
elFlow shading implementation. It analyzes results from a Pix-
elFlow simulator for hand-coded shaders and draws a number of
conclusions about the hardware requirements for procedural
shading. At the time of that paper, the shading language compiler
was in its infancy, and we had not addressed many of the issues
that make a real-time shading language possible. [Lastra95] is
the foundation on which we built our shading language.

3 SHADING LANGUAGE
A surface shader produces a color for each point on a surface,

taking into account the color variations of the surface itself and
the lighting effects. As an example, we will show a shader for a
brick wall. The wall is rendered as a single polygon with texture
coordinates to parameterize the position on the surface.

The shader requires several additional parameters to describe
the size, shape, and color of the brick. These are the width and
height of the brick, the width of the mortar, and the colors of the
mortar and brick (Figure 2). These parameters are used to wrap
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Figure 2: Example bricks and the size and shape pa-
rameters for the brick shader.
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the texture coordinates into brick coordinates for each brick.
These are (0,0) at the lower left corner of each brick, and are
used to choose either the brick or mortar color. A portion of the
brick shader is shown in Figure 3. The brick image in Figure 2
was generated with this shader.

One advantage of procedural shading is the ease with which
shaders can be modified to produce the desired results. Figure 1a
shows a more realistic brick that resulted from small modifica-
tions to the simple brick shader. It includes a simple proce-
durally-defined bump map to indent the mortar, high-frequency
band-limited noise to simulate grains in the mortar and brick,
patches of color variation within each brick to simulate swirls of
color in the clay, and variations in color from brick to brick.

The remainder of this section covers some of the details of the
pfman shading language and some of the differences between it
and the RenderMan shading language. These differences are

1. the introduction of a fixed-point data type,
2. the use of arrays for points and vectors,
3. the introduction of transformation attributes,
4. the explicit listing of all shader parameters, and
5. the ability to link with external functions.

Of these changes, 1 and 2 allow us to use the faster and more
efficient fixed-point math on our SIMD processing elements. The
third covers a hole in the RenderMan standard that has since
been fixed. The fourth was not necessary, but simplified the im-
plementation of our compiler. Finally, item 5 is a result of our
language being compiled instead of interpreted (in contrast to
most off-line renderer implementations of RenderMan).

3.1 Types
As with the RenderMan shading language, variables may be
declared to be either uniform or varying. A varying vari-
able is one that might vary from pixel to pixel – texture coordi-
nates for example. A uniform variable is one that will never
vary from pixel to pixel. For the brick shader presented above,
the width, height and color of the bricks and the thickness and
color of the mortar are all uniform parameters. These control the
appearance of the brick, and allow us to use the same shader for
a variety of different styles of brick.

RenderMan has one representation for all numbers: floating-
point. We also support floating-point (32-bit IEEE single preci-
sion format) because it is such a forgiving representation. This
format has about 10–7 relative error for the entire range of num-
bers from 10-38 to 1038. However, for some quantities used in
shading this range is overkill (for colors, an 8 to 16 bit fixed-
point representation can be sufficient [Hill97]). Worse, there are
cases where floating-point has too much range but not enough
precision. For example, a Mandelbrot fractal shader has an insa-
tiable appetite for precision, but only over the range [–2,2]
(Figure 4). In this case, it makes much more sense to use a fixed-

point format instead of a 32 bit floating-point format: the float-
ing-point format wastes one of the four bytes for an exponent that
is hardly used. In general, it is easiest to prototype a shader using
floating-point, then change to fixed-point as necessary for mem-
ory usage, precision, and speed. Our fixed-point types may be
signed or unsigned and have two parameters: the size in bits and
an exponent, written fixed<size,exponent>. Fixed-point
behaves like floating-point where the exponent is a compile-time
constant. Small exponents can be interpreted as the number of
fractional bits: a two byte integer is fixed<16,0>, while a two
byte pure fraction is fixed<16,16>.

Like recent versions of the RenderMan shading language
[Pixar97], pfman supports arrays of its basic types. However,
where RenderMan uses separate types for points, vectors, nor-
mals, and colors, pfman uses arrays with transformation attrib-
utes. By making each point be an array of floating-point or fixed-
point numbers, we can choose the appropriate representation
independently for every point. A transformation attribute indi-
cates how the point or vector should be transformed. For exam-
ple, points use the regular transformation matrix, vectors use the
same transformation but without translation, and normals use the
adjoint or inverse without translation. We also include a trans-
formation attribute for texture coordinates, which are trans-
formed by the OpenGL texture transformation matrix.

3.2 Explicit Shader Parameters
RenderMan defines a set of standard parameters that are im-
plicitly available for use by every surface shader. The surface
shader does not need to declare these parameters and can use
them as if they were global variables. In pfman, these parameters
must be explicitly declared. This allows us to construct a transfer
map (discussed later in Section 6) that contains only those pa-
rameters that are actually needed by the shader.

In retrospect, we should have done a static analysis of the
shader function to decide which built-in parameters are used.
This would have made pfman that much more like RenderMan,
and consequently that much easier for new users already familiar
with RenderMan.

3.3 External Linking
Compiling a pfman shader is a two-stage process. The pfman
compiler produces C++ source code. This C++ code is then com-
piled by a C++ compiler to produce an object file for the shader.
The function definitions and calls in pfman correspond directly to
C++ function definitions and calls. Thus, unlike most Render-
Man implementations, we support calling C++ functions from
the shading language and vice versa. This facility is limited to
functions using types that the shading language supports.

Compiling to C++ also provides other advantages. We ignore
certain optimizations in the pfman compiler since the C++ com-

// figure out which row of bricks this is (row is 8-bit integer)
fixed<8,0> row = tt / height;

// offset even rows by half a row
if (row % 2 == 0) ss += width/2;

// wrap texture coordinates to get “brick coordinates”
ss = ss % width;
tt = tt % height;

// pick a color for the brick surface
float surface_color[3] = brick_color;
if (ss < mortar  ||  tt < mortar)

surface_color = mortar_color;

Figure 3: Code from a simple brick shader

a b

Figure 4: Fixed-point vs. floating-point comparison.
a) Mandelbrot set computed using floating-point.
b) Mandelbrot set computed using fixed-point
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piler does them. One could also use the generated C++ code as a
starting point for a hand-optimized shader. Such a hand-
optimized shader would no longer be portable, and performing
the optimization would require considerable understanding of the
PixelFlow internals normally hidden by the shading language.
Not surprisingly, no one has done this yet.

4 API
The RenderMan standard [Upstill90] defines not only the shad-
ing language, but also a graphics application program interface
(API). This is a library of graphics functions that the graphics
application can call to describe the scene to the renderer. We
elected to base our API on OpenGL [Neider93] instead of Ren-
derMan. OpenGL is a popular API for interactive graphics appli-
cations, supported on a number of graphics hardware platforms.
It provides about the same capabilities as the RenderMan API,
with a similar collection of functions, but with more focus on
interactive graphics. By using OpenGL as our base we can easily
port applications written for other hardware.

We extended OpenGL to support procedural shading
[Leech98]. We required that the procedural shading extensions
have no impact on applications that do not use procedural shad-
ing. We also endeavored to make them fit the framework and
philosophy of OpenGL. Our efforts to extend OpenGL should be
readily usable by future real-time shading language systems.

Following the OpenGL standard, all of our extensions have the
suffix EXT. We will follow that convention here to help clarify
what is already part of OpenGL and what we added. OpenGL
functions also include suffix letters (f, i, s, etc.) indicating the
operand type. For brevity, we omit these in the text.

4.1 Loading Functions
Procedural surface shaders and lights are written as pfman func-
tions. The new API call, glLoadExtensionCodeEXT, loads
a shader. Currently, we do not support dynamic linking of surface
or light functions, so this call just declares which shaders will be
used. In the future, we do plan to dynamically load shaders.

4.2 Shading Parameters
On PixelFlow, the default shader implements the OpenGL
shading model. Applications that do not “use” procedural shad-
ing use this default OpenGL shader without having to know any
of the shading extensions to OpenGL.

We set the values for shading parameters using the
glMaterial call, already used by OpenGL to set parameters
for the built-in shading model. Parameters set in this fashion go
into the OpenGL global state, where they may be used by any
shader. Any shader can use the same parameters as the OpenGL
shader simply by sharing the same parameter names, or it can
define its own new parameter names.

OpenGL also has a handful of other, parameter-specific, calls.
glColor can be set to change any of several possible color
parameters, each of which can also be changed with
glMaterial. We created similar parameter name equivalents
for glNormal and glTexCoord. Other shaders may use these
names to access the normals set with glNormal and texture
coordinates from glTexcoord.

4.3 Shader Instances
The RenderMan API allows some parameter values to be set
when a shader function is chosen. Our equivalent is to allow
certain bound parameter values. A shading function and its
bound parameters together make a shader instance (or some-
times just shader) that describes a particular type of surface.
Because the character of a shader is as much a product of its
parameter settings as its code, we may create and use several
instances of each shading function. For example, given the brick
shading function of Figure 3, we can define instances for fat red
bricks and thin yellow bricks by using different bound values for
the width, height, and color of the bricks (Figure 5).

To set the bound parameter values for an instance, we use a
glBoundMaterialEXT function. This is equivalent to gl-
Material, but operates only on bound parameters.

We create a new instance with a glNewShaderEXT, gl-
EndShaderEXT pair. This is similar to the way OpenGL de-
fines other objects, for example display list definitions are brack-
eted by calls to glNewList and glEndList. glNewSha-
derEXT takes the shading function to use and returns a shader
ID that can be used to identify the instance later. Between the
glNewShaderEXT and glEndShaderEXT we use glSha-
derParameterBindingEXT, which takes a parameter ID
and one of GL_MATERIAL_EXT or GL_BOUND_MATER-
IAL_EXT. This indicates whether the parameter should be set
by calls to glMaterial (for ordinary parameters) or gl-
BoundMaterialEXT (for bound parameters).

To choose a shader instance, we call glShaderEXT with a
shader ID. Primitives drawn after the glShaderEXT call will
use the specified shader instance.

4.4 Lights
OpenGL normally supports up to eight lights, GL_LIGHT0
through GL_LIGHT7. New light IDs beyond these eight are
created with glNewLightEXT. Lights are turned on and off
through calls to glEnable and glDisable. Parameters for
the lights are set with glLight, which takes the light ID, the
parameter name, and the new value. As with surface shaders, we
have a built-in OpenGL light that implements the OpenGL
lighting model. The eight standard lights are pre-loaded to use
this function.

The OpenGL lighting model uses multiple colors for each
light, with a different color for each of the ambient, diffuse and
specular shading computations. In contrast, the RenderMan
lighting model has only one color for each light. We allow a mix
of these two styles. The only constraint is that surface shaders
that use three different light colors can only be used with lights
that provide three light colors. Surface shaders that follow the
RenderMan model will use only the diffuse light color from
lights that follow the OpenGL model.

5 PIXELFLOW
We implemented the pfman shading language on PixelFlow, a
high-performance graphics machine. The following sections give

Figure 5: Instances of a brick surface shader.
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a brief overview of PixelFlow. For more details, refer to
[Molnar92] or [Eyles97]

5.1 Low-level View
A typical PixelFlow system consists of a host, a number of ren-
dering nodes, a number of shading nodes, and a frame buffer
node (Figure 6a). The rendering nodes and shading nodes are
identical, so the balance between rendering performance and
shading performance can be decided for each application. The
frame buffer node is also the same, though it includes an addi-
tional daughter card to produce video output. The host is con-
nected through a daughter card on one of the rendering nodes.

The pipelined design of PixelFlow allows the rendering per-
formance to scale linearly with the number of rendering nodes
and the shading performance to scale linearly with the number of
shading nodes.

Each rendering node is responsible for an effectively random
subset of the primitives in the scene. The rendering nodes handle
one 128x64 pixel region at a time. More precisely, the region is
128x64 image samples. When antialiasing, the image samples
are blended into a smaller block of pixels after shading. For
brevity, we will continue to use the word “pixel”, with the un-
derstanding that sometimes they may be image samples instead
of actual pixels.

Since each rendering node has only a subset of the primitives,
a region rendered by one node will have holes and missing poly-
gons. The different versions of the region are merged using a
technique called image composition. PixelFlow includes a spe-
cial high-bandwidth composition network that allows image
composition to proceed at the same time as pixel data communi-
cation. As all of the rendering nodes simultaneously transmit
their data for a region, the hardware on each node compares,
pixel-by-pixel, the data it is transmitting with the data from the
upstream nodes. It sends the closer of each pair of pixels down-
stream. By the time all of the pixels reach their destination, one
of the system’s shading nodes, the composition is complete.

Once the shading node has received the data, it does the sur-
face shading for the entire region. In a PixelFlow system with n
shading nodes, each shades every nth region. Once each region
has been shaded, it is sent over the composition network (without
compositing) to the frame buffer node, where the regions are
collected and displayed.

Each node has two RISC processors (HP PA-8000’s), a custom
SIMD array of pixel processors, and a texture memory store.
Each processing element of the SIMD array has 256 bytes of
memory, an 8-bit ALU with support for integer multiplication,
and an enable flag indicating the active processors. All enabled
processors in the 128x64 array simultaneously compute, on their
own data, the result of any operation. This provides a speedup of
up to 8192 times the rate of a single processing element.

5.2 High-level View
The hardware and basic system software handle the details of
scheduling primitives for the rendering nodes, compositing pixel
samples from these nodes, assigning them to shading nodes, and
moving the shaded pixel information to the frame buffer. Conse-
quently, it is possible to take the simplified view of PixelFlow as
a simple pipeline (Figure 6b). This view is based on the passage
of a single displayed pixel through the system. Each displayed
pixel arrives at the frame buffer, having been shaded by a single
shading node. We can ignore the fact that displayed pixels in
other regions were shaded by different physical shading nodes.
Before arriving at the shading node, the pixel was part of a
primitive on just one of the rendering nodes. We can ignore the
fact that other pixels may display different primitives from dif-
ferent rendering nodes.

Only the rendering nodes make use of the second RISC proc-
essor. The primitives assigned to the node are split between the
processors. We can take the simplified view that there is only
one processor on the node, and let the lower level software han-
dle the scheduling between the physical processors. Figure 7 is
simple block diagram of a PixelFlow node with these simplifica-
tions. Each node is connected to two communication networks.
The geometry network (800 MB/s in each direction), handles
information about the scene geometry, bound parameter values,
and other data bound for the RISC processors. It is 32 bits wide,
operating at 200 MHz. The composition network (6.4 GB/s in
each direction) handles transfers of pixel data from node to node.
It is 256 bits wide, also operating at 200 MHz. Since our simpli-
fied view of the PixelFlow system hides the image composition,
it is reasonable to simply refer to the composition network as a
pixel network.

6 IMPLEMENTATION
Implementation of a shading language on PixelFlow requires
optimizations. Some are necessary to achieve the targeted inter-
active rates of 20-30 frames per second, whereas others are nec-
essary just to enable shaders to run on PixelFlow. The three
scarce resources impact our PixelFlow implementation: time,
communication bandwidth, and memory. In this section, we pres-
ent optimizations to address each.

6.1 Execution Optimizations
Our target frame rate of 30 frames per second translates to 33 ms
per frame. The system pipelining means that most of this time is
actually available for shading. Each shading node can handle one
128x64 region at a time and a 1280x1024 screen (or 640x512
screen with 4-sample antialiasing) contains 160 such regions. On
a system with four shading nodes, each is responsible for 40
regions and can take an average of 825 � s shading each region.
On a larger system with 16 shading nodes, each is responsible for
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Figure 6: PixelFlow: a) machine organization.
b) simplified view of the system.
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10 regions and can spend an average of 3.3 ms shading a region.
Table 1 shows per-region execution times fore some sample
shaders. The first four shaders appear in Figure 1. The other
shaders were written by the UNC nanoManipulator project for
surface data visualization.

6.1.1 Deferred Shading
Deferred shading is the technique of performing shading compu-
tations on pixels only after the visible pixels have been deter-
mined [Whitted81][Deering88][Ellsworth91]. It provides several
advantages for the execution of surface shading functions. First,
no time is wasted on shading computations for pixels that will
not be visible. Second, our SIMD array can simultaneously
evaluate a single surface shader instance on every primitive that
uses it in a 128x64 region. Finally, it decouples the rendering
performance and shading performance of the system. To handle
more complex shading, add more shading hardware. To handle
more complex geometry, add more rendering hardware.

6.1.2 Uniform and Varying
RenderMan has uniform and varying types (Section 3.1), in part
for the efficiency of their software renderer. A uniform expres-
sion uses only uniform operands and has a uniform result; a
varying expression may have both uniform and varying operands
but has a varying result. As Pixar’s prman renderer evaluates the
shading on a surface, it computes uniform expressions only once,
sharing the results with all of the surface samples, but loops over
the surface samples to compute the varying expressions.

We can use a similar division of labor. The microprocessor on
each PixelFlow node can compute the result of a single operation
much faster than the SIMD array; but the microprocessor pro-
duces one result, while the SIMD array can produce a different
result on each of the 8K pixel processing elements. If the value is
the same everywhere, it is faster for the microprocessor to com-
pute and broadcast the result to the pixel processors. If the value
is different at different pixel processors, it is much faster to al-
low the SIMD array to compute all of the results in parallel.

Since uniform expressions do not vary across the pixels, it is
much more efficient to compute them using the microprocessor
and store them in microprocessor memory. In contrast, varying
expressions are the domain of the pixel processors. They can
potentially have different values at every pixel, so must exist in
pixel memory. They are fast and efficient because their storage
and operations are replicated across the SIMD array. This same
distinction between shared (uniform) and SIMD array (varying)
memory was made by Thinking Machines for the Connection

Machine [ThinkingMachines89], though they called them mono
and poly, and by MasPar for the MP-1 [MasPar90], though their
terms were singular and plural.

6.1.3 Fixed-point
We can achieve significant speed improvements by using fixed-
point operations for varying computations instead of floating-
point. Our pixel processors do not support floating-point in
hardware: every floating-point operation is built from basic inte-
ger math operations. These operations consist of the equivalent
integer operation with bitwise shifts to align the operands and
result. Fixed-point numbers may also require shifting to align the
decimal points, but the shifts are known at compile-time. The
timings of some fixed-point and floating-point operations are
shown in Table 2. These operations may be done by as many as
8K pixel processors at once, yet we would still like them to be as
fast as possible.

6.1.4 Math Functions
We provide floating-point versions of the standard math library
functions. An efficient SIMD implementation of these functions
has slightly different constraints than a serial implementation.
Piece-wise polynomial approximation is the typical method to
evaluate transcendental math functions.

This approach presents a problem on PixelFlow due to the
handling of conditionals on a SIMD array. On a SIMD array, the
condition determines which processing elements are enabled.
The true part of an if/else is executed with some processing
elements enabled, the set of enabled processors is flipped and the
false part is executed. Thus the SIMD array spends the time to
execute both branches of the if.

This means that using a table of 32 polynomials takes as much
time as a single polynomial with 32 times as many terms cover-
ing the entire domain. Even so, a polynomial with, say, 160
terms is not practical. For each PixelFlow math function, we
reduce the function domain using identities, but do not reduce it
further. For example, the log of a floating-point number, m*2e, is
e*log(2)+log(m). We fit log(m) with a single polyno-
mial. Each polynomial is chosen to use as few terms as possible
while remaining accurate to within the floating-point precision.
Thus, we still do a piece-wise fit, but fit a single large piece with
a polynomial of relatively high degree.

While we provide accurate versions of the math functions, of-
ten shaders do not really need the “true” function. With the rip-
ple reflection shader in Figure 1b, it is not important that the
ripples be sine waves. They just need to look like sine waves.
For that reason, we also provide faster, visually accurate but
numerically poor, versions of the math functions. The fast ver-
sions use simpler polynomials, just matching value and first de-
rivative at each endpoint of the range fit by the more exact ap-
proximations. This provides a function that appears visually cor-

shader bytes free execution time
brick 46 613.15 � s
ripple reflection 59 1058.07 � s
planks 105 532.30 � s
bowling pin 86 401.96 � s
nanoManipulator 1 75 567.95 � s
nanoManipulator 2 1 2041.44 � s
nanoManipulator 3 51 1638.67 � s

Table 1: Memory and performance summary.

Operation 16-bit fixed 32-bit fixed 32-bit float
+ 0.07 � s 0.13 � s 3.08 � s
* 0.50 � s 2.00 � s 2.04 � s
/ 1.60 � s 6.40 � s 7.07 � s
sqrt 1.22 � s 3.33 � s 6.99 � s
noise 5.71 � s — 21.64 � s

Table 2: Fixed-point and floating-point execution times
for 128x64 SIMD array.

function exact fast
sin 81.36 � s 45.64 � s
cos 81.36 � s 48.77 � s
tan 93.25 � s 52.65 � s
asin, acos 78.52 � s 47.50 � s
atan 66.41 � s 35.34 � s
atan2 66.17 � s 35.15 � s
exp 53.37 � s 37.86 � s
exp2 51.09 � s 35.58 � s
log 57.76 � s 21.57 � s
log2 57.68 � s 21.49 � s

Table 3: Execution times for floating-point math
functions on 128x64 SIMD array.
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rect but executes in about half the time.
6.1.5 Combined Execution

Many shading functions have similar organizations. Combin-
ing the execution of the common sections of code in multiple
shaders can lead to large gains in performance. In the next few
sections, we will discuss some of these methods. The easiest and
most automatic of this class of optimizations is combined execu-
tion of lights for all surface shaders. For some of the more tradi-
tional surface shaders, involving image texture lookups and
Phong shading, we can do further overlapped computation.

6.1.5.1 Lights
One of the jobs of a surface shader is to incorporate the effects

of each light in the scene. As in the RenderMan shading lan-
guage, this is accomplished through the illuminance con-
struct, which behaves like a loop over the active lights (Figure
8). This means that each surface shader effectively includes a
loop over every light. For m shaders and n lights, this results in
m*n light executions. This can be quite expensive since the
lights themselves are procedural, and could be arbitrarily com-
plex. Since the lights are the same for each of the m shaders, we
compute each light just once and share its results among all of
the shaders, resulting in only n light executions. We do this by
interleaving the execution of all of the lights and shaders.

We accomplish this interleaving by having each surface shader
generate three instruction streams for the SIMD array. The first
stream, which we call pre-illum, contains only the setup code
(until the illuminance in Figure 8). The second stream con-
tains the body of the illuminance construct. We call this the
illum stream. Finally, the post-illum stream contains eve-
rything after the illuminance. The lights themselves create
their own stream of SIMD commands. The interleaving pattern of
these streams is shown in Figure 9.

The SIMD memory usage of the surfaces and lights must be
chosen in such a way that each has room to operate, but none
conflict. The surface shaders will not interfere with each other
since any one pixel can only use one surface shader. Different
surface shaders already use different pixel memory maps. Lights,
however, must operate in an environment that does not disturb
any surface shader, but provides results in a form that all surface

shaders can use. The results of the lighting computation, the
color and direction of the light hitting each pixel, are stored in a
special communications area to be shared by all surface shaders.
The light functions themselves operate in the SIMD memory left
over by the retained result of the greediest of the surface shader
pre-illum stages. Above this high water mark, the light can
freely allocate whatever memory it needs. The illum, and
post-illum streams of all shaders can use all available mem-
ory without interfering with either the other surfaces or the
lights.

6.1.5.2 Surface Position
For image composition, every pixel must contain the Z-buffer

depth of the closest surface visible at that pixel. This Z value,
along with the position of the pixel on the screen, is sufficient to
compute where the surface sample is in 3D. Since the surface
position can be reconstructed from these pieces of information,
we do not store the surface position in pixel memory during ren-
dering or waste composition bandwidth sending it from the ren-
dering nodes to the shading nodes. Instead, we compute it on the
shading nodes in a phase we call pre-shade, which occurs
before any shading begins. Thus, we share the execution time
necessary to reconstruct the surface position. We also save mem-
ory and bandwidth early in the graphics pipeline, helping with
the other two forms of optimization, to be mentioned later.

6.1.5.3 Support for Traditional Shaders
Some optimizations have been added to assist in cases that are

common for forms of the OpenGL shading model. Unlike the
earlier execution optimizations, these special-purpose optimiza-
tions are only enabled by setting flags in the shader.

Surface shaders that use only the typical Phong shading model
can use a shared illum stream. This allows shaders to set up
different parameters to the Phong shader, but the code for the
Phong shading model runs only once.

Surface shaders that use a certain class of texture lookups can
share the lookup computations. These shaders know what texture
they want to look up in the pre-illum phase, but don’t require
the results until the post-illum phase. The PixelFlow hard-
ware does not provide any significant improvement in actual
lookup time for shared lookups, but this optimization allows the
SIMD processors to perform other operations while the lookup is
in progress. To share the lookup processing, they place their
texture ID and texture coordinates in special shared “magic”
parameters. The results of the lookup are placed in another
shared magic parameter by the start of the post-illum stage.

6.1.6 Cached Instruction Streams
On PixelFlow, the microprocessor code computes the uniform
expressions and all of the uniform control flow (if’s with uni-
form conditions, while’s, for’s, etc.), generating a stream of
SIMD processor instructions. This SIMD instruction stream is
buffered for later execution. The set of SIMD instructions for a
shader only changes when some uniform parameter of the shader
changes, so we cache the instruction stream and re-use it. Any
parameter change sets a flag that indicates that the stream must
be regenerated. For most non-animated shaders, this means that
the uniform code executes only once, when the application starts.

6.2 Bandwidth Optimizations
Communication bandwidth is another scarce resource on Pix-
elFlow. As mentioned in Section 5, there are two communication
paths between nodes in the PixelFlow system, the geometry net

// setup, compute base surface color
illuminance() {

// add in  the contribution of one light
}
// wrap-up

Figure 8: Outline of a typical surface shader.

— time (not to scale) �
shader stage setup add light 1 add light 2 wrap-up

pre-illum

Surface 1 illum

post-illum

pre-illum

Surface 2 illum

post-illum

pre-illum

Surface 3 illum

post-illum

Light 1
Light 2

Figure 9: Interleaving of surface shaders and lights.
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and composition net. We are primarily concerned with the com-
position net bandwidth. While its total bandwidth is 6.4 GB/s,
four bytes of every transfer are reserved for the pixel depth, giv-
ing an effective bandwidth of 5.6 GB/s.

Since PixelFlow uses deferred shading, the complete set of
varying shading parameters and the shader ID must be trans-
ferred across the composition network. The final color must also
be transferred from the shader node to the frame buffer. How-
ever, the design of the composition network allows these two
transfers to be overlapped, so we really only pay for the band-
width to send data for each visible pixel from the rendering
nodes to shading nodes. At 30 frames per second on a 1280x1024
screen, the maximum communication budget is 142 bytes per
pixel. To deal with this limited communication budget, we must
perform some optimizations to reduce the number of parameters
that need to be sent from renderer node to shader node.

6.2.1 Shader-Specific Maps
Even though each 128x64 pixel region is sent as a single trans-
fer, every pixel could potentially be part of a different surface.
Rather than use a transfer that is the union of all the parameters
needed by all of those surface shaders, we allow each to have its
own tailored transfer map. The first two bytes in every map con-
tain the shader ID, which indicates what transfer map was used
and which surface shader to run.

6.2.2 Bound Parameters
The bound parameters of any shader instance cannot change from
pixel to pixel (Section 4.3), so they are sent over the geometry
network directly to the shading nodes. Since the shader nodes
deal with visible pixels without any indication of when during
the frame they were rendered, we must restrict bound parameters
to only change between frames. Bound uniform parameters are
used directly by the shading function running on the microproc-
essor. Any bound varying parameters must be loaded into pixel
memory. Based on the shader ID stored in each pixel, we identify
which pixels use each shader instance and load their bound
varying parameters into pixel memory before the shader exe-
cutes.

Any parameter that is bound in every instance of a shader
should probably be uniform, since this gives other memory and
execution time gains. However, it is occasionally helpful to have
bound values for varying shading parameters. For example, our
brick shader may include a dirtiness parameter. Some brick
walls will be equally dirty everywhere. Others will be dirtiest
near the ground and clean near the top. The instance used in one
wall may have dirtiness as a bound parameter, while the
instance used in a second wall allows dirtiness to be set
using glMaterial with a different value at each vertex.

However, the set of parameters that should logically be bound
in some instances and not in others is small. Allowing bound
values for varying parameters would be only a minor bandwidth
savings, were it not for another implication of deferred shading.
Since bound parameters can only change once per frame, we find
parameters that would otherwise be uniform are being declared
as varying solely to allow them to be changed with
glMaterial from primitive to primitive (instead of requiring
hundreds of instances). This means that someone writing a Pix-
elFlow shader may make a parameter varying for flexibility even
though it will never actually vary across any primitives. Allowing
instances to have bound values for all parameters helps counter
the resulting explosion of pseudo-varying parameters.

6.3 Memory Optimizations
The most limited resource when writing shaders on PixelFlow is
pixel memory. The texture memory size (64 megabytes) affects
the size of image textures a shader can use in its computations,
but does not affect the shader complexity. The microprocessor
memory (128 megabytes), is designed to be sufficient to hold
large geometric databases. For shading purposes it is effectively
unlimited. However, the pixel memory, at only 256 bytes, is
quite limited. From those 256 bytes, we further subtract the
shader input parameters and an area used for communication
between the light shaders and surface shaders. What is left is
barely enough to support a full-fledged shading language. The
memory limitations of Pixel-Planes 5 were one of the reasons
that, while it supported a form of procedural shading, it could not
handle a true shading language. In this section we highlight some
of the pfman features and optimizations made by the pfman com-
piler to make this limited memory work for real shaders.

6.3.1 Uniform vs. Varying
We previously mentioned uniform and varying parameters in

the context of execution optimizations. Bigger gains come from
the storage savings: uniform values are stored in the large main
memory instead of the much more limited pixel memory.

6.3.2 Fixed-point
PixelFlow can only allocate and operate on multiples of single
bytes, yet we specify the size of our fixed-point numbers in bits.
This is because we can do a much better job of limiting the sizes
of intermediate results in expressions with a more accurate idea
of the true range of the values involved. For example, if we add
two two-byte integers, we need three bytes for the result. How-
ever, if we know the integers really only use 14 bits, the result is
only 15 bits, which still fits into two bytes.

A two-pass analysis determines the sizes of intermediate
fixed-point results. A bottom-up pass determines the sizes neces-
sary to keep all available precision. It starts with the sizes it
knows (e.g. from a variable reference) and combines them ac-
cording to simple rules. A top-down pass limits the fixed-point
sizes of the intermediate results to only what is necessary.

6.3.3 Memory Allocation
The primary feature that allows shaders to have any hope of
working on PixelFlow is the memory allocation done by the
compiler. Since every surface shader is running different code,
we use a different memory map for each. We spend considerable
compile-time effort creating these memory maps.

Whereas even the simplest of shaders may define more than
256 bytes of varying variables, most shaders do not use that
many variables at once. We effectively treat pixel memory as one
giant register pool, and perform register allocation on it during
compilation. This is one of the most compelling reasons to use a
compiler when writing surface shaders to run on graphics hard-
ware. It is possible to manually analyze which variables can co-
exist in the same place in memory, but it is not easy. One of the
authors did just such an analysis for the Pixel-Planes 5 shading
code. It took about a month. With automatic allocation, it sud-
denly becomes possible to prototype and change shaders in min-
utes instead of months.

The pfman memory allocator performs variable lifetime analy-
sis by converting the code to a static single assignment (SSA)
form [Muchnick97][Briggs92] (Figure 10). First, we go through
the shader, creating a new temporary variable for the result of
every assignment. This is where the method gets its name: we do
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a static analysis, resulting in one and only one assignment for
every variable. In some places, a variable reference will be am-
biguous, potentially referring to one of several of these new tem-
poraries. During the analysis, we perform these references using
a � -function. The � -function is a pseudo-function-call indicating
that, depending on the control flow, one of several variables
could be referenced. For example, the value of i in the last line
of Figure 10b, could have come from either i2 or i3. In these
cases, we merge the separate temporaries back together into a
single variable. What results is a program with many more vari-
ables, but each having as short a lifetime as possible.

Following the SSA lifetime analysis, we make a linear pass
through the code, mapping these new variables to free memory as
soon as they become live, and unmapping them when they are no
longer live. Variables can only become live at assignments and
can only die at their last reference. As a result of these two
passes, variables with the same name in the user’s code may
shift from memory location to memory location. We only allow
these shifts when the SSA name for the variable changes. One of
the most noticeable effects of the this analysis is that a variable
that is used independently in two sections of code does not take
space between execution of the sections.

Table 4 shows the performance of the memory allocation on an
assortment of shaders. Table 1 shows the amount of memory left
after the shading parameters, shader, light, and all overhead have
been factored out.

7 CONCLUSIONS
We have demonstrated an interactive graphics platform that sup-
ports procedural shading through a shading language. With our
system, we can write shaders in a high-level shading language,
compile them, and generate images at 30 frames per second or
more. To accomplish this, we modified a real-time API to sup-
port procedural shading and an existing shading language to
include features beneficial for a real-time implementation.

Our API is based on OpenGL, with extensions to support the
added flexibility of procedural shading. We believe the decision
to extend OpenGL instead of using the existing RenderMan API
was a good one. Many existing interactive graphics applications
are already written in OpenGL, and can be ported to PixelFlow
with relative ease. Whereas the RenderMan API has better sup-
port of curved surface primitives important for its user commu-
nity, OpenGL has better support for polygons, triangle strips and
display lists, important for interactive graphics hardware.

Our shading language is based on the RenderMan shading
language. Of the differences we introduced, only the fixed-point
data type was really necessary. We expect that future hardware-
assisted shading language implementations may also want simi-
lar fixed-point extensions. The other changes were either done
for implementation convenience or to fill holes in the Render-
Man shading language definition that have since been addressed
by more recent versions of RenderMan. If we were starting the

project over again today, we would just add fixed-point to the
current version of the RenderMan shading language.

We have only addressed surface shading and procedural lights.
RenderMan also allows other types of procedures, all of which
could be implemented on PixelFlow, but have not been. We also
do not have derivative functions, an important part of the Ren-
derMan shading language. Details on how these features could
be implemented on PixelFlow can be found in [Olano98]

We created a shading language compiler, which hides the de-
tails of our hardware architecture. The compiler also allows us to
invisibly do the optimizations necessary to run on our hardware.
We found the most useful optimizations to be those that happen
automatically. This is consistent with the shading language phi-
losophy of hiding system details from the shader writer.

Using a compiler and shading language to mask details of the
hardware architecture has been largely successful, but the hard-
ware limitations do peek through as shaders become short on
memory. Several of our users have been forced to manually con-
vert portions of their large shaders to fixed-point to allow them to
run. Even after such conversion, one of the shaders in Table 1
has only a single byte free. If a shader exceeds the memory re-
sources after it is converted to fixed-point, it cannot run on Pix-
elFlow. If this becomes a problem, we can add the capability to
spill pixel memory into texture memory, at a cost in execution
speed.

Any graphics engine capable of real-time procedural shading
will require significant pixel-level parallelism, though this par-
allelism may be achieved through MIMD processors instead of
SIMD as we used. For the near future, this level of parallelism
will imply a limited per-pixel memory pool. Consequently, we
expect our memory optimization techniques to be directly useful
for at least the next several real-time procedural-shading ma-
chines. Our bandwidth optimization techniques are somewhat
specific to the PixelFlow architecture, though should apply to
other deferred shading systems since they need to either transmit
or store the per-pixel appearance parameters between rendering
and shading. Deferred shading and our experience with function
approximation will be of interest for future SIMD machines. The
other execution optimizations, dealing with tasks that can be
done once instead of multiple times, will be of lasting applica-
bility to anyone attempting a procedural shading machine.

There is future work to be done extending some of our optimi-
zation techniques. In particular, we have barely scratched the
surface of automatic combined execution of portions of different
shaders. We do only the most basic of these optimizations auto-
matically. Some others we do with hints from the shader-writer,
whereas other possible optimizations are not done at all. For
example, we currently run every shader instance independently.
It would be relatively easy to identify and merge instances of the
same shader function that did not differ in any uniform parame-
ters. For a SIMD machine like ours, this would give linear speed
improvement with the number of instances we can execute to-
gether. Even more interesting would be to use the techniques of
[Dietz92] and [Guenter95] to combine code within a shader and
between shader instances with differing uniform parameter val-
ues.

shader total
(uniform +

varying)

varying
only

varying
with

allocation
simple brick 171 97 16
fancy brick 239 175 101
ripple reflection 341 193 137
wood planks 216 152 97

Table 4: Shader memory usage in bytes.

i = 1;
i = i + 1;
if (i > j)

i = 5;
j = i;

i1 = 1;
i2 = i1 + 1;
if (i2 > j1)

i3 = 5;
j2 = � (i2,i3);

i1 = 1;
i2_3 = i1 + 1;
if (i2_3 > j1)

i2_3 = 5;
j2 = i2_3;

a b c

Figure 10: Example of lifetime analysis using SSA. a)
original code fragment. b) code fragment in SSA form.
Note the new variables used for every assignment and
the use of the � -function for the ambiguous assignment.
c) final code fragment with � -functions merged.
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Creating a system that renders in real-time using a shading
language has been richly rewarding. We hope the experiences we
have outlined here will benefit others who attempt real-time
procedural shading.
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