
Chapter 2

NVIDIA
Bill Mark

 2-1

State of the Art in Hardware Shading – NVIDIA

SIGGRAPH 2002 Course Notes
William R. Mark

April 4, 2002

Programmable graphics hardware, APIs, and shading languages are evolving towards greater
generality and performance at a rate that is extremely rapid even by the standards of the computer
industry. Because course notes must be prepared almost four months in advance of the
SIGGRAPH conference, we can’t include truly state-of-the-art material in the course notes.
Instead, we will prepare a web site at http://www.nvidia.com/siggraph2002 that will provide
course attendees with material to complement the course presentation.

We are including in these course notes a copy of NVIDIA’s OpenGL extension specification for
the interface to the programmable vertex hardware in the GeForce3 and GeForce4. The
NV_vertex_program extension is similar to assembly- language- level interfaces that will
provide access to the capabilities of future NVIDIA GPUs.

 2-2

Name

 NV_vertex_program

Name Strings

 GL_NV_vertex_program

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' nvidia.com)

Notice

 Copyright NVIDIA Corporation, 2000, 2001, 2002.

IP Status

 NVIDIA Proprietary.

Status

 Version 1.6

Version

 NVIDIA Date: February 25, 2002
 $Date$ $Revision$
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_vertex_program.txt#16 $

Number

 233

Dependencies

 Written based on the wording of the OpenGL 1.2.1 specification and
 requires OpenGL 1.2.1.

 Requires support for the ARB_multitexture extension with at least
 two texture units.

 EXT_point_parameters affects the definition of this extension.

 EXT_secondary_color affects the definition of this extension.

 EXT_fog_coord affects the definition of this extension.

 EXT_vertex_weighting affects the definition of this extension.

 ARB_imaging affects the definition of this extension.

Overview

 Unextended OpenGL mandates a certain set of configurable per-vertex
 computations defining vertex transformation, texture coordinate
 generation and transformation, and lighting. Several extensions
 have added further per-vertex computations to OpenGL. For example,
 extensions have defined new texture coordinate generation modes
 (ARB_texture_cube_map, NV_texgen_reflection, NV_texgen_emboss), new
 vertex transformation modes (EXT_vertex_weighting), new lighting modes
 (OpenGL 1.2's separate specular and rescale normal functionality),
 several modes for fog distance generation (NV_fog_distance), and

 2-3

 eye-distance point size attenuation (EXT_point_parameters).

 Each such extension adds a small set of relatively inflexible
 per-vertex computations.

 This inflexibility is in contrast to the typical flexibility provided
 by the underlying programmable floating point engines (whether
 micro-coded vertex engines, DSPs, or CPUs) that are traditionally used
 to implement OpenGL's per-vertex computations. The purpose of this
 extension is to expose to the OpenGL application writer a significant
 degree of per-vertex programmability for computing vertex parameters.

 For the purposes of discussing this extension, a vertex program is
 a sequence of floating-point 4-component vector operations that
 determines how a set of program parameters (defined outside of
 OpenGL's begin/end pair) and an input set of per-vertex parameters
 are transformed to a set of per-vertex output parameters.

 The per-vertex computations for standard OpenGL given a particular
 set of lighting and texture coordinate generation modes (along with
 any state for extensions defining per-vertex computations) is, in
 essence, a vertex program. However, the sequence of operations is
 defined implicitly by the current OpenGL state settings rather than
 defined explicitly as a sequence of instructions.

 This extension provides an explicit mechanism for defining vertex
 program instruction sequences for application-defined vertex programs.
 In order to define such vertex programs, this extension defines
 a vertex programming model including a floating-point 4-component
 vector instruction set and a relatively large set of floating-point
 4-component registers.

 The extension's vertex programming model is designed for efficient
 hardware implementation and to support a wide variety of vertex
 programs. By design, the entire set of existing vertex programs
 defined by existing OpenGL per-vertex computation extensions can be
 implemented using the extension's vertex programming model.

Issues

 What should this extension be called?

 RESOLUTION: NV_vertex_program. DirectX 8 refers to its similar
 functionality as "vertex shaders". This is a confusing term
 because shaders are usually assumed to operate at the fragment or
 pixel level, not the vertex level.

 Conceptually, what the extension defines is an application-defined
 program (admittedly limited by its sequential execution model) for
 processing vertices so the "vertex program" term is more accurate.

 Additionally, some of the API machinery in this extension for
 describing programs could be useful for extending other OpenGL
 operations with programs (though other types of programs would
 likely look very different from vertex programs).

 What terms are important to this specification?

 vertex program mode - when vertex program mode is enabled, vertices
 are transformed by an application-defined vertex program.

 conventional GL vertex transform mode - when vertex program mode
 is disabled (or the extension is not supported), vertices are

 2-4

 transformed by GL's conventional texgen, lighting, and transform
 state.

 provoke - the verb that denotes the beginning of vertex
 transformation by either vertex program mode or conventional GL
 vertex transform mode. Vertices are provoked when either glVertex
 or glVertexAttribNV(0, ...) is called.

 program target - a type or class of program. This extension
 supports two program targets: the vertex program and the vertex
 state program. Future extensions could add other program targets.

 vertex program - an application-defined vertex program used to
 transform vertices when vertex program mode is enabled.

 vertex state program - a program similar to a vertex program.
 Unlike a vertex program, a vertex state program runs outside of
 a glBegin/glEnd pair. Vertex state programs do not transform
 a vertex. They just update program parameters.

 vertex attribute - one of 16 4-component per-vertex parameters
 defined by this extension. These attributes alias with the
 conventional per-vertex parameters.

 per-vertex parameter - a vertex attribute or a conventional
 per-vertex parameter such as set by glNormal3f or glColor3f.

 program parameter - one of 96 4-component registers available
 to vertex programs. The state of these registers is shared
 among all vertex programs.

 What part of OpenGL do vertex programs specifically bypass?

 Vertex programs bypass the following OpenGL functionality:

 o Normal transformation and normalization

 o Color material

 o Per-vertex lighting

 o Texture coordinate generation

 o The texture matrix

 o The normalization of AUTO_NORMAL evaluated normals

 o The modelview and projection matrix transforms

 o The per-vertex processing in EXT_point_parameters

 o The per-vertex processing in NV_fog_distance

 o Raster position transformation

 o Client-defined clip planes

 Operations not subsumed by vertex programs

 o The view frustum clip

 o Perspective divide (division by w)

 2-5

 o The viewport transformation

 o The depth range transformation

 o Clamping the primary and secondary color to [0,1]

 o Primitive assembly and subsequent operations

 o Evaluator (except the AUTO_NORMAL normalization)

 How specific should this specification be about precision?

 RESOLUTION: Reasonable precision requirements are incorporated
 into the specification beyond the often vague requirements of the
 core OpenGL specification.

 This extension essentially defines an instruction set and its
 corresponding execution environment. The instruction set specified
 may find applications beyond the traditional purposes of 3D vertex
 transformation, lighting, and texture coordinate generation that
 have fairly lax precision requirements. To facilitate such
 possibly unexpected applications of this functionality, minimum
 precision requirements are specified.

 The minimum precision requirements in the specification are meant
 to serve as a baseline so that application developers can write
 vertex programs with minimal worries about precision issues.

 What about when the "execution environment" involves support for
 other extensions?

 This extension assumes support for functionality that includes
 a fog distance, secondary color, point parameters, and multiple
 texture coordinates.

 There is a trade-off between requiring support for these extensions
 to guarantee a particular extended execution environment and
 requiring lots of functionality that everyone might not support.

 Application developers will desire a high baseline of functionality
 so that OpenGL applications using vertex programs can work in
 the full context of OpenGL. But if too much is required, the
 implementation burden mandated by the extension may limit the
 number of available implementations.

 Clearly we do not want to require support for 8 texture units
 even if the machinery is there for it. Still multitexture is a
 common and important feature for using vertex programs effectively.
 Requiring at least two texture units seems reasonable.

 What do we say about the alpha component of the secondary color?

 RESOLUTION: When vertex program mode is enabled, the alpha
 component of csec used for the color sum state is assumed always
 zero. Another downstream extension may actually make the alpha
 component written into the COL1 (or BFC1) vertex result register
 available.

 Should client-defined clip planes operate when vertex program mode is
 enabled?

 RESOLUTION. No.

 2-6

 OpenGL's client-defined clip planes are specified in eye-space.
 Vertex programs generate homogeneous clip space positions.
 Unlike the conventional OpenGL vertex transformation mode, vertex
 program mode requires no semantic equivalent to eye-space.

 Applications that require client-defined clip planes can simulate
 OpenGL-style client-defined clip planes by generating texture
 coordinates and using alpha testing or other per-fragment tests
 such as NV_texture_shader's CULL_FRAGMENT_NV program to discard
 fragments. In many ways, these schemes provide a more flexible
 mechanism for clipping than client-defined clip planes.

 Unfortunately, vertex programs used in conjunction with selection
 or feedback will not have a means to support client-defined clip
 planes because the per-fragment culling mechanisms described in the
 previous paragraph are not available in the selection or feedback
 render modes. Oh well.

 Finally, as a practical concern, client-defined clip planes
 greatly complicate clipping for various hardware rasterization
 architectures.

 How are edge flags handled?

 RESOLUTION: Passed through without the ability to be modified by
 a vertex program. Applications are free to send edge flags when
 vertex program mode is enabled.

 Should vertex attributes alias with conventional per-vertex
 parameters?

 RESOLUTION. YES.

 This aliasing should make it easy to use vertex programs with
 existing OpenGL code that transfers per-vertex parameters using
 conventional OpenGL per-vertex calls.

 It also minimizes the number of per-vertex parameters that the
 hardware must maintain.

 See Table X.2 for the aliasing of vertex attributes and conventional
 per-vertex parameters.

 How should vertex attribute arrays interact with conventional vertex
 arrays?

 RESOLUTION: When vertex program mode is enabled, a particular
 vertex attribute array will be used if enabled, but if disabled,
 and the corresponding aliased conventional vertex array is enabled
 (assuming that there is a corresponding aliased conventional vertex
 array for the particular vertex array), the conventional vertex
 array will be used.

 This matches the way immediate mode per-vertex parameter aliasing
 works.

 This does slightly complicate vertex array validation in program
 mode, but programmers using vertex arrays can simply enable vertex
 program mode without reconfiguring their conventional vertex arrays
 and get what they expect.

 Note that this does create an asymmetry between immediate mode
 and vertex arrays depending on whether vertex program mode is

 2-7

 enabled or not. The immediate mode vertex attribute commands
 operate unchanged whether vertex program mode is enabled or not.
 However the vertex attribute vertex arrays are used only when
 vertex program mode is enabled.

 Supporting vertex attribute vertex arrays when vertex program mode
 is disabled would create a large implementation burden for existing
 OpenGL implementations that have heavily optimized conventional
 vertex arrays. For example, the normal array can be assumed to
 always contain 3 and only 3 components in conventional OpenGL
 vertex transform mode, but may contain 1, 2, 3, or 4 components
 in vertex program mode.

 There is not any additional functionality gained by supporting
 vertex attribute arrays when vertex program mode is disabled, but
 there is lots of implementation overhead. In any case, it does not
 seem something worth encouraging so it is simply not supported.
 So vertex attribute arrays are IGNORED when vertex program mode
 is not enabled.

 Ignoring VertexAttribute commands or treating VertexAttribute
 commands as an error when vertex program mode is enabled
 would likely add overhead for such a conditional check. The
 implementation overhead for supporting VertexAttribute commands
 when vertex program mode is disabled is not that significant.
 Additionally, it is likely that setting persistent vertex attribute
 state while vertex program mode is disabled may be useful to
 applications. So vertex attribute immediate mode commands are
 PERMITTED when vertex program mode is not enabled.

 Colors and normals specified as ints, uints, shorts, ushorts, bytes,
 and ubytes are converted to floating-point ranges when supplied to
 core OpenGL as described in Table 2.6. Other per-vertex attributes
 such as texture coordinates and positions are not converted.
 How does this mix with vertex programs where all vertex attributes
 are supposedly treated identically?

 RESOLUTION: Vertex attributes specified as bytes and ubytes are
 always converted as described in Table 2.6. All other formats are
 not converted according to Table 2.6 but simply converted directly
 to floating-point.

 The ubyte type is converted because those types seem more useful
 for passing colors in the [0,1] range.

 If an application desires a conversion, the conversion can be
 incorporated into the vertex program itself.

 This also applies to vertex attribute arrays. However, by enabling
 a color or normal vertex array and not enabling the corresponding
 aliased vertex attribute array, programmers can get the conventional
 conversions for color and normal arrays (but only for the vertex
 attribute arrays that alias to the conventional color and normal
 arrays and only with the sizes/types supported by these color and
 normal arrays).

 Should programs be C-style null-terminated strings?

 RESOLUTION: No. Programs should be specified as an array of
 GLubyte with an explicit length parameter. OpenGL has no precedent
 for passing null-terminated strings into the API (though glGetString
 returns null-terminated strings). Null-terminated strings are
 problematic for some languages.

 2-8

 Should all existing OpenGL transform functionality and extensions
 be implementable as vertex programs?

 RESOLUTION: Yes. Vertex programs should be a complete superset
 of what you can do with OpenGL 1.2 and existing vertex transform
 extensions.

 To implement EXT_point_parameters, the
 GL_VERTEX_PROGRAM_POINT_SIZE_NV enable is introduced.

 To implement two-sided lighting, the GL_VERTEX_PROGRAM_TWO_SIDE_NV
 enable is introduced.

 How does glPointSize work with vertex programs?

 RESOLUTION: If GL_VERTEX_PROGRAM_POINT_SIZE_NV is disabled, the size
 of points is determine by the glPointSize state. If enabled,
 the point size is determined per-vertex by the clamped value of
 the vertex result PSIZ register.

 Can the currently bound vertex program object name be deleted or
 reloaded?

 RESOLUTION. Yes. When a vertex program object name is deleted
 or reloaded when it is the currently bound vertex program object,
 it is as if a rebind occurs after the deletion or reload.

 In the case of a reload, the new vertex program object will be
 used from then on. In the case of a deletion, the current vertex
 program object will be treated as if it is nonexistent.

 Should program objects have a mechanism for managing program
 residency?

 RESOLUTION: Yes. Vertex program instruction memory is a limited
 hardware resource. glBindProgramNV will be faster if binding to
 a resident program. Applications are likely to want to quickly
 switch between a small collection of programs.

 glAreProgramsResidentNV allows the residency status of a
 group of programs to be queried. This mimics
 glAreTexturesResident.

 Instead of adopting the glPrioritizeTextures mechanism, a new
 glRequestResidentProgramsNV command is specified instead.
 Assigning priorities to textures has always been a problematic
 endeavor and few OpenGL implementations implemented it effectively.
 For the priority mechanism to work well, it requires the client
 to routinely update the priorities of textures.

 The glRequestResidentProgramsNV indicates to the GL that a
 set of programs are intended for use together. Because all
 the programs are requesting residency as a group, drivers
 should be able to attempt to load all the requested programs
 at once (and remove from residency programs not in the group if
 necessary). Clients can use glAreProgramsResidentNV to query the
 relative success of the request.

 glRequestResidentProgramsNV should be superior to loading programs
 on-demand because fragmentation can be avoided.

 What happens when you execute a nonexistent or invalid program?

 2-9

 RESOLUTION: glBegin will fail with a GL_INVALID_OPERATION if the
 currently bound vertex program is nonexistent or invalid. The same
 applies to glRasterPos and any command that implies a glBegin.

 Because the glVertex and glVertexAttribNV(0, ...) are ignored
 outside of a glBegin/glEnd pair (without generating an error) it
 is impossible to provoke a vertex program if the current vertex
 program is nonexistent or invalid. Other per-vertex parameters
 (for examples those set by glColor, glNormal, and glVertexAttribNV
 when the attribute number is not zero) are recorded since they
 are legal outside of a glBegin/glEnd.

 For vertex state programs, the problem is simpler because
 glExecuteProgramNV can immediately fail with a GL_INVALID_OPERATION
 when the named vertex state program is nonexistent or invalid.

 What happens when a matrix has been tracked into a set of program
 parameters, but then glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, addr,
 GL_NONE, GL_IDENTITY_NV) is performed?

 RESOLUTION: The specified program parameters stop tracking a
 matrix, but they retain the values of the matrix they were last
 tracking.

 Can rows of tracked matrices be queried by querying the program
 parameters that track them?

 RESOLUTION: Yes.

 Discussing matrices is confusing because of row-major versus
 column-major issues. Can you give an example of how a matrix is
 tracked?

 GLfloat matrix[16] = { 1, 5, 9, 13,
 2, 6, 10, 14,
 3, 7, 11, 15,
 4, 8, 12, 16 };
 GLfloat row1[4], row2[4];

 glMatrixMode(GL_MATRIX0_NV);
 glLoadMatrixf(matrix);
 glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 4, GL_MATRIX0_NV, GL_IDENTITY_NV);
 glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 8, GL_MATRIX0_NV, GL_TRANSPOSE_NV);
 glGetProgramParameterfvNV(GL_VERTEX_PROGRAM_NV, 5,
 GL_PROGRAM_PARAMETER_NV, row1);
 /* row1 is now [2 6 10 14] */
 glGetProgramParameterfvNV(GL_VERTEX_PROGRAM_NV, 9,
 GL_PROGRAM_PARAMETER_NV, row2);
 /* row2 is now [5 6 7 8] because the tracked matrix is transposed */

 Should evaluators be extended to evaluate arbitrary vertex
 attributes?

 RESOLUTION: Yes. We'll support 32 new maps (16 for MAP1 and 16
 for MAP2) that take priority over the conventional maps that they
 might alias to (only when vertex program mode is enabled).

 These new maps always evaluate all four components. The rationale
 for this is that if we supported 1, 2, 3, or 4 components, that
 would add 128 (16*4*2) enumerants which is too many. In addition,
 if you wanted to evaluate two 2-component vertex attributes, you
 could instead generate one 4-component vertex attribute and use

 2-10

 the vertex program with swizzling to treat this as two-components.

 Moreover, we are assuming 4-component vector instructions so less
 than 4-component evaluations might not be any more efficient
 than 4-component evaluations. Implementations that use vector
 instructions such as Intel's SSE instructions will be easier to
 implement since they can focus on optimizing just the 4-component
 case.

 How should GL_AUTO_NORMAL work with vertex programs?

 RESOLUTION: GL_AUTO_NORMAL should NOT guarantee that the generated
 analytical normal be normalized. In vertex program mode, the
 current vertex program can easily normalize the normal if required.

 This can lead to greater efficiency if the vertex program transforms
 the normal to another coordinate system such as eye-space with a
 transform that preserves vector length. Then a single normalize
 after transform is more efficient than normalizing after evaluation
 and also normalizing after transform.

 Conceptually, the normalize mandated for AUTO_NORMAL in section
 5.1 is just one of the many transformation operations subsumed by
 vertex programs.

 Should the new vertex program related enables push/pop with
 GL_ENABLE_BIT?

 RESOLUTION: Yes. Pushing and popping enable bits is easy.
 This includes the 32 new evaluator map enable bits. These evaluator
 enable bits are also pushed and popped using GL_EVAL_BIT.

 Should all the vertex attribute state push/pop with GL_CURRENT_BIT?

 RESOLUTION: Yes. The state is aliased with the conventional
 per-vertex parameter state so it really should push/pop.

 Should all the vertex attrib vertex array state push/pop with
 GL_CLIENT_VERTEX_ARRAY_BIT?

 RESOLUTION: Yes.

 Should all the other vertex program-related state push/pop somehow?

 RESOLUTION: No.

 The other vertex program doesn't fit well with the existing bits.
 To be clear, GL_ALL_ATTRIB_BITS does not push/pop vertex program
 state other than enables.

 Should we generate a GL_INVALID_OPERATION operation if updating
 a vertex attribute greater than 15?

 RESOLUTION: Yes.

 The other option would be to mask or modulo the vertex attribute
 index with 16. This is cheap, but it would make it difficult to
 increase the number of vertex attributes in the future.

 If we check for the error, it should be a well predicted branch
 for immediate mode calls. For vertex arrays, the check is only
 required at vertex array specification time.

 2-11

 Hopefully this will encourage people to use vertex arrays over
 immediate mode.

 Should writes to program parameter registers during a vertex program
 be supported?

 RESOLUTION. No.

 Writes to program parameter registers from within a vertex program
 would require the execution of vertex programs to be serialized
 with respect to each other. This would create an unwarranted
 implementation penalty for parallel vertex program execution
 implementations.

 However vertex state programs may write to program parameter
 registers (that is the whole point of vertex state programs).

 Should we support variously sized immediate mode byte and ubyte
 commands? How about for vertex arrays?

 RESOLUTION. Only support the 4ub mode.

 There are simply too many glVertexAttribNV routines. Passing less
 than 4 bytes at a time is inefficient. We expect the main use
 for bytes to be for colors where these will be unsigned bytes.
 So let's just support 4ub mode for bytes. This applies to
 vertex arrays too.

 Should we support integer, unsigned integer, and unsigned short
 formats for vertex attributes?

 RESOLUTION: No. It's just too many immediate mode entry points,
 most of which are not that useful. Signed shorts are supported
 however. We expect signed shorts to be useful for passing compact
 texture coordinates.

 Should we support doubles for vertex attributes?

 RESOLUTION: Yes. Some implementation of the extension might
 support double precision. Lots of math routines output double
 precision.

 Should there be a way to determine where in a loaded program
 string the first parse error occurs?

 RESOLUTION: Yes. You can query PROGRAM_ERROR_POSITION_NV.

 Should program objects be shared among rendering contexts in the
 same manner as display lists and texture objects?

 RESOLUTION: Yes.

 How should this extension interact with color material?

 RESOLUTION: It should not. Color material is a conventional
 OpenGL vertex transform mode. It does not have a place for vertex
 programs. If you want to emulate color material with vertex
 programs, you would simply write a program where the material
 parameters feed from the color vertex attribute.

 Should there be a glMatrixMode or glActiveTextureARB style selector
 for vertex attributes?

 2-12

 RESOLUTION: No. While this would let us reduce a lot of
 enumerants down, it would make programming a hassle in lots
 of cases. Consider having to change the vertex attribute
 mode to enable a set of vertex arrays.

 How should gets for vertex attribute array pointers?

 RESOLUTION: Add new get commands. Using the existing calls
 would require adding 4 sets of 16 enumerants stride, type, size,
 and pointer. That's too many gets.

 Instead add glGetVertexAttribNV and glGetVertexAttribPointervNV.
 glGetVertexAttribNV is also useful for querying the current vertex
 attribute.

 glGet and glGetPointerv will not return vertex attribute array
 pointers.

 Why is the address register numbered and why is it a vector
 register?

 In the future, A0.y and A0.z and A0.w may exist. For this
 extension, only A0.x is useful. Also in the future, there may be
 more than one address register.

 There's a nice consistency in thinking about all the registers
 as 4-component vectors even if the address register has only one
 usable component.

 Should vertex programs and vertex state programs be required to
 have a header token and an end token?

 RESOLUTION: Yes.

 The "!!VP1.0" and "!!VSP1.0" tokens start vertex programs and
 vertex state programs respectively. Both types of programs must
 end with the "END" token.

 The initial header token reminds the programmer what type of program
 they are writing. If vertex programs and vertex state programs are
 ever read from disk files, the header token can serve as a magic
 number for identifying vertex programs and vertex state programs.

 The target type for vertex programs and vertex state programs can be
 distinguished based on their respective grammars independent of the
 initial header tokens, but the initial header tokens will make it
 easier for programmers to distinguish the two program target types.

 We expect programs to often be generated by concatenation of
 program fragments. The "END" token will hopefully reduce bugs
 due to specifying an incorrectly concatenated program.

 It's tempting to make these additional header and end tokens
 optional, but if there is a sanity check value in header and end
 tokens, that value is undermined if the tokens are optional.

 What should be said about rendering invariances?

 RESOLUTION: See the Appendix A additions below.

 The justification for the two rules cited is to support multi-pass
 rendering when using vertex programs. Different rendering passes
 will likely use different programs so there must be some means of

 2-13

 guaranteeing that two different programs can generate particular
 identical vertex results between different passes.

 In practice, this does limit the type of vertex program
 implementations that are possible.

 For example, consider a limited hardware implementation of vertex
 programs that uses a different floating-point implementation
 than the CPU's floating-point implementation. If the limited
 hardware implementation can only run small vertex programs (say
 the hardware provides on 4 temporary registers instead of the
 required 12), the implementation is incorrect and non-conformant
 if programs that only require 4 temporary registers use the vertex
 program hardware, but programs that require more than 4 temporary
 registers are implemented by the CPU.

 This is a very important practical requirement. Consider a
 multi-pass rendering algorithm where one pass uses a vertex program
 that uses only 4 temporary registers, but a different pass uses a
 vertex program that uses 5 temporary registers. If two programs
 have instruction sequences that given the same input state compute
 identical resulting vertex positions, the multi-pass algorithm
 should generate identically positioned primitives for each pass.
 But given the non-conformant vertex program implementation described
 above, this could not be guaranteed.

 This does not mean that schemes for splitting vertex program
 implementations between dedicated hardware and CPUs are impossible.
 If the CPU and dedicated vertex program hardware used IDENTICAL
 floating-point implementations and therefore generated exactly
 identical results, the above described could work.

 While these invariance rules are vital for vertex programs operating
 correctly for multi-pass algorithms, there is no requirement that
 conventional OpenGL vertex transform mode will be invariant with
 vertex program mode. A multi-pass algorithm should not assume
 that one pass using vertex program mode and another pass using
 conventional GL vertex transform mode will generate identically
 positioned primitives.

 Consider that while the conventional OpenGL vertex program mode
 is repeatable with itself, the exact procedure used to transform
 vertices is not specified nor is the procedure's precision
 specified. The GL specification indicates that vertex coordinates
 are transformed by the modelview matrix and then transformed by the
 projection matrix. Some implementations may perform this sequence
 of transformations exactly, but other implementations may transform
 vertex coordinates by the composite of the modelview and projection
 matrices (one matrix transform instead of two matrix transforms
 in sequence). Given this implementation flexibility, there is no
 way for a vertex program author to exactly duplicate the precise
 computations used by the conventional OpenGL vertex transform mode.

 The guidance to OpenGL application programs is clear. If you are
 going to implement multi-pass rendering algorithms that require
 certain invariances between the multiple passes, choose either
 vertex program mode or the conventional OpenGL vertex transform
 mode for your rendering passes, but do not mix the two modes.

 What range of relative addressing offsets should be allowed?

 RESOLUTION: -64 to 63.

 2-14

 Negative offsets are useful for accessing a table centered at zero
 without extra bias instructions. Having the offsets support much
 larger magnitudes just seems to increase the required instruction
 widths. The -64 to 63 range seems like a reasonable compromise.

 When EXT_secondary_color is supported, how does the GL_COLOR_SUM_EXT
 enable affect vertex program mode?

 RESOLUTION: The GL_COLOR_SUM_EXT enable has no affect when vertex
 program mode is enabled.

 When vertex program mode is enabled, the color sum operation is
 always in operation. A program can "avoid" the color sum operation
 by not writing the COL1 (or BFC1 when GL_VERTEX_PROGRAM_TWO_SIDE_NV)
 vertex result registers because the default values of all vertex
 result registers is (0,0,0,1). For the color sum operation,
 the alpha value is always assumed zero. So by not writing the
 secondary color vertex result registers, the program assures that
 zero is added as part of the color sum operation.

 If there is a cost to the color sum operation, OpenGL
 implementations may be smart enough to determine at program bind
 time whether a secondary color vertex result is generated and
 implicitly disable the color sum operation.

 Why must RCP of 1.0 always be 1.0?

 This is important for 3D graphics so that non-projective textures
 and orthogonal projections work as expected. Basically when q or
 w is 1.0, things should work as expected.

 Stronger requirements such as "RCP of -1.0 must always be -1.0"
 are encouraged, but there is no compelling reason to state such
 requirements explicitly as is the case for "RCP of 1.0 must always
 be 1.0".

 What happens when the source scalar value for the ARL instruction
 is an extremely positive or extremely negative floating-point value?
 Is there a problem mapping the value to a constrained integer range?

 RESOLUTION: It is not a problem. Relative addressing can by offset
 by a limited range of offsets (-64 to 63). Relative addressing
 that falls outside of the 0 to 95 range of program parameter
 registers is automatically mapped to (0,0,0,0).

 Clamping the source scalar value for ARL to the range -64 to 160
 inclusive is sufficient to ensure that relative addressing is out
 of range.

 How do you perform a 3-component normalize in three instructions?

 #
 # R1 = (nx,ny,nz)
 #
 # R0.xyz = normalize(R1)
 # R0.w = 1/sqrt(nx*nx + ny*ny + nz*nz)
 #
 DP3 R0.w, R1, R1;
 RSQ R0.w, R0.w;
 MUL R0.xyz, R1, R0.w;

 How do you perform a 3-component cross product in two instructions?

 2-15

 #
 # Cross product | i j k | into R2.
 # | R0.x R0.y R0.z |
 # | R1.x R1.y R1.z |
 #
 MUL R2, R0.zxyw, R1.yzxw;
 MAD R2, R0.yzxw, R1.zxyw, -R2;

 How do you perform a 4-component vector absolute value in one
 instruction?

 #
 # Absolute value is the maximum of the negative and positive
 # components of a vector.
 #
 # R1 = abs(R0)
 #
 MAX R1, R0, -R0;

 How do you compute the determinant of a 3x3 matrix in three
 instructions?

 #
 # Determinant of | R0.x R0.y R0.z | into R3
 # | R1.x R1.y R1.z |
 # | R2.x R2.y R2.z |
 #
 MUL R3, R1.zxyw, R2.yzxw;
 MAD R3, R1.yzxw, R2.zxyw, -R3;
 DP3 R3, R0, R3;

 How do you transform a vertex position by a 4x4 matrix and then
 perform a homogeneous divide?

 #
 # c[20] = modelview row 0
 # c[21] = modelview row 1
 # c[22] = modelview row 2
 # c[23] = modelview row 3
 #
 # result = R5
 #
 DP4 R5.w, v[OPOS], c[23];
 DP4 R5.x, v[OPOS], c[20];
 DP4 R5.y, v[OPOS], c[21];
 DP4 R5.z, v[OPOS], c[22];
 RCP R11, R5.w;
 MUL R5,R5,R11;

 How do you perform a vector weighting of two vectors using a single
 weight?

 #
 # R2 = vector 0
 # R3 = vector 1
 # v[WGHT].x = scalar weight to blend vectors 0 and 1
 # result = R2 * v[WGHT].x + R3 * (1-v[WGHT])
 #
 # this is because A*B + (1-A)*C = A*(B-C) + C
 #
 ADD R4, R2, -R3;
 MAD R4, v[WGHT].x, R4, R3;

 2-16

 How do you reduce a value to some fundamental period such as 2*PI?

 #
 # c[36] = (1.0/(2*PI), 2*PI, 0.0, 0.0)
 #
 # R1.x = input value
 # R2 = result
 #
 MUL R0, R1, c[36].x;
 EXP R4, R0.x;
 MUL R2, R4.y, c[36].y;

 How do you implement a simple specular and diffuse lighting
 computation with an eye-space normal?

 !!VP1.0
 #
 # c[0-3] = modelview projection (composite) matrix
 # c[4-7] = modelview inverse transpose
 # c[32] = normalized eye-space light direction (infinite light)
 # c[33] = normalized constant eye-space half-angle vector (infinite viewer)
 # c[35].x = pre-multiplied monochromatic diffuse light color & diffuse material
 # c[35].y = pre-multiplied monochromatic ambient light color & diffuse material
 # c[36] = specular color
 # c[38].x = specular power
 #
 # outputs homogenous position and color
 #
 DP4 o[HPOS].x, c[0], v[OPOS];
 DP4 o[HPOS].y, c[1], v[OPOS];
 DP4 o[HPOS].z, c[2], v[OPOS];
 DP4 o[HPOS].w, c[3], v[OPOS];
 DP3 R0.x, c[4], v[NRML];
 DP3 R0.y, c[5], v[NRML];
 DP3 R0.z, c[6], v[NRML]; # R0 = n' = transformed normal
 DP3 R1.x, c[32], R0; # R1.x = Lpos DOT n'
 DP3 R1.y, c[33], R0; # R1.y = hHat DOT n'
 MOV R1.w, c[38].x; # R1.w = specular power
 LIT R2, R1; # Compute lighting values
 MAD R3, c[35].x, R2.y, c[35].y; # diffuse + emissive
 MAD o[COL0].xyz, c[36], R2.z, R3; # + specular
 END

 Can you perturb transformed vertex positions with a vertex program?

 Yes. Here is an example that performs an object-space diffuse
 lighting computations and perturbs the vertex position based on
 this lighting result. Do not take this example too seriously.

 !!VP1.0
 #
 # c[0-3] = modelview projection (composite) matrix
 # c[32] = normalized light direction in object-space
 # c[35] = yellow diffuse material, (1.0, 1.0, 0.0, 1.0)
 # c[64].x = 0.0
 # c[64].z = 0.125, a scaling factor
 #
 # outputs diffuse illumination for color and perturbed position
 #
 DP3 R0, c[32], v[NRML]; # light direction DOT normal
 MUL o[COL0].xyz, R0, c[35];
 MAX R0, c[64].x, R0;
 MUL R0, R0, v[NRML];

 2-17

 MUL R0, R0, c[64].z;
 ADD R1, v[OPOS], -R0; # perturb object space position
 DP4 o[HPOS].x, c[0], R1;
 DP4 o[HPOS].y, c[1], R1;
 DP4 o[HPOS].z, c[2], R1;
 DP4 o[HPOS].w, c[3], R1;
 END

 What if more exponential precision is needed than provided by the
 builtin EXP instruction?

 A sequence of vertex program instructions can be used refine
 the initial EXP approximation. The pseudo-macro below shows an
 example of how to refine the EXP approximation.

 The psuedo-macro requires 10 instructions, 1 temp register,
 and 2 constant locations.

 CE0 = { 9.61597636e-03, -1.32823968e-03, 1.47491097e-04, -1.08635004e-05 };
 CE1 = { 1.00000000e+00, -6.93147182e-01, 2.40226462e-01, -5.55036440e-02 };

 /* Rt != Ro && Rt != Ri */
 EXP_MACRO(Ro:vector, Ri:scalar, Rt:vector) {
 EXP Rt, Ri.x; /* Use appropriate component of Ri */
 MAD Rt.w, c[CE0].w, Rt.y, c[CE0].z;
 MAD Rt.w, Rt.w,Rt.y, c[CE0].y;
 MAD Rt.w, Rt.w,Rt.y, c[CE0].x;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].w;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].z;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].y;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].x;
 RCP Rt.w, Rt.w;
 MUL Ro, Rt.w, Rt.x; /* Apply user write mask to Ro */
 }

 Simulation gives |max abs error| < 3.77e-07 over the range (0.0
 <= x < 1.0). Actual vertex program precision may be slightly
 less accurate than this.

 What if more exponential precision is needed than provided by the
 builtin LOG instruction?

 The pseudo-macro requires 10 instructions, 1 temp register,
 and 3 constant locations.

 CL0 = { 2.41873696e-01, -1.37531206e-01, 5.20646796e-02, -9.31049418e-03 };
 CL1 = { 1.44268966e+00, -7.21165776e-01, 4.78684813e-01, -3.47305417e-01 };
 CL2 = { 1.0, NA, NA, NA };

 /* Rt != Ro && Rt != Ri */
 LOG_MACRO(Ro:vector, Ri:scalar, Rt:vector) {
 LOG Rt, Ri.x; /* Use appropriate component of Ri */
 ADD Rt.y, Rt.y, -c[CL2].x;
 MAD Rt.w, c[CL0].w, Rt.y, c[CL0].z;
 MAD Rt.w, Rt.w, Rt.y,c[CL0].y;
 MAD Rt.w, Rt.w, Rt.y,c[CL0].x;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].w;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].z;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].y;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].x;
 MAD Ro, Rt.w, Rt.y, Rt.x; /* Apply user write mask to Ro */
 }

 2-18

 Simulation gives |max abs error| < 1.79e-07 over the range (1.0
 <= x < 2.0). Actual vertex program precision may be slightly
 less accurate than this.

New Procedures and Functions

 void BindProgramNV(enum target, uint id);

 void DeleteProgramsNV(sizei n, const uint *ids);

 void ExecuteProgramNV(enum target, uint id, const float *params);

 void GenProgramsNV(sizei n, uint *ids);

 boolean AreProgramsResidentNV(sizei n, const uint *ids,
 boolean *residences);

 void RequestResidentProgramsNV(sizei n, uint *ids);

 void GetProgramParameterfvNV(enum target, uint index,
 enum pname, float *params);
 void GetProgramParameterdvNV(enum target, uint index,
 enum pname, double *params);

 void GetProgramivNV(uint id, enum pname, int *params);

 void GetProgramStringNV(uint id, enum pname, ubyte *program);

 void GetTrackMatrixivNV(enum target, uint address,
 enum pname, int *params);

 void GetVertexAttribdvNV(uint index, enum pname, double *params);
 void GetVertexAttribfvNV(uint index, enum pname, float *params);
 void GetVertexAttribivNV(uint index, enum pname, int *params);

 void GetVertexAttribPointervNV(uint index, enum pname, void **pointer);

 boolean IsProgramNV(uint id);

 void LoadProgramNV(enum target, uint id, sizei len,
 const ubyte *program);

 void ProgramParameter4fNV(enum target, uint index,
 float x, float y, float z, float w)
 void ProgramParameter4dNV(enum target, uint index,
 double x, double y, double z, double w)

 void ProgramParameter4dvNV(enum target, uint index,
 const double *params);
 void ProgramParameter4fvNV(enum target, uint index,
 const float *params);

 void ProgramParameters4dvNV(enum target, uint index,
 uint num, const double *params);
 void ProgramParameters4fvNV(enum target, uint index,
 uint num, const float *params);

 void TrackMatrixNV(enum target, uint address,
 enum matrix, enum transform);

 void VertexAttribPointerNV(uint index, int size, enum type, sizei stride,
 const void *pointer);

 2-19

 void VertexAttrib1sNV(uint index, short x);
 void VertexAttrib1fNV(uint index, float x);
 void VertexAttrib1dNV(uint index, double x);
 void VertexAttrib2sNV(uint index, short x, short y);
 void VertexAttrib2fNV(uint index, float x, float y);
 void VertexAttrib2dNV(uint index, double x, double y);
 void VertexAttrib3sNV(uint index, short x, short y, short z);
 void VertexAttrib3fNV(uint index, float x, float y, float z);
 void VertexAttrib3dNV(uint index, double x, double y, double z);
 void VertexAttrib4sNV(uint index, short x, short y, short z, short w);
 void VertexAttrib4fNV(uint index, float x, float y, float z, float w);
 void VertexAttrib4dNV(uint index, double x, double y, double z, double w);
 void VertexAttrib4ubNV(uint index, ubyte x, ubyte y, ubyte z, ubyte w);

 void VertexAttrib1svNV(uint index, const short *v);
 void VertexAttrib1fvNV(uint index, const float *v);
 void VertexAttrib1dvNV(uint index, const double *v);
 void VertexAttrib2svNV(uint index, const short *v);
 void VertexAttrib2fvNV(uint index, const float *v);
 void VertexAttrib2dvNV(uint index, const double *v);
 void VertexAttrib3svNV(uint index, const short *v);
 void VertexAttrib3fvNV(uint index, const float *v);
 void VertexAttrib3dvNV(uint index, const double *v);
 void VertexAttrib4svNV(uint index, const short *v);
 void VertexAttrib4fvNV(uint index, const float *v);
 void VertexAttrib4dvNV(uint index, const double *v);
 void VertexAttrib4ubvNV(uint index, const ubyte *v);

 void VertexAttribs1svNV(uint index, sizei n, const short *v);
 void VertexAttribs1fvNV(uint index, sizei n, const float *v);
 void VertexAttribs1dvNV(uint index, sizei n, const double *v);
 void VertexAttribs2svNV(uint index, sizei n, const short *v);
 void VertexAttribs2fvNV(uint index, sizei n, const float *v);
 void VertexAttribs2dvNV(uint index, sizei n, const double *v);
 void VertexAttribs3svNV(uint index, sizei n, const short *v);
 void VertexAttribs3fvNV(uint index, sizei n, const float *v);
 void VertexAttribs3dvNV(uint index, sizei n, const double *v);
 void VertexAttribs4svNV(uint index, sizei n, const short *v);
 void VertexAttribs4fvNV(uint index, sizei n, const float *v);
 void VertexAttribs4dvNV(uint index, sizei n, const double *v);
 void VertexAttribs4ubvNV(uint index, sizei n, const ubyte *v);

New Tokens

 Accepted by the <cap> parameter of Disable, Enable, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
 and GetDoublev, and by the <target> parameter of BindProgramNV,
 ExecuteProgramNV, GetProgramParameter[df]vNV, GetTrackMatrixivNV,
 LoadProgramNV, ProgramParameter[s]4[df][v]NV, and TrackMatrixNV:

 VERTEX_PROGRAM_NV 0x8620

 Accepted by the <cap> parameter of Disable, Enable, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
 and GetDoublev:

 VERTEX_PROGRAM_POINT_SIZE_NV 0x8642
 VERTEX_PROGRAM_TWO_SIDE_NV 0x8643

 Accepted by the <target> parameter of ExecuteProgramNV and
 LoadProgramNV:

 VERTEX_STATE_PROGRAM_NV 0x8621

 2-20

 Accepted by the <pname> parameter of GetVertexAttrib[dfi]vNV:

 ATTRIB_ARRAY_SIZE_NV 0x8623
 ATTRIB_ARRAY_STRIDE_NV 0x8624
 ATTRIB_ARRAY_TYPE_NV 0x8625
 CURRENT_ATTRIB_NV 0x8626

 Accepted by the <pname> parameter of GetProgramParameterfvNV
 and GetProgramParameterdvNV:

 PROGRAM_PARAMETER_NV 0x8644

 Accepted by the <pname> parameter of GetVertexAttribPointervNV:

 ATTRIB_ARRAY_POINTER_NV 0x8645

 Accepted by the <pname> parameter of GetProgramivNV:

 PROGRAM_TARGET_NV 0x8646
 PROGRAM_LENGTH_NV 0x8627
 PROGRAM_RESIDENT_NV 0x8647

 Accepted by the <pname> parameter of GetProgramStringNV:

 PROGRAM_STRING_NV 0x8628

 Accepted by the <pname> parameter of GetTrackMatrixivNV:

 TRACK_MATRIX_NV 0x8648
 TRACK_MATRIX_TRANSFORM_NV 0x8649

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_TRACK_MATRIX_STACK_DEPTH_NV 0x862E
 MAX_TRACK_MATRICES_NV 0x862F
 CURRENT_MATRIX_STACK_DEPTH_NV 0x8640
 CURRENT_MATRIX_NV 0x8641
 VERTEX_PROGRAM_BINDING_NV 0x864A
 PROGRAM_ERROR_POSITION_NV 0x864B

 Accepted by the <matrix> parameter of TrackMatrixNV:

 NONE
 MODELVIEW
 PROJECTION
 TEXTURE
 COLOR (if ARB_imaging is supported)
 MODELVIEW_PROJECTION_NV 0x8629
 TEXTUREi_ARB

 where i is between 0 and n-1 where n is the number of texture units
 supported.

 Accepted by the <matrix> parameter of TrackMatrixNV and by the
 <mode> parameter of MatrixMode:

 MATRIX0_NV 0x8630
 MATRIX1_NV 0x8631
 MATRIX2_NV 0x8632
 MATRIX3_NV 0x8633
 MATRIX4_NV 0x8634

 2-21

 MATRIX5_NV 0x8635
 MATRIX6_NV 0x8636
 MATRIX7_NV 0x8637

 (Enumerants 0x8638 through 0x863F are reserved for further matrix
 enumerants 8 through 15.)

 Accepted by the <transform> parameter of TrackMatrixNV:

 IDENTITY_NV 0x862A
 INVERSE_NV 0x862B
 TRANSPOSE_NV 0x862C
 INVERSE_TRANSPOSE_NV 0x862D

 Accepted by the <array> parameter of EnableClientState and
 DisableClientState, by the <cap> parameter of IsEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and
 GetDoublev:

 VERTEX_ATTRIB_ARRAY0_NV 0x8650
 VERTEX_ATTRIB_ARRAY1_NV 0x8651
 VERTEX_ATTRIB_ARRAY2_NV 0x8652
 VERTEX_ATTRIB_ARRAY3_NV 0x8653
 VERTEX_ATTRIB_ARRAY4_NV 0x8654
 VERTEX_ATTRIB_ARRAY5_NV 0x8655
 VERTEX_ATTRIB_ARRAY6_NV 0x8656
 VERTEX_ATTRIB_ARRAY7_NV 0x8657
 VERTEX_ATTRIB_ARRAY8_NV 0x8658
 VERTEX_ATTRIB_ARRAY9_NV 0x8659
 VERTEX_ATTRIB_ARRAY10_NV 0x865A
 VERTEX_ATTRIB_ARRAY11_NV 0x865B
 VERTEX_ATTRIB_ARRAY12_NV 0x865C
 VERTEX_ATTRIB_ARRAY13_NV 0x865D
 VERTEX_ATTRIB_ARRAY14_NV 0x865E
 VERTEX_ATTRIB_ARRAY15_NV 0x865F

 Accepted by the <target> parameter of GetMapdv, GetMapfv, GetMapiv,
 Map1d and Map1f and by the <cap> parameter of Enable, Disable, and
 IsEnabled, and by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAP1_VERTEX_ATTRIB0_4_NV 0x8660
 MAP1_VERTEX_ATTRIB1_4_NV 0x8661
 MAP1_VERTEX_ATTRIB2_4_NV 0x8662
 MAP1_VERTEX_ATTRIB3_4_NV 0x8663
 MAP1_VERTEX_ATTRIB4_4_NV 0x8664
 MAP1_VERTEX_ATTRIB5_4_NV 0x8665
 MAP1_VERTEX_ATTRIB6_4_NV 0x8666
 MAP1_VERTEX_ATTRIB7_4_NV 0x8667
 MAP1_VERTEX_ATTRIB8_4_NV 0x8668
 MAP1_VERTEX_ATTRIB9_4_NV 0x8669
 MAP1_VERTEX_ATTRIB10_4_NV 0x866A
 MAP1_VERTEX_ATTRIB11_4_NV 0x866B
 MAP1_VERTEX_ATTRIB12_4_NV 0x866C
 MAP1_VERTEX_ATTRIB13_4_NV 0x866D
 MAP1_VERTEX_ATTRIB14_4_NV 0x866E
 MAP1_VERTEX_ATTRIB15_4_NV 0x866F

 Accepted by the <target> parameter of GetMapdv, GetMapfv, GetMapiv,
 Map2d and Map2f and by the <cap> parameter of Enable, Disable, and
 IsEnabled, and by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 2-22

 MAP2_VERTEX_ATTRIB0_4_NV 0x8670
 MAP2_VERTEX_ATTRIB1_4_NV 0x8671
 MAP2_VERTEX_ATTRIB2_4_NV 0x8672
 MAP2_VERTEX_ATTRIB3_4_NV 0x8673
 MAP2_VERTEX_ATTRIB4_4_NV 0x8674
 MAP2_VERTEX_ATTRIB5_4_NV 0x8675
 MAP2_VERTEX_ATTRIB6_4_NV 0x8676
 MAP2_VERTEX_ATTRIB7_4_NV 0x8677
 MAP2_VERTEX_ATTRIB8_4_NV 0x8678
 MAP2_VERTEX_ATTRIB9_4_NV 0x8679
 MAP2_VERTEX_ATTRIB10_4_NV 0x867A
 MAP2_VERTEX_ATTRIB11_4_NV 0x867B
 MAP2_VERTEX_ATTRIB12_4_NV 0x867C
 MAP2_VERTEX_ATTRIB13_4_NV 0x867D
 MAP2_VERTEX_ATTRIB14_4_NV 0x867E
 MAP2_VERTEX_ATTRIB15_4_NV 0x867F

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

 -- Section 2.10 "Coordinate Transformations"

 Add this initial discussion:

 "Per-vertex parameters are transformed before the transformation
 results are used to generate primitives for rasterization, establish
 a raster position, or generate vertices for selection or feedback.

 Each vertex's per-vertex parameters are transformed by one of
 two vertex transformation modes. The first vertex transformation mode
 is GL's conventional vertex transformation model. The second mode,
 known as 'vertex program' mode, transforms the vertex's per-vertex
 parameters by an application-supplied vertex program.

 Vertex program mode is enabled and disabled, respectively, by

 void Enable(enum target);

 and

 void Disable(enum target);

 with target equal to VERTEX_PROGRAM_NV. When vertex program mode
 is enabled, vertices are transformed by the currently bound vertex
 program as discussed in section 2.14."

 Update the original initial paragraph in the section to read:

 "When vertex program mode is disabled, vertices, normals, and texture
 coordinates are transformed before their coordinates are used to
 produce an image in the framebuffer. We begin with a description
 of how vertex coordinates are transformed and how the transformation
 is controlled in the case when vertex program mode is disabled. The
 discussion that continues through section 2.13 applies when vertex
 program mode is disabled."

 -- Section 2.10.2 "Matrices"

 Change the first paragraph to read:

 "The projection matrix and model-view matrix are set and modified
 with a variety of commands. The affected matrix is determined by
 the current matrix mode. The current matrix mode is set with

 2-23

 void MatrixMode(enum mode);

 which takes one of the pre-defined constants TEXTURE, MODELVIEW,
 COLOR, PROJECTION, or MATRIXi_NV as the argument. In the case
 of MATRIXi_NV, i is an integer between 0 and n-1 indicating one
 of n tracking matrices where n is the value of the implementation
 defined constant MAX_TRACK_MATRICES_NV. TEXTURE is described
 later in section 2.10.2, and COLOR is described in section 3.6.3.
 The tracking matrices of the form MATRIXi_NV are described in
 section 2.14.5. If the current matrix mode is MODELVIEW, then
 matrix operations apply to the model-view matrix; if PROJECTION,
 then they apply to the projection matrix."

 Change the last paragraph to read:

 "The state required to implement transformations consists of a n-value
 integer indicating the current matrix mode (where n is 4 + the number
 of tracking matrices supported), a stack of at least two 4x4 matrices
 for each of COLOR, PROJECTION, and TEXTURE with associated stack
 pointers, n stacks (where n is at least 8) of at least one 4x4 matrix
 for each MATRIXi_NV with associated stack pointers, and a stack of at
 least 32 4x4 matrices with an associated stack pointer for MODELVIEW.
 Initially, there is only one matrix on each stack, and all matrices
 are set to the identity. The initial matrix mode is MODELVIEW."

 -- NEW Section 2.14 "Vertex Programs"

 "The conventional GL vertex transformation model described
 in sections 2.10 through 2.13 is a configurable but essentially
 hard-wired sequence of per-vertex computations based on a canonical
 set of per-vertex parameters and vertex transformation related
 state such as transformation matrices, lighting parameters, and
 texture coordinate generation parameters.

 The general success and utility of the conventional GL vertex
 transformation model reflects its basic correspondence to the
 typical vertex transformation requirements of 3D applications.

 However when the conventional GL vertex transformation model
 is not sufficient, the vertex program mode provides a substantially
 more flexible model for vertex transformation. The vertex program
 mode permits applications to define their own vertex programs.

 2.14.1 The Vertex Program Execution Model

 A vertex program is a sequence of floating-point 4-component vector
 operations that operate on per-vertex attributes and program
 parameters. Vertex programs execute on a per-vertex basis and
 operate on each vertex completely independently from the processing
 of other vertices. Vertex programs execute a finite fixed sequence
 of instructions with no branching or looping. Vertex programs
 execute without data hazards so results computed in one operation can
 be used immediately afterwards. The result of a vertex program is
 a set of vertex result vectors that becomes the transformed vertex
 parameters used by primitive assembly.

 Vertex programs use a specific well-defined instruction set, register
 set, and operational model defined in the following sections.

 The vertex program register set consists of five types of registers
 described in the following five sections.

 2.14.1.1 The Vertex Attribute Registers

 2-24

 The Vertex Attribute Registers are sixteen 4-component
 vector floating-point registers containing the current vertex's
 per-vertex attributes. These registers are numbered 0 through 15.
 These registers are private to each vertex program invocation and are
 initialized at each vertex program invocation by the current vertex
 attribute state specified with VertexAttribNV commands. These registers
 are read-only during vertex program execution. The VertexAttribNV
 commands used to update the vertex attribute registers can be issued
 both outside and inside of Begin/End pairs. Vertex program execution
 is provoked by updating vertex attribute zero. Updating vertex
 attribute zero outside of a Begin/End pair is ignored without
 generating any error (identical to the Vertex command operation).

 The commands

 void VertexAttrib{1234}{sfd}NV(uint index, T coords);
 void VertexAttrib{1234}{sfd}vNV(uint index, T coords);
 void VertexAttrib4ubNV(uint index, T coords);
 void VertexAttrib4ubvNV(uint index, T coords);

 specify the particular current vertex attribute indicated by index.
 The coordinates for each vertex attribute are named x, y, z, and w.
 The VertexAttrib1NV family of commands sets the x coordinate to the
 provided single argument while setting y and z to 0 and w to 1.
 Similarly, VertexAttrib2NV sets x and y to the specified values,
 z to 0 and w to 1; VertexAttrib3NV sets x, y, and z, with w set
 to 1, and VertexAttrib4NV sets all four coordinates. The error
 INVALID_VALUE is generated if index is greater than 15.

 No conversions are applied to the vertex attributes specified as
 type short, float, or double. However, vertex attributes specified
 as type ubyte are converted as described by Table 2.6.

 The commands

 void VertexAttribs{1234}{sfd}vNV(uint index, sizei n, T coords[]);
 void VertexAttribs4ubvNV(uint index, sizei n, GLubyte coords[]);

 specify a contiguous set of n vertex attributes. The effect of

 VertexAttribs{1234}{sfd}vNV(index, n, coords)

 is the same as the command sequence

 #define NUM k /* where k is 1, 2, 3, or 4 components */
 int i;
 for (i=n-1; i>=0; i--) {
 VertexAttrib{NUM}{sfd}vNV(i+index, &coords[i*NUM]);
 }

 VertexAttribs4ubvNV behaves similarly.

 The VertexAttribNV calls equivalent to VertexAttribsNV are issued in
 reverse order so that vertex program execution is provoked when index
 is zero only after all the other vertex attributes have first been
 specified.

 2.14.1.2 The Program Parameter Registers

 The Program Parameter Registers are ninety-six 4-component
 floating-point vector registers containing the vertex program
 parameters. These registers are numbered 0 through 95. This

 2-25

 relatively large set of registers is intended to hold parameters
 such as matrices, lighting parameters, and constants required by
 vertex programs. Vertex program parameter registers can be updated
 in one of two ways: by the ProgramParameterNV commands outside
 of a Begin/End pair or by a vertex state program executed outside
 of a Begin/End pair (vertex state programs are discussed in section
 2.14.3).

 The commands

 void ProgramParameter4fNV(enum target, uint index,
 float x, float y, float z, float w)
 void ProgramParameter4dNV(enum target, uint index,
 double x, double y, double z, double w)

 specify the particular program parameter indicated by index.
 The coordinates values x, y, z, and w are assigned to the respective
 components of the particular program parameter. target must be
 VERTEX_PROGRAM_NV.

 The commands

 void ProgramParameter4dvNV(enum target, uint index, double *params);
 void ProgramParameter4fvNV(enum target, uint index, float *params);

 operate identically to ProgramParameter4fNV and ProgramParameter4dNV
 respectively except that the program parameters are passed as an
 array of four components.

 The commands

 void ProgramParameters4dvNV(enum target, uint index,
 uint num, double *params);
 void ProgramParameters4fvNV(enum target, uint index,
 uint num, float *params);

 specify a contiguous set of num program parameters. The effect is
 the same as

 for (i=index; i<index+num; i++) {
 ProgramParameter4{fd}vNV(i, params + i*4);
 }

 The program parameter registers are shared to all vertex program
 invocations within a rendering context. ProgramParameterNV command
 updates and vertex state program executions are serialized with
 respect to vertex program invocations and other vertex state program
 executions.

 Writes to the program parameter registers during vertex state program
 execution can be maskable on a per-component basis.

 The error INVALID_VALUE is generated if any ProgramParameterNV has
 an index is greater than 95.

 The initial value of all ninety-six program parameter registers is
 (0,0,0,0).

 2.14.1.3 The Address Register

 The Address Register is a single 4-component vector signed 32-bit
 integer register though only the x component of the vector is
 accessible. The register is private to each vertex program invocation

 2-26

 and is initialized to (0,0,0,0) at every vertex program invocation.
 This register can be written during vertex program execution (but
 not read) and its value can be used for as a relative offset for
 reading vertex program parameter registers. Only the vertex program
 parameter registers can be read using relative addressing (writes
 using relative addressing are not supported).

 See the discussion of relative addressing of program parameters
 in section 2.14.1.9 and the discussion of the ARL instruction in
 section 2.14.1.10.1.

 2.14.1.4 The Temporary Registers

 The Temporary Registers are twelve 4-component floating-point vector
 registers used to hold temporary results during vertex program
 execution. These registers are numbered 0 through 11. These
 registers are private to each vertex program invocation and
 initialized to (0,0,0,0) at every vertex program invocation. These
 registers can be read and written during vertex program execution.
 Writes to these registers can be maskable on a per-component basis.

 2.14.1.5 The Vertex Result Register Set

 The Vertex Result Registers are fifteen 4-component floating-point
 vector registers used to write the results of a vertex program.
 Each register value is initialized to (0,0,0,1) at the invocation
 of each vertex program. Writes to the vertex result registers can
 be maskable on a per-component basis. These registers are named in
 Table X.1 and further discussed below.

Vertex Result Component
Register Name Description Interpretation
-------------- --------------------------------- --------------
 HPOS Homogeneous clip space position (x,y,z,w)
 COL0 Primary color (front-facing) (r,g,b,a)
 COL1 Secondary color (front-facing) (r,g,b,a)
 BFC0 Back-facing primary color (r,g,b,a)
 BFC1 Back-facing secondary color (r,g,b,a)
 FOGC Fog coordinate (f,*,*,*)
 PSIZ Point size (p,*,*,*)
 TEX0 Texture coordinate set 0 (s,t,r,q)
 TEX1 Texture coordinate set 1 (s,t,r,q)
 TEX2 Texture coordinate set 2 (s,t,r,q)
 TEX3 Texture coordinate set 3 (s,t,r,q)
 TEX4 Texture coordinate set 4 (s,t,r,q)
 TEX5 Texture coordinate set 5 (s,t,r,q)
 TEX6 Texture coordinate set 6 (s,t,r,q)
 TEX7 Texture coordinate set 7 (s,t,r,q)

 Table X.1: Vertex Result Registers.

 HPOS is the transformed vertex's homogeneous clip space position.
 The vertex's homogeneous clip space position is converted to
 normalized device coordinates and transformed to window coordinates
 as described at the end of section 2.10 and in section 2.11.
 Further processing (subsequent to vertex program termination)
 is responsible for clipping primitives assembled from vertex
 program-generated vertices as described in section 2.10 but all
 client-defined clip planes are treated as if they are disabled when
 vertex program mode is enabled.

 Four distinct color results can be generated for each vertex.

 2-27

 COL0 is the transformed vertex's front-facing primary color.
 COL1 is the transformed vertex's front-facing secondary color.
 BFC0 is the transformed vertex's back-facing primary color. BFC1 is
 the transformed vertex's back-facing secondary color.

 Primitive coloring may operate in two-sided color mode. This behavior
 is enabled and disabled by calling Enable or Disable with the
 symbolic value VERTEX_PROGRAM_TWO_SIDE_NV. The selection between
 the back-facing colors and the front-facing colors depends on the
 primitive of which the vertex is a part. If the primitive is a
 point or a line segment, the front-facing colors are always selected.
 If the primitive is a polygon and two-sided color mode is disabled,
 the front-facing colors are selected. If it is a polygon and
 two-sided color mode is enabled, then the selection is based on the
 sign of the (clipped or unclipped) polygon's signed area computed in
 window coordinates. This facingness determination is identical to
 the two-sided lighting facingness determination described in section
 2.13.1.

 The selected primary and secondary colors for each primitive are
 clamped to the range [0,1] and then interpolated across the assembled
 primitive during rasterization with at least 8-bit accuracy for each
 color component.

 FOGC is the transformed vertex's fog coordinate. The register's
 first floating-point component is interpolated across the assembled
 primitive during rasterization and used as the fog distance to
 compute per-fragment the fog factor when fog is enabled. However,
 if both fog and vertex program mode are enabled, but the FOGC vertex
 result register is not written, the fog factor is overridden to 1.0.
 The register's other three components are ignored.

 Point size determination may operate in program-specified point
 size mode. This behavior is enabled and disabled by calling Enable
 or Disable with the symbolic value VERTEX_PROGRAM_POINT_SIZE_NV.
 If the vertex is for a point primitive and the mode is enabled
 and the PSIZ vertex result is written, the point primitive's size
 is determined by the clamped x component of the PSIZ register.
 Otherwise (because vertex program mode is disabled, program-specified
 point size mode is disabled, or because the vertex program did not
 write PSIZ), the point primitive's size is determined by the point
 size state (the state specified using the PointSize command).

 The PSIZ register's x component is clamped to the range zero through
 either the hi value of ALIASED_POINT_SIZE_RANGE if point smoothing
 is disabled or the hi value of the SMOOTH_POINT_SIZE_RANGE if
 point smoothing is enabled. The register's other three components
 are ignored.

 If the vertex is not for a point primitive, the value of the
 PSIZ vertex result register is ignored.

 TEX0 through TEX7 are the transformed vertex's texture coordinate
 sets for texture units 0 through 7. These floating-point coordinates
 are interpolated across the assembled primitive during rasterization
 and used for accessing textures. If the number of texture units
 supported is less than eight, the values of vertex result registers
 that do not correspond to existent texture units are ignored.

 2.14.1.6 Semantic Meaning for Vertex Attributes and Program Parameters

 One important distinction between the conventional GL vertex
 transformation mode and the vertex program mode is that per-vertex

 2-28

 parameters and other state parameters in vertex program mode do
 not have dedicated semantic interpretations the way that they do
 with the conventional GL vertex transformation mode.

 For example, in the conventional GL vertex transformation mode,
 the Normal command specifies a per-vertex normal. The semantic that
 the Normal command supplies a normal for lighting is established because
 that is how the per-vertex attribute supplied by the Normal command
 is used by the conventional GL vertex transformation mode.
 Similarly, other state parameters such as a light source position have
 semantic interpretations based on how the conventional GL vertex
 transformation model uses each particular parameter.

 In contrast, vertex attributes and program parameters for vertex
 programs have no pre-defined semantic meanings. The meaning of
 a vertex attribute or program parameter in vertex program mode is
 defined by how the vertex attribute or program parameter is used by
 the current vertex program to compute and write values to the Vertex
 Result Registers. This is the reason that per-vertex attributes and
 program parameters for vertex programs are numbered instead of named.

 For convenience however, the existing per-vertex parameters for the
 conventional GL vertex transformation mode (vertices, normals,
 colors, fog coordinates, vertex weights, and texture coordinates) are
 aliased to numbered vertex attributes. This aliasing is specified in
 Table X.2. The table includes how the various conventional components
 map to the 4-component vertex attribute components.

Vertex
Attribute Conventional Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter Command Mapping
--------- --------------- ----------------------------------- ------------
 0 vertex position Vertex x,y,z,w
 1 vertex weights VertexWeightEXT w,0,0,1
 2 normal Normal x,y,z,1
 3 primary color Color r,g,b,a
 4 secondary color SecondaryColorEXT r,g,b,1
 5 fog coordinate FogCoordEXT fc,0,0,1
 6 - - -
 7 - - -
 8 texture coord 0 MultiTexCoord(GL_TEXTURE0_ARB, ...) s,t,r,q
 9 texture coord 1 MultiTexCoord(GL_TEXTURE1_ARB, ...) s,t,r,q
 10 texture coord 2 MultiTexCoord(GL_TEXTURE2_ARB, ...) s,t,r,q
 11 texture coord 3 MultiTexCoord(GL_TEXTURE3_ARB, ...) s,t,r,q
 12 texture coord 4 MultiTexCoord(GL_TEXTURE4_ARB, ...) s,t,r,q
 13 texture coord 5 MultiTexCoord(GL_TEXTURE5_ARB, ...) s,t,r,q
 14 texture coord 6 MultiTexCoord(GL_TEXTURE6_ARB, ...) s,t,r,q
 15 texture coord 7 MultiTexCoord(GL_TEXTURE7_ARB, ...) s,t,r,q

Table X.2: Aliasing of vertex attributes with conventional per-vertex
parameters.

 Only vertex attribute zero is treated specially because it is
 the attribute that provokes the execution of the vertex program;
 this is the attribute that aliases to the Vertex command's vertex
 coordinates.

 The result of a vertex program is the set of post-transformation
 vertex parameters written to the Vertex Result Registers.
 All vertex programs must write a homogeneous clip space position, but
 the other Vertex Result Registers can be optionally written.

 2-29

 Clipping and culling are not the responsibility of vertex programs
 because these operations assume the assembly of multiple vertices
 into a primitive. View frustum clipping is performed subsequent to
 vertex program execution. Clip planes are not supported in vertex
 program mode.

 2.14.1.7 Vertex Program Specification

 Vertex programs are specified as an array of ubytes. The array is
 a string of ASCII characters encoding the program.

 The command

 LoadProgramNV(enum target, uint id, sizei len,
 const ubyte *program);

 loads a vertex program when the target parameter is VERTEX_PROGRAM_NV.
 Multiple programs can be loaded with different names. id names the
 program to load. The name space for programs is the positive integers
 (zero is reserved). The error INVALID_VALUE occurs if a program is
 loaded with an id of zero. The error INVALID_OPERATION is generated
 if a program is loaded for an id that is currently loaded with a
 program of a different program target. Managing the program name
 space and binding to vertex programs is discussed later in section
 2.14.1.8.

 program is a pointer to an array of ubytes that represents the
 program being loaded. The length of the array is indicated by len.

 A second program target type known as vertex state programs is
 discussed in 2.14.4.

 At program load time, the program is parsed into a set of tokens
 possibly separated by white space. Spaces, tabs, newlines, carriage
 returns, and comments are considered whitespace. Comments begin with
 the character "#" and are terminated by a newline, a carriage return,
 or the end of the program array.

 The Backus-Naur Form (BNF) grammar below specifies the syntactically
 valid sequences for vertex programs. The set of valid tokens can be
 inferred from the grammar. The token "" represents an empty string
 and is used to indicate optional rules. A program is invalid if it
 contains any undefined tokens or characters.

 <program> ::= "!!VP1.0" <instructionSequence> "END"

 <instructionSequence> ::= <instructionSequence> <instructionLine>
 | <instructionLine>

 <instructionLine> ::= <instruction> ";"

 <instruction> ::= <ARL-instruction>
 | <VECTORop-instruction>
 | <SCALARop-instruction>
 | <BINop-instruction>
 | <TRIop-instruction>

 <ARL-instruction> ::= "ARL" <addrReg> "," <scalarSrcReg>

 <VECTORop-instruction> ::= <VECTORop> <maskedDstReg> "," <swizzleSrcReg>

 <SCALARop-instruction> ::= <SCALARop> <maskedDstReg> "," <scalarSrcReg>

 2-30

 <BINop-instruction> ::= <BINop> <maskedDstReg> ","
 <swizzleSrcReg> "," <swizzleSrcReg>

 <TRIop-instruction> ::= <TRIop> <maskedDstReg> ","
 <swizzleSrcReg> "," <swizzleSrcReg> ","
 <swizzleSrcReg>

 <VECTORop> ::= "MOV"
 | "LIT"

 <SCALARop> ::= "RCP"
 | "RSQ"
 | "EXP"
 | "LOG"

 <BINop> ::= "MUL"
 | "ADD"
 | "DP3"
 | "DP4"
 | "DST"
 | "MIN"
 | "MAX"
 | "SLT"
 | "SGE"

 <TRIop> ::= "MAD"

 <scalarSrcReg> ::= <optionalSign> <srcReg> <scalarSuffix>

 <swizzleSrcReg> ::= <optionalSign> <srcReg> <swizzleSuffix>

 <maskedDstReg> ::= <dstReg> <optionalMask>

 <optionalMask> ::= ""
 | "." "x"
 | "." "y"
 | "." "x" "y"
 | "." "z"
 | "." "x" "z"
 | "." "y" "z"
 | "." "x" "y" "z"
 | "." "w"
 | "." "x" "w"
 | "." "y" "w"
 | "." "x" "y" "w"
 | "." "z" "w"
 | "." "x" "z" "w"
 | "." "y" "z" "w"
 | "." "x" "y" "z" "w"

 <optionalSign> ::= "-"
 | ""

 <srcReg> ::= <vertexAttribReg>
 | <progParamReg>
 | <temporaryReg>

 <dstReg> ::= <temporaryReg>
 | <vertexResultReg>

 <vertexAttribReg> ::= "v" "[" vertexAttribRegNum "]"

 <vertexAttribRegNum> ::= decimal integer from 0 to 15 inclusive

 2-31

 | "OPOS"
 | "WGHT"
 | "NRML"
 | "COL0"
 | "COL1"
 | "FOGC"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"

 <progParamReg> ::= <absProgParamReg>
 | <relProgParamReg>

 <absProgParamReg> ::= "c" "[" <progParamRegNum> "]"

 <progParamRegNum> ::= decimal integer from 0 to 95 inclusive

 <relProgParamReg> ::= "c" "[" <addrReg> "]"
 | "c" "[" <addrReg> "+" <progParamPosOffset> "]"
 | "c" "[" <addrReg> "-" <progParamNegOffset> "]"

 <progParamPosOffset> ::= decimal integer from 0 to 63 inclusive

 <progParamNegOffset> ::= decimal integer from 0 to 64 inclusive

 <addrReg> ::= "A0" "." "x"

 <temporaryReg> ::= "R0"
 | "R1"
 | "R2"
 | "R3"
 | "R4"
 | "R5"
 | "R6"
 | "R7"
 | "R8"
 | "R9"
 | "R10"
 | "R11"

 <vertexResultReg> ::= "o" "[" vertexResultRegName "]"

 <vertexResultRegName> ::= "HPOS"
 | "COL0"
 | "COL1"
 | "BFC0"
 | "BFC1"
 | "FOGC"
 | "PSIZ"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"

 2-32

 <scalarSuffix> ::= "." <component>

 <swizzleSuffix> ::= ""
 | "." <component>
 | "." <component> <component>
 <component> <component>

 <component> ::= "x"
 | "y"
 | "z"
 | "w"

 The <vertexAttribRegNum> rule matches both register numbers 0 through
 15 and a set of mnemonics that abbreviate the aliasing of conventional
 the per-vertex parameters to vertex attribute register numbers.
 Table X.3 shows the mapping from mnemonic to vertex attribute register
 number and what the mnemonic abbreviates.

 Vertex Attribute
Mnemonic Register Number Meaning
-------- ---------------- --------------------
 "OPOS" 0 object position
 "WGHT" 1 vertex weight
 "NRML" 2 normal
 "COL0" 3 primary color
 "COL1" 4 secondary color
 "FOGC" 5 fog coordinate
 "TEX0" 8 texture coordinate 0
 "TEX1" 9 texture coordinate 1
 "TEX2" 10 texture coordinate 2
 "TEX3" 11 texture coordinate 3
 "TEX4" 12 texture coordinate 4
 "TEX5" 13 texture coordinate 5
 "TEX6" 14 texture coordinate 6
 "TEX7" 15 texture coordinate 7

Table X.3: The mapping between vertex attribute register numbers,
mnemonics, and meanings.

 A vertex programs fails to load if it does not write at least one
 component of the HPOS register.

 A vertex program fails to load if it contains more than 128
 instructions.

 A vertex program fails to load if any instruction sources more than
 one unique program parameter register.

 A vertex program fails to load if any instruction sources more than
 one unique vertex attribute register.

 The error INVALID_OPERATION is generated if a vertex program fails
 to load because it is not syntactically correct or for one of the
 semantic restrictions listed above.

 The error INVALID_OPERATION is generated if a program is loaded for
 id when id is currently loaded with a program of a different target.

 A successfully loaded vertex program is parsed into a sequence of
 instructions. Each instruction is identified by its tokenized name.
 The operation of these instructions when executed is defined in
 section 2.14.1.10.

 2-33

 A successfully loaded program replaces the program previously assigned
 to the name specified by id. If the OUT_OF_MEMORY error is generated
 by LoadProgramNV, no change is made to the previous contents of the
 named program.

 Querying the value of PROGRAM_ERROR_POSITION_NV returns a ubyte
 offset into the last loaded program string indicating where the first
 error in the program. If the program fails to load because of a
 semantic restriction that cannot be determined until the program
 is fully scanned, the error position will be len, the length of
 the program. If the program loads successfully, the value of
 PROGRAM_ERROR_POSITION_NV is assigned the value negative one.

 2.14.1.8 Vertex Program Binding and Program Management

 The current vertex program is invoked whenever vertex attribute
 zero is updated (whether by a VertexAttributeNV or Vertex command).
 The current vertex program is updated by

 BindProgramNV(enum target, uint id);

 where target must be VERTEX_PROGRAM_NV. This binds the vertex program
 named by id as the current vertex program. The error INVALID_OPERATION
 is generated if id names a program that is not a vertex program
 (for example, if id names a vertex state program as described in
 section 2.14.4).

 Binding to a nonexistent program id does not generate an error.
 In particular, binding to program id zero does not generate an error.
 However, because program zero cannot be loaded, program zero is
 always nonexistent. If a program id is successfully loaded with a
 new vertex program and id is also the currently bound vertex program,
 the new program is considered the currently bound vertex program.

 The INVALID_OPERATION error is generated when both vertex program
 mode is enabled and Begin is called (or when a command that performs
 an implicit Begin is called) if the current vertex program is
 nonexistent or not valid. A vertex program may not be valid for
 reasons explained in section 2.14.5.

 Programs are deleted by calling

 void DeleteProgramsNV(sizei n, const uint *ids);

 ids contains n names of programs to be deleted. After a program
 is deleted, it becomes nonexistent, and its name is again unused.
 If a program that is currently bound is deleted, it is as though
 BindProgramNV has been executed with the same target as the deleted
 program and program zero. Unused names in ids are silently ignored,
 as is the value zero.

 The command

 void GenProgramsNV(sizei n, uint *ids);

 returns n previously unused program names in ids. These names
 are marked as used, for the purposes of GenProgramsNV only,
 but they become existent programs only when the are first loaded
 using LoadProgramNV. The error INVALID_VALUE is generated if n
 is negative.

 An implementation may choose to establish a working set of programs on
 which binding and ExecuteProgramNV operations (execute programs are

 2-34

 explained in section 2.14.4) are performed with higher performance.
 A program that is currently part of this working set is said to
 be resident.

 The command

 boolean AreProgramsResidentNV(sizei n, const uint *ids,
 boolean *residences);

 returns TRUE if all of the n programs named in ids are resident,
 or if the implementation does not distinguish a working set. If at
 least one of the programs named in ids is not resident, then FALSE is
 returned, and the residence of each program is returned in residences.
 Otherwise the contents of residences are not changed. If any of
 the names in ids are nonexistent or zero, FALSE is returned, the
 error INVALID_VALUE is generated, and the contents of residences
 are indeterminate. The residence status of a single named program
 can also be queried by calling GetProgramivNV with id set to the
 name of the program and pname set to PROGRAM_RESIDENT_NV.

 AreProgramsResidentNV indicates only whether a program is
 currently resident, not whether it could not be made resident.
 An implementation may choose to make a program resident only on
 first use, for example. The client may guide the GL implementation
 in determining which programs should be resident by requesting a
 set of programs to make resident.

 The command

 void RequestResidentProgramsNV(sizei n, const uint *ids);

 requests that the n programs named in ids should be made resident.
 While all the programs are not guaranteed to become resident,
 the implementation should make a best effort to make as many of
 the programs resident as possible. As a result of making the
 requested programs resident, program names not among the requested
 programs may become non-resident. Higher priority for residency
 should be given to programs listed earlier in the ids array.
 RequestResidentProgramsNV silently ignores attempts to make resident
 nonexistent program names or zero. AreProgramsResidentNV can be
 called after RequestResidentProgramsNV to determine which programs
 actually became resident.

 2.14.1.9 Vertex Program Register Accesses

 There are 17 vertex program instructions. The instructions and their
 respective input and output parameters are summarized in Table X.4.

 Output
 Inputs (vector or
Opcode (scalar or vector) replicated scalar) Operation
------ ------------------ ------------------ --------------------------
 ARL s address register address register load
 MOV v v move
 MUL v,v v multiply
 ADD v,v v add
 MAD v,v,v v multiply and add
 RCP s ssss reciprocal
 RSQ s ssss reciprocal square root
 DP3 v,v ssss 3-component dot product
 DP4 v,v ssss 4-component dot product
 DST v,v v distance vector
 MIN v,v v minimum

 2-35

 MAX v,v v maximum
 SLT v,v v set on less than
 SGE v,v v set on greater equal than
 EXP s v exponential base 2
 LOG s v logarithm base 2
 LIT v v light coefficients

Table X.4: Summary of vertex program instructions. "v" indicates a
vector input or output, "s" indicates a scalar input, and "ssss" indicates
a scalar output replicated across a 4-component vector.

 Instructions use either scalar source values or swizzled source
 values, indicated in the grammar (see section 2.14.1.7) by the rules
 <scalarSrcReg> and <swizzleSrcReg> respectively. Either type of
 source value is negated when the <optionalSign> rule matches "-".

 Scalar source register values select one of the source register's
 four components based on the <component> of the <scalarSuffix> rule.
 The characters "x", "y", "z", and "w" match the x, y, z, and
 w components respectively. The indicated component is used as a
 scalar for the particular source value.

 Swizzled source register values may arbitrarily swizzle the source
 register's components based on the <swizzleSuffix> rule. In the case
 where the <swizzleSuffix> matches (ignoring whitespace) the pattern
 ".????" where each question mark is one of "x", "y", "z", or "w",
 this indicates the ith component of the source register value should
 come from the component named by the ith component in the sequence.
 For example, if the swizzle suffix is ".yzzx" and the source register
 contains [2.0, 8.0, 9.0, 0.0] the swizzled source register value
 used by the instruction is [8.0, 9.0, 9.0, 2.0].

 If the <swizzleSuffix> rule matches "", this is treated the same as
 ".xyzw". If the <swizzleSuffix> rule matches (ignoring whitespace)
 ".x", ".y", ".z", or ".w", these are treated the same as ".xxxx",
 ".yyyy", ".zzzz", and ".wwww" respectively.

 The register sourced for either a scalar source register value or a
 swizzled source register value is indicated in the grammar by the rule
 <srcReg>. The <vertexAttribReg>, <progParamReg>, and <temporaryReg>
 sub-rules correspond to one of the vertex attribute registers,
 program parameter registers, or temporary register respectively.

 The vertex attribute and temporary registers are accessed absolutely
 based on the numbered register. In the case of vertex attribute
 registers, if the <vertexAttribRegNum> corresponds to a mnemonic,
 the corresponding register number from Table X.3 is used.

 Either absolute or relative addressing can be used to access the
 program parameter registers. Absolute addressing is indicated by
 the grammar by the <absProgParamReg> rule. Absolute addressing
 accesses the numbered program parameter register indicated by the
 <progParamRegNum> rule. Relative addressing accesses the numbered
 program parameter register plus an offset. The offset is the positive
 value of <progParamPosOffset> if the <progParamPosOffset> rule is
 matched, or the offset is the negative value of <progParamNegOffset>
 if the <progParamNegOffset> rule is matched, or otherwise the offset
 is zero. Relative addressing is available only for program parameter
 registers and only for reads (not writes). Relative addressing
 reads outside of the 0 to 95 inclusive range always read the value
 (0,0,0,0).

 The result of all instructions except ARL is written back to a

 2-36

 masked destination register, indicated in the grammar by the rule
 <maskedDstReg>.

 Writes to each component of the destination register can be masked,
 indicated in the grammar by the <optionalMask> rule. If the optional
 mask is "", all components are written. Otherwise, the optional
 mask names particular components to write. The characters "x",
 "y", "z", and "w" match the x, y, z, and w components respectively.
 For example, an optional mask of ".xzw" indicates that the x, z,
 and w components should be written but not the y component.
 The grammar requires that the destination register mask components
 must be listed in "xyzw" order.

 The actual destination register is indicated in the grammar by
 the rule <dstReg>. The <temporaryReg> and <vertexResultReg>
 sub-rules correspond to either the temporary registers or vertex
 result registers. The temporary registers are determined and accessed
 as described earlier.

 The vertex result registers are accessed absolutely based on the
 named register. The <vertexResultRegName> rule corresponds to
 registers named in Table X.1.

 2.14.1.10 Vertex Program Instruction Set Operations

 The operation of the 17 vertex program instructions are described in
 this section. After the textual description of each instruction's
 operation, a register transfer level description is also presented.

 The following conventions are used in each instruction's register
 transfer level description. The 4-component vector variables "t",
 "u", and "v" are assigned intermediate results. The destination
 register is called "destination". The three possible source registers
 are called "source0", "source1", and "source2" respectively.

 The x, y, z, and w vector components are referred to with the suffixes
 ".x", ".y", ".z", and ".w" respectively. The suffix ".c" is used for
 scalar source register values and c represents the particular source
 register's selected scalar component. Swizzling of components is
 indicated with the suffixes ".c***", ".*c**", ".**c*", and ".***c"
 where c is meant to indicate the x, y, z, or w component selected for
 the particular source operand swizzle configuration. For example:

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;

 This example indicates that t should be assigned the swizzled
 version of the source0 operand based on the source0 operand's swizzle
 configuration.

 The variables "negate0", "negate1", and "negate2" are booleans
 that are true when the respective source value should be negated.
 The variables "xmask", "ymask", "zmask", and "wmask" are booleans
 that are true when the destination write mask for the respective
 component is enabled for writing.

 Otherwise, the register transfer level descriptions mimic ANSI C
 syntax.

 The idiom "IEEE(expression)" represents the s23e8 single-precision
 result of the expression if evaluated using IEEE single-precision

 2-37

 floating point operations. The IEEE idiom is used to specify the
 maximum allowed deviation from IEEE single-precision floating-point
 arithmetic results.

 The following abbreviations are also used:

 +Inf floating-point representation of positive infinity
 -Inf floating-point representation of negative infinity
 +NaN floating-point representation of positive not a number
 -NaN floating-point representation of negative not a number
 NA not applicable or not used

 2.14.1.10.1 ARL: Address Register Load

 The ARL instruction moves value of the source scalar into the address
 register. Conceptually, the address register load instruction is
 a 4-component vector signed integer register, but the only valid
 address register component for writing and indexing is the x
 component. The only use for A0.x is as a base address for program
 parameter reads. The source value is a float that is truncated
 towards negative infinity into a signed integer.

 t.x = source0.c;
 if (negate0) t.x = -t.x;
 A0.x = floor(t.x);

 2.14.1.10.2 MOV: Move

 The MOV instruction moves the value of the source vector into the
 destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 if (xmask) destination.x = t.x;
 if (ymask) destination.y = t.y;
 if (zmask) destination.z = t.z;
 if (wmask) destination.w = t.w;

 2.14.1.10.3 MUL: Multiply

 The MUL instruction multiplies the values of the two source vectors
 into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;

 2-38

 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = t.x * u.x;
 if (ymask) destination.y = t.y * u.y;
 if (zmask) destination.z = t.z * u.z;
 if (wmask) destination.w = t.w * u.w;

 2.14.1.10.4 ADD: Add

 The ADD instruction adds the values of the two source vectors into
 the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = t.x + u.x;
 if (ymask) destination.y = t.y + u.y;
 if (zmask) destination.z = t.z + u.z;
 if (wmask) destination.w = t.w + u.w;

 2.14.1.10.5 MAD: Multiply and Add

 The MAD instruction adds the value of the third source vector to the
 product of the values of the first and second two source vectors,
 writing the result to the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;

 2-39

 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 v.x = source2.c***;
 v.y = source2.*c**;
 v.z = source2.**c*;
 v.w = source2.***c;
 if (negate2) {
 v.x = -v.x;
 v.y = -v.y;
 v.z = -v.z;
 v.w = -v.w;
 }
 if (xmask) destination.x = t.x * u.x + v.x;
 if (ymask) destination.y = t.y * u.y + v.y;
 if (zmask) destination.z = t.z * u.z + v.z;
 if (wmask) destination.w = t.w * u.w + v.w;

 2.14.1.10.6 RCP: Reciprocal

 The RCP instruction inverts the value of the source scalar into
 the destination register. The reciprocal of exactly 1.0 must be
 exactly 1.0.

 Additionally the reciprocal of negative infinity gives [-0.0, -0.0,
 -0.0, -0.0]; the reciprocal of negative zero gives [-Inf, -Inf, -Inf,
 -Inf]; the reciprocal of positive zero gives [+Inf, +Inf, +Inf, +Inf];
 and the reciprocal of positive infinity gives [0.0, 0.0, 0.0, 0.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 if (t.x == 1.0f) {
 u.x = 1.0f;
 } else {
 u.x = 1.0f / t.x;
 }
 if (xmask) destination.x = u.x;
 if (ymask) destination.y = u.x;
 if (zmask) destination.z = u.x;
 if (wmask) destination.w = u.x;

 where

 | u.x - IEEE(1.0f/t.x) | < 1.0f/(2^22)

 for 1.0f <= t.x <= 2.0f. The intent of this precision requirement is
 that this amount of relative precision apply over all values of t.x.

 2.14.1.10.7 RSQ: Reciprocal Square Root

 The RSQ instruction assigns the inverse square root of the
 absolute value of the source scalar into the destination register.

 Additionally, RSQ(0.0) gives [+Inf, +Inf, +Inf, +Inf]; and both
 RSQ(+Inf) and RSQ(-Inf) give [0.0, 0.0, 0.0, 0.0];

 t.x = source0.c;
 if (negate0) {

 2-40

 t.x = -t.x;
 }
 u.x = 1.0f / sqrt(fabs(t.x));
 if (xmask) destination.x = u.x;
 if (ymask) destination.y = u.x;
 if (zmask) destination.z = u.x;
 if (wmask) destination.w = u.x;

 where

 | u.x - IEEE(1.0f/sqrt(fabs(t.x))) | < 1.0f/(2^22)

 for 1.0f <= t.x <= 4.0f. The intent of this precision requirement is
 that this amount of relative precision apply over all values of t.x.

 2.14.1.10.8 DP3: Three-Component Dot Product

 The DP3 instruction assigns the three-component dot product of the
 two source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 }
 v.x = t.x * u.x + t.y * u.y + t.z * u.z;
 if (xmask) destination.x = v.x;
 if (ymask) destination.y = v.x;
 if (zmask) destination.z = v.x;
 if (wmask) destination.w = v.x;

 2.14.1.10.9 DP4: Four-Component Dot Product

 The DP4 instruction assigns the four-component dot product of the
 two source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;

 2-41

 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 v.x = t.x * u.x + t.y * u.y + t.z * u.z + t.w * u.w;
 if (xmask) destination.x = v.x;
 if (ymask) destination.y = v.x;
 if (zmask) destination.z = v.x;
 if (wmask) destination.w = v.x;

 2.14.1.10.10 DST: Distance Vector

 The DST instructions calculates a distance vector for the values
 of two source vectors. The first vector is assumed to be [NA, d*d,
 d*d, NA] and the second source vector is assumed to be [NA, 1.0/d,
 NA, 1.0/d], where the value of a component labeled NA is undefined.
 The destination vector is then assigned [1,d,d*d,1.0/d].

 t.y = source0.*c**;
 t.z = source0.**c*;
 if (negate0) {
 t.y = -t.y;
 t.z = -t.z;
 }
 u.y = source1.*c**;
 u.w = source1.***c;
 if (negate1) {
 u.y = -u.y;
 u.w = -u.w;
 }
 if (xmask) destination.x = 1.0;
 if (ymask) destination.y = t.y*u.y;
 if (zmask) destination.z = t.z;
 if (wmask) destination.w = u.w;

 2.14.1.10.11 MIN: Minimum

 The MIN instruction assigns the component-wise minimum of the two
 source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x < u.x) ? t.x : u.x;
 if (ymask) destination.y = (t.y < u.y) ? t.y : u.y;
 if (zmask) destination.z = (t.z < u.z) ? t.z : u.z;

 2-42

 if (wmask) destination.w = (t.w < u.w) ? t.w : u.w;

 2.14.1.10.12 MAX: Maximum

 The MAX instruction assigns the component-wise maximum of the two
 source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x >= u.x) ? t.x : u.x;
 if (ymask) destination.y = (t.y >= u.y) ? t.y : u.y;
 if (zmask) destination.z = (t.z >= u.z) ? t.z : u.z;
 if (wmask) destination.w = (t.w >= u.w) ? t.w : u.w;

 2.14.1.10.13 SLT: Set On Less Than

 The SLT instruction performs a component-wise assignment of either
 1.0 or 0.0 into the destination register. 1.0 is assigned if the
 value of the first source vector is less than the value of the second
 source vector; otherwise, 0.0 is assigned.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x < u.x) ? 1.0 : 0.0;
 if (ymask) destination.y = (t.y < u.y) ? 1.0 : 0.0;
 if (zmask) destination.z = (t.z < u.z) ? 1.0 : 0.0;
 if (wmask) destination.w = (t.w < u.w) ? 1.0 : 0.0;

 2-43

 2.14.1.10.14 SGE: Set On Greater or Equal Than

 The SGE instruction performs a component-wise assignment of either
 1.0 or 0.0 into the destination register. 1.0 is assigned if the
 value of the first source vector is greater than or equal the value
 of the second source vector; otherwise, 0.0 is assigned.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x >= u.x) ? 1.0 : 0.0;
 if (ymask) destination.y = (t.y >= u.y) ? 1.0 : 0.0;
 if (zmask) destination.z = (t.z >= u.z) ? 1.0 : 0.0;
 if (wmask) destination.w = (t.w >= u.w) ? 1.0 : 0.0;

 2.14.1.10.15 EXP: Exponential Base 2

 The EXP instruction generates an approximation of the exponential base
 2 for the value of a source scalar. This approximation is assigned
 to the z component of the destination register. Additionally,
 the x and y components of the destination register are assigned
 values useful for determining a more accurate approximation. The
 exponential base 2 of the source scalar can be better approximated
 by destination.x*FUNC(destination.y) where FUNC is some user
 approximation (presumably implemented by subsequent instructions in
 the vertex program) to 2^destination.y where 0.0 <= destination.y <
 1.0.

 Additionally, EXP(-Inf) or if the exponential result underflows
 gives [0.0, 0.0, 0.0, 0.0]; and EXP(+Inf) or if the exponential result
 overflows gives [+Inf, 0.0, +Inf, 1.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 q.x = 2^floor(t.x);
 q.y = t.x - floor(t.x);
 q.z = q.x * APPX(q.y);
 if (xmask) destination.x = q.x;
 if (ymask) destination.y = q.y;
 if (zmask) destination.z = q.z;
 if (wmask) destination.w = 1.0;

 where APPX is an implementation dependent approximation of exponential

 2-44

 base 2 such that

 | exp(q.y*log(2.0))-APPX(q.y) | < 1/(2^11)

 for all 0 <= q.y < 1.0.

 The expression "2^floor(t.x)" should overflow to +Inf and underflow
 to zero.

 2.14.1.10.16 LOG: Logarithm Base 2

 The LOG instruction generates an approximation of the logarithm base
 2 for the absolute value of a source scalar. This approximation
 is assigned to the z component of the destination register.
 Additionally, the x and y components of the destination register are
 assigned values useful for determining a more accurate approximation.
 The logarithm base 2 of the absolute value of the source scalar
 can be better approximated by destination.x+FUNC(destination.y)
 where FUNC is some user approximation (presumably implemented by
 subsequent instructions in the vertex program) of log2(destination.y)
 where 1.0 <= destination.y < 2.0.

 Additionally, LOG(0.0) gives [-Inf, 1.0, -Inf, 1.0]; and both
 LOG(+Inf) and LOG(-Inf) give [+Inf, 1.0, +Inf, 1.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 if (fabs(t.x) != 0.0f) {
 if (fabs(t.x) == +Inf) {
 q.x = +Inf;
 q.y = 1.0;
 q.z = +Inf;
 } else {
 q.x = Exponent(t.x);
 q.y = Mantissa(t.x);
 q.z = q.x + APPX(q.y);
 }
 } else {
 q.x = -Inf;
 q.y = 1.0;
 q.z = -Inf;
 }
 if (xmask) destination.x = q.x;
 if (ymask) destination.y = q.y;
 if (zmask) destination.z = q.z;
 if (wmask) destination.w = 1.0;

 where APPX is an implementation dependent approximation of logarithm
 base 2 such that

 | log(q.y)/log(2.0) - APPX(q.y) | < 1/(2^11)

 for all 1.0 <= q.y < 2.0.

 The "Exponent(t.x)" function returns the unbiased exponent between
 -126 and 127. For example, "Exponent(1.0)" equals 0.0. (Note that
 the IEEE floating-point representation maintains the exponent as a
 biased value.) Larger or smaller exponents should generate +Inf or
 -Inf respectively. The "Mantissa(t.x)" function returns a value
 in the range [1.0f, 2.0). The intent of these functions is that
 fabs(t.x) is approximately "Mantissa(t.x)*2^Exponent(t.x)".

 2-45

 2.14.1.10.17 LIT: Light Coefficients

 The LIT instruction is intended to compute ambient, diffuse,
 and specular lighting coefficients from a diffuse dot product,
 a specular dot product, and a specular power that is clamped to
 (-128,128) exclusive. The x component of the source vector is
 assumed to contain a diffuse dot product (unit normal vector dotted
 with a unit light vector). The y component of the source vector is
 assumed to contain a Blinn specular dot product (unit normal vector
 dotted with a unit half-angle vector). The w component is assumed
 to contain a specular power.

 An implementation must support at least 8 fraction bits in the
 specular power. Note that because 0.0 times anything must be 0.0,
 taking any base to the power of 0.0 will yield 1.0.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.w = -t.w;
 }
 if (t.w < -(128.0-epsilon)) t.w = -(128.0-epsilon);
 else if (t.w > 128-epsilon) t.w = 128-epsilon;
 if (t.x < 0.0) t.x = 0.0;
 if (t.y < 0.0) t.y = 0.0;
 if (xmask) destination.x = 1.0;
 if (ymask) destination.y = t.x;
 if (zmask) destination.z = (t.x > 0.0) ? EXP(t.w*LOG(t.y)) : 0.0;
 if (wmask) destination.w = 1.0;

 where EXP and LOG are functions that approximate the exponential base
 2 and logarithm base 2 with the identical accuracy and special case
 requirements of the EXP and LOG instructions. epsilon is 1.0/256.0
 or approximately 0.0039 which would correspond to representing the
 specular power with a s8.8 representation.

 2.14.1.11 Vertex Program Floating Point Requirements

 All vertex program calculations are assumed to use IEEE single
 precision floating-point math with a format of s1e8m23 (one signed
 bit, 8 bits of exponent, 23 bits of magnitude) or better and the
 round-to-zero rounding mode. The only exceptions to this are the RCP,
 RSQ, LOG, EXP, and LIT instructions.

 Note that (positive or negative) 0.0 times anything is (positive)
 0.0.

 The RCP and RSQ instructions deliver results accurate to 1.0/(2^22)
 and the approximate output (the z component) of the EXP and LOG
 instructions only has to be accurate to 1.0/(2^11). The LIT
 instruction specular output (the z component) is allowed an error
 equivalent to the combination of the EXP and LOG combination to
 implement a power function.

 The floor operations used by the ARL and EXP instructions must
 operate identically. Specifically, the EXP instruction's floor(t.x)
 intermediate result must exactly match the integer stored in the
 address register by the ARL instruction.

 2-46

 Since distance is calculated as (d^2)*(1/sqrt(d^2)), 0.0 multiplied
 by anything must be 0.0. This affects the MUL, MAD, DP3, DP4, DST,
 and LIT instructions.

 Because if/then/else conditional evaluation is done by multiplying
 by 1.0 or 0.0 and adding, the floating point computations require:

 0.0 * x = 0.0 for all x (including +Inf, -Inf, +NaN, and -NaN)
 1.0 * x = x for all x (including +Inf and -Inf)
 0.0 + x = x for all x (including +Inf and -Inf)

 Including +Inf, -Inf, +NaN, and -NaN when applying the above three
 rules is recommended but not required. (The recommended inclusion
 of +Inf, -Inf, +NaN, and -NaN when applying the first rule is
 inconsistent with IEEE floating-point requirements.)

 For the purpose of comparisons performed by the SGE and SLT
 instructions, -0.0 is less than +0.0. (This is inconsistent with
 IEEE floating-point requirements).

 No floating-point exceptions or interrupts are generated. Denorms
 are not supported; if a denorm is input, it is treated as 0.0 (ie,
 denorms are flushed to zero).

 Computations involving +NaN or -NaN generate +NaN, except for the
 requirement that zero times +NaN or -NaN must always be zero. (This
 exception is inconsistent with IEEE floating-point requirements).

 2.14.2 Vertex Program Update for the Current Raster Position

 When vertex programs are enabled, the raster position is determined
 by the current vertex program. The raster position specified by
 RasterPos is treated as if they were specified in a Vertex command.
 The contents of vertex result register set is used to update respective
 raster position state.

 Assuming an existent program, the homogeneous clip-space coordinates
 are passed to clipping as if they represented a point and assuming no
 client-defined clip planes are enabled. If the point is not culled,
 then the projection to window coordinates is computed (section 2.10)
 and saved as the current raster position and the valid bit is set.
 If the current vertex program is nonexistent or the "point" is
 culled, the current raster position and its associated data become
 indeterminate and the raster position valid bit is cleared.

 2.14.3 Vertex Arrays for Vertex Attributes

 Data for vertex attributes in vertex program mode may be specified
 using vertex array commands. The client may specify and enable any
 of sixteen vertex attribute arrays.

 The vertex attribute arrays are ignored when vertex program mode
 is disabled. When vertex program mode is enabled, vertex attribute
 arrays are used.

 The command

 void VertexAttribPointerNV(uint index, int size, enum type,
 sizei stride, const void *pointer);

 describes the locations and organizations of the sixteen vertex
 attribute arrays. index specifies the particular vertex attribute
 to be described. size indicates the number of values per vertex

 2-47

 that are stored in the array; size must be one of 1, 2, 3, or 4.
 type specifies the data type of the values stored in the array.
 type must be one of SHORT, FLOAT, DOUBLE, or UNSIGNED_BYTE and these
 values correspond to the array types short, int, float, double, and
 ubyte respectively. The INVALID_OPERATION error is generated if
 type is UNSIGNED_BYTE and size is not 4. The INVALID_VALUE error
 is generated if index is greater than 15. The INVALID_VALUE error
 is generated if stride is negative.

 The one, two, three, or four values in an array that correspond to a
 single vertex attribute comprise an array element. The values within
 each array element at stored sequentially in memory. If the stride
 is specified as zero, then array elements are stored sequentially
 as well. Otherwise points to the ith and (i+1)st elements of an array
 differ by stride basic machine units (typically unsigned bytes),
 the pointer to the (i+1)st element being greater. pointer specifies
 the location in memory of the first value of the first element of
 the array being specified.

 Vertex attribute arrays are enabled with the EnableClientState command
 and disabled with the DisableClientState command. The value of the
 argument to either command is VERTEX_ATTRIB_ARRAYi_NV where i is an
 integer between 0 and 15; specifying a value of i enables or
 disables the vertex attribute array with index i. The constants
 obey VERTEX_ATTRIB_ARRAYi_NV = VERTEX_ATTRIB_ARRAY0_NV + i.

 When vertex program mode is enabled, the ArrayElement command operates
 as described in this section in contrast to the behavior described
 in section 2.8. Likewise, any vertex array transfer commands that
 are defined in terms of ArrayElement (DrawArrays, DrawElements, and
 DrawRangeElements) assume the operation of ArrayElement described
 in this section when vertex program mode is enabled.

 When vertex program mode is enabled, the ArrayElement command
 transfers the ith element of particular enabled vertex arrays as
 described below. For each enabled vertex attribute array, it is
 as though the corresponding command from section 2.14.1.1 were
 called with a pointer to element i. For each vertex attribute,
 the corresponding command is VertexAttrib[size][type]v, where size
 is one of [1,2,3,4], and type is one of [s,f,d,ub], corresponding
 to the array types short, int, float, double, and ubyte respectively.

 However, if a given vertex attribute array is disabled, but its
 corresponding aliased conventional per-vertex parameter's vertex
 array (as described in section 2.14.1.6) is enabled, then it is
 as though the corresponding command from section 2.7 or section
 2.6.2 were called with a pointer to element i. In this case, the
 corresponding command is determined as described in section 2.8's
 description of ArrayElement.

 If the vertex attribute array 0 is enabled, it is as though
 VertexAttrib[size][type]v(0, ...) is executed last, after the
 executions of other corresponding commands. If the vertex attribute
 array 0 is disabled but the vertex array is enabled, it is as though
 Vertex[size][type]v is executed last, after the executions of other
 corresponding commands.

 2.14.4 Vertex State Programs

 Vertex state programs share the same instruction set as and a similar
 execution model to vertex programs. While vertex program are executed
 implicitly when a vertex transformation is provoked, vertex state
 programs are executed explicitly, independently of any vertices.

 2-48

 Vertex state programs can write program parameter registers, but
 may not write vertex result registers.

 The purpose of a vertex state program is to update program parameter
 registers by means of an application-defined program. Typically,
 an application will load a set of program parameters and then execute
 a vertex state program that reads and updates the program parameter
 registers. For example, a vertex state program might normalize a
 set of unnormalized vectors previously loaded as program parameters.
 The expectation is that subsequently executed vertex programs would
 use the normalized program parameters.

 Vertex state programs are loaded with the same LoadProgramNV command
 (see section 2.14.1.7) used to load vertex programs except that the
 target must be VERTEX_STATE_PROGRAM_NV when loading a vertex state
 program.

 Vertex state programs must conform to a more limited grammar than
 the grammar for vertex programs. The vertex state program grammar
 for syntactically valid sequences is the same as the grammar defined
 in section 2.14.1.7 with the following modified rules:

 <program> ::= "!!VSP1.0" <instructionSequence> "END"

 <dstReg> ::= <absProgParamReg>
 | <temporaryReg>

 <vertexAttribReg> ::= "v" "[" "0" "]"

 A vertex state program fails to load if it does not write at least
 one program parameter register.

 A vertex state program fails to load if it contains more than 128
 instructions.

 A vertex state program fails to load if any instruction sources more
 than one unique program parameter register.

 A vertex state program fails to load if any instruction sources
 more than one unique vertex attribute register (this is necessarily
 true because only vertex attribute 0 is available in vertex state
 programs).

 The error INVALID_OPERATION is generated if a vertex state program
 fails to load because it is not syntactically correct or for one
 of the other reasons listed above.

 A successfully loaded vertex state program is parsed into a sequence
 of instructions. Each instruction is identified by its tokenized
 name. The operation of these instructions when executed is defined
 in section 2.14.1.10.

 Executing vertex state programs is legal only outside a Begin/End
 pair. A vertex state program may not read any vertex attribute
 register other than register zero. A vertex state program may not
 write any vertex result register.

 The command

 ExecuteProgramNV(enum target, uint id, const float *params);

 executes the vertex state program named by id. The target must be
 VERTEX_STATE_PROGRAM_NV and the id must be the name of program loaded

 2-49

 with a target type of VERTEX_STATE_PROGRAM_NV. params points to
 an array of four floating-point values that are loaded into vertex
 attribute register zero (the only vertex attribute readable from a
 vertex state program).

 The INVALID_OPERATION error is generated if the named program is
 nonexistent, is invalid, or the program is not a vertex state
 program. A vertex state program may not be valid for reasons
 explained in section 2.14.5.

 2.14.5 Tracking Matrices

 As a convenience to applications, standard GL matrix state can be
 tracked into program parameter vectors. This permits vertex programs
 to access matrices specified through GL matrix commands.

 In addition to GL's conventional matrices, several additional matrices
 are available for tracking. These matrices have names of the form
 MATRIXi_NV where i is between zero and n-1 where n is the value
 of the MAX_TRACK_MATRICES_NV implementation dependent constant.
 The MATRIXi_NV constants obey MATRIXi_NV = MATRIX0_NV + i. The value
 of MAX_TRACK_MATRICES_NV must be at least eight. The maximum
 stack depth for tracking matrices is defined by the
 MAX_TRACK_MATRIX_STACK_DEPTH_NV and must be at least 1.

 The command

 TrackMatrixNV(enum target, uint address, enum matrix, enum transform);

 tracks a given transformed version of a particular matrix into
 a contiguous sequence of four vertex program parameter registers
 beginning at address. target must be VERTEX_PROGRAM_NV (though
 tracked matrices apply to vertex state programs as well because both
 vertex state programs and vertex programs shared the same program
 parameter registers). matrix must be one of NONE, MODELVIEW,
 PROJECTION, TEXTURE, TEXTUREi_ARB (where i is between 0 and n-1
 where n is the number of texture units supported), COLOR (if
 the ARB_imaging subset is supported), MODELVIEW_PROJECTION_NV,
 or MATRIXi_NV. transform must be one of IDENTITY_NV, INVERSE_NV,
 TRANSPOSE_NV, or INVERSE_TRANSPOSE_NV. The INVALID_VALUE error is
 generated if address is not a multiple of four.

 The MODELVIEW_PROJECTION_NV matrix represents the concatenation of
 the current modelview and projection matrices. If M is the current
 modelview matrix and P is the current projection matrix, then the
 MODELVIEW_PROJECTION_NV matrix is C and computed as

 C = P M

 Matrix tracking for the specified program parameter register and the
 next consecutive three registers is disabled when NONE is supplied
 for matrix. When tracking is disabled the previously tracked program
 parameter registers retain the state of their last tracked values.
 Otherwise, the specified transformed version of matrix is tracked into
 the specified program parameter register and the next three registers.
 Whenever the matrix changes, the transformed version of the matrix
 is updated in the specified range of program parameter registers.
 If TEXTURE is specified for matrix, the texture matrix for the current
 active texture unit is tracked. If TEXTUREi_ARB is specified for
 matrix, the <i>th texture matrix is tracked.

 Matrices are tracked row-wise meaning that the top row of the
 transformed matrix is loaded into the program parameter address,

 2-50

 the second from the top row of the transformed matrix is loaded into
 the program parameter address+1, the third from the top row of the
 transformed matrix is loaded into the program parameter address+2,
 and the bottom row of the transformed matrix is loaded into the
 program parameter address+3. The transformed matrix may be identical
 to the specified matrix, the inverse of the specified matrix, the
 transpose of the specified matrix, or the inverse transpose of the
 specified matrix, depending on the value of transform.

 When matrix tracking is enabled for a particular program parameter
 register sequence, updates to the program parameter using
 ProgramParameterNV commands, a vertex program, or a vertex state
 program are not possible. The INVALID_OPERATION error is generated
 if a ProgramParameterNV command is used to update a program parameter
 register currently tracking a matrix.

 The INVALID_OPERATION error is generated by ExecuteProgramNV when
 the vertex state program requested for execution writes to a program
 parameter register that is currently tracking a matrix because the
 program is considered invalid.

 2.14.6 Required Vertex Program State

 The state required for vertex programs consists of:

 a bit indicating whether or not program mode is enabled;

 a bit indicating whether or not two-sided color mode is enabled;

 a bit indicating whether or not program-specified point size mode
 is enabled;

 96 4-component floating-point program parameter registers;

 16 4-component vertex attribute registers (though this state is
 aliased with the current normal, primary color, secondary color,
 fog coordinate, weights, and texture coordinate sets);

 24 sets of matrix tracking state for each set of four sequential
 program parameter registers, consisting of a n-valued integer
 indicated the tracked matrix or GL_NONE (where n is 5 + the number
 of texture units supported + the number of tracking matrices
 supported) and a four-valued integer indicating the transformation
 of the tracked matrix;

 an unsigned integer naming the currently bound vertex program

 and the state must be maintained to indicate which integers
 are currently in use as program names.

 Each existent program object consists of a target, a boolean indicating
 whether the program is resident, an array of type ubyte containing the
 program string, and the length of the program string array. Initially,
 no program objects exist.

 Program mode, two-sided color mode, and program-specified point size
 mode are all initially disabled.

 The initial state of all 96 program parameter registers is (0,0,0,0).

 The initial state of the 16 vertex attribute registers is (0,0,0,1)
 except in cases where a vertex attribute register aliases to a
 conventional GL transform mode vertex parameter in which case

 2-51

 the initial state is the initial state of the respective aliased
 conventional vertex parameter.

 The initial state of the 24 sets of matrix tracking state is NONE
 for the tracked matrix and IDENTITY_NV for the transformation of the
 tracked matrix.

 The initial currently bound program is zero.

 The client state required to implement the 16 vertex attribute
 arrays consists of 16 boolean values, 16 memory pointers, 16 integer
 stride values, 16 symbolic constants representing array types,
 and 16 integers representing values per element. Initially, the
 boolean values are each disabled, the memory pointers are each null,
 the strides are each zero, the array types are each FLOAT, and the
 integers representing values per element are each four."

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

 -- Section 3.3 "Points"

 Change the first paragraph to read:

 "When program vertex mode is disabled, the point size for rasterizing
 points is controlled with

 void PointSize(float size);

 size specifies the width or diameter of a point. The initial point size
 value is 1.0. A value less than or equal to zero results in the error
 INVALID_VALUE. When vertex program mode is enabled, the point size for
 rasterizing points is determined as described in section 2.14.1.5."

 -- Section 3.9 "Color Sum"

 Change the first paragraph to read:

 "At the beginning of color sum, a fragment has two RGBA colors: a
 primary color cpri (which texturing, if enabled, may have modified)
 and a secondary color csec. If vertex program mode is disabled, csec
 is defined by the lighting equations in section 2.13.1. If vertex
 program mode is enabled, csec is the fragment's secondary color,
 obtained by interpolating the COL1 (or BFC1 if the primitive is a
 polygon, the vertex program two-sided color mode is enabled, and the
 polygon is back-facing) vertex result register RGB components for the
 vertices making up the primitive; the alpha component of csec when
 program mode is enabled is always zero. The components of these two
 colors are summed to produce a single post-texturing RGBA color c.
 The components of c are then clamped to the range [0,1]."

 -- Section 3.10 "Fog"

 Change the initial sentences in the second paragraph to read:

 "This factor f may be computed according to one of three equations:

 f = exp(-d*c) (3.24)
 f = exp(-(d*c)^2) (3.25)
 f = (e-c)/(e-s) (3.26)

 If vertex program mode is enabled, then c is the fragment's fog
 coordinate, obtained by interpolating the FOGC vertex result register
 values for the vertices making up the primitive. When vertex program

 2-52

 mode is disabled, the c is the eye-coordinate distance from the eye,
 (0,0,0,1) in eye-coordinates, to the fragment center." ...

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Framebuffer)

 None

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

 -- Section 5.1 "Evaluators"

 Add the following lines to the end of table 5.1 (page 165):

 target k values
 ------------------------- --- ------------------------------
 MAP1_VERTEX_ATTRIB0_4_NV 4 x, y, z, w vertex attribute 0
 MAP1_VERTEX_ATTRIB1_4_NV 4 x, y, z, w vertex attribute 1
 MAP1_VERTEX_ATTRIB2_4_NV 4 x, y, z, w vertex attribute 2
 MAP1_VERTEX_ATTRIB3_4_NV 4 x, y, z, w vertex attribute 3
 MAP1_VERTEX_ATTRIB4_4_NV 4 x, y, z, w vertex attribute 4
 MAP1_VERTEX_ATTRIB5_4_NV 4 x, y, z, w vertex attribute 5
 MAP1_VERTEX_ATTRIB6_4_NV 4 x, y, z, w vertex attribute 6
 MAP1_VERTEX_ATTRIB7_4_NV 4 x, y, z, w vertex attribute 7
 MAP1_VERTEX_ATTRIB8_4_NV 4 x, y, z, w vertex attribute 8
 MAP1_VERTEX_ATTRIB9_4_NV 4 x, y, z, w vertex attribute 9
 MAP1_VERTEX_ATTRIB10_4_NV 4 x, y, z, w vertex attribute 10
 MAP1_VERTEX_ATTRIB11_4_NV 4 x, y, z, w vertex attribute 11
 MAP1_VERTEX_ATTRIB12_4_NV 4 x, y, z, w vertex attribute 12
 MAP1_VERTEX_ATTRIB13_4_NV 4 x, y, z, w vertex attribute 13
 MAP1_VERTEX_ATTRIB14_4_NV 4 x, y, z, w vertex attribute 14
 MAP1_VERTEX_ATTRIB15_4_NV 4 x, y, z, w vertex attribute 15

 Replace the four paragraphs on pages 167-168 that explain the
 operation of EvalCoord:

 "EvalCoord operates differently depending on whether vertex program
 mode is enabled or not. We first discuss how EvalCoord operates when
 vertex program mode is disabled.

 When one of the EvalCoord commands is issued and vertex program
 mode is disabled, all currently enabled maps (excluding the
 maps that correspond to vertex attributes, i.e. maps of the form
 MAPx_VERTEX_ATTRIBn_4_NV). ..."

 Add a paragraph before the initial paragraph discussing AUTO_NORMAL:

 "When one of the EvalCoord commands is issued and vertex program mode
 is enabled, the evaluation and the issuing of per-vertex parameter commands
 matches the discussion above, except that if any vertex attribute
 maps are enabled, the corresponding VertexAttribNV call for each enabled
 vertex attribute map is issued with the map's evaluated coordinates
 and the corresponding aliased per-vertex parameter map is ignored
 if it is also enabled, with one important difference. As is the case when
 vertex program mode is disabled, the GL uses evaluated values
 instead of current values for those evaluations that are enabled
 (otherwise the current values are used). The order of the effective
 commands is immaterial, except that Vertex or VertexAttribNV(0,
 ...) (the commands that issue provoke vertex program execution)
 must be issued last. Use of evaluators has no effect on the current
 vertex attributes or conventional per-vertex parameters. If a
 vertex attribute map is disabled, but its corresponding conventional
 per-vertex parameter map is enabled, the conventional per-vertex

 2-53

 parameter map is evaluated and issued as when vertex program mode
 is not enabled."

 Replace the two paragraphs discussing AUTO_NORMAL with:

 "Finally, if either MAP2_VERTEX_3 or MAP2_VERTEX_4 is enabled or if
 both MAP2_VERTEX_ATTRIB0_4_NV and vertex program mode are enabled,
 then the normal to the surface is computed. Analytic computation,
 which sometimes yields normals of length zero, is one method which
 may be used. If automatic normal generation is enabled, then this
 computed normal is used as the normal associated with a generated
 vertex (when program mode is disabled) or as vertex attribute 2
 (when vertex program mode is enabled). Automatic normal generation
 is controlled with Enable and Disable with the symbolic constant
 AUTO_NORMAL. If automatic normal generation is disabled and vertex
 program mode is enabled, then vertex attribute 2 is evaluated
 as usual. If automatic normal generation and vertex program mode
 are disabled, then a corresponding normal map, if enabled, is used
 to produce a normal. If neither automatic normal generation nor
 a map corresponding to the normal per-vertex parameter (or vertex
 attribute 2 in program mode) are enabled, then no normal is sent with
 a vertex resulting from an evaluation (the effect is that the current
 normal is used). For MAP_VERTEX3, let q=p. For MAP_VERTEX_4 or
 MAP2_VERTEX_ATTRBI0_4_NV, let q = (x/w, y/w, z/w) where (x,y,z,w)=p.
 Then let

 m = (partial q / partial u) cross (partial q / partial v)

 Then when vertex program mode is disabled, the generated analytic
 normal, n, is given by n=m/||m||. However, when vertex program mode
 is enabled, the generated analytic normal used for vertex attribute
 2 is simply (mx,my,mz,1). In vertex program mode, the normalization
 of the generated analytic normal can be performed by the current
 vertex program."

 Change the respective sentences of the last paragraph discussing
 required evaluator state to read:

 "The state required for evaluators potentially consists of 9
 conventional one-dimensional map specifications, 16 vertex attribute
 one-dimensional map specifications, 9 conventional two-dimensional
 map specifications, and 16 vertex attribute two-dimensional map
 specifications indicating which are enabled. ... All vertex
 coordinate maps produce the coordinates (0,0,0,1) (or the appropriate
 subset); all normal coordinate maps produce (0,0,1); RGBA maps produce
 (1,1,1,1); color index maps produce 1.0; texture coordinate maps
 produce (0,0,0,1); and vertex attribute maps produce (0,0,0,1). ...
 If any evaluation command is issued when none of MAPn_VERTEX_3,
 MAPn_VERTEX_4, or MAPn_VERTEX_ATTRIB0_NV (where n is the map dimension
 being evaluated) are enabled, nothing happens."

 -- Section 5.4 "Display Lists"

 Add to the list of commands not compiled into display lists in the
 third to the last paragraph:

 "AreProgramsResidentNV, IsProgramNV, GenProgramsNV, DeleteProgramsNV,
 VertexAttribPointerNV"

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

 -- Section 6.1.12 "Saving and Restoring State"

 2-54

 Only the enables and vertex array state introduced by this extension
 can be pushed and popped.

 See the attribute column in table X.5 for determining what vertex
 program state can be pushed and popped with PushAttrib, PopAttrib,
 PushClientAttrib, and PopClientAttrib.

 The new evaluator enables in table 6.22 can also be pushed and
 popped.

 -- NEW Section 6.1.13 "Vertex Program Queries"

 "The commands

 void GetProgramParameterfvNV(enum target, uint index,
 enum pname, float *params);
 void GetProgramParameterdvNV(enum target, uint index,
 enum pname, double *params);

 obtain the current program parameters for the given program
 target and parameter index into the array params. target must
 be VERTEX_PROGRAM_NV. pname must be PROGRAM_PARAMETER_NV.
 The INVALID_VALUE error is generated if index is greater than 95.
 Each program parameter is an array of four values.

 The command

 void GetProgramivNV(uint id, enum pname, int *params);

 obtains program state named by pname for the program named id
 in the array params. pname must be one of PROGRAM_TARGET_NV,
 PROGRAM_LENGTH_NV, or PROGRAM_RESIDENT_NV. The INVALID_OPERATION
 error is generated if the program named id does not exist.

 The command

 void GetProgramStringNV(uint id, enum pname,
 ubyte *program);

 obtains the program string for program id. pname must be
 PROGRAM_STRING_NV. n ubytes are returned into the array program
 where n is the length of the program in ubytes. GetProgramivNV with
 PROGRAM_LENGTH_NV can be used to query the length of a program's
 string. The INVALID_OPERATION error is generated if the program
 named id does not exist.

 The command

 void GetTrackMatrixivNV(enum target, uint address,
 enum pname, int *params);

 obtains the matrix tracking state named by pname for the specified
 address in the array params. target must be VERTEX_PROGRAM_NV. pname
 must be either TRACK_MATRIX_NV or TRACK_MATRIX_TRANSFORM_NV. If the
 matrix tracked is a texture matrix, TEXTUREi_ARB is returned (never
 TEXTURE) where i indicates the texture unit of the particular tracked
 texture matrix. The INVALID_VALUE error is generated if address is
 not divisible by four and is not less than 96.

 The commands

 void GetVertexAttribdvNV(uint index, enum pname, double *params);

 2-55

 void GetVertexAttribfvNV(uint index, enum pname, float *params);
 void GetVertexAttribivNV(uint index, enum pname, int *params);

 obtain the vertex attribute state named by pname for the vertex
 attribute numbered index. pname must be one of ATTRIB_ARRAY_SIZE_NV,
 ATTRIB_ARRAY_STRIDE_NV, ATTRIB_ARRAY_TYPE_NV, or CURRENT_ATTRIB_NV.
 Note that all the queries except CURRENT_ATTRIB_NV return client
 state. The INVALID_VALUE error is generated if index is greater than
 15, or if index is zero and pname is CURRENT_ATTRIB_NV.

 The command

 void GetVertexAttribPointervNV(uint index,
 enum pname, void **pointer);

 obtains the pointer named pname in the array params for vertex
 attribute numbered index. pname must be ATTRIB_ARRAY_POINTER_NV.
 The INVALID_VALUE error is generated if index greater than 15.

 The command

 boolean IsProgramNV(uint id);

 returns TRUE if program is the name of a program object. If program
 is zero or is a non-zero value that is not the name of a program
 object, or if an error condition occurs, IsProgramNV returns FALSE.
 A name returned by GenProgramsNV but not yet loaded with a program
 is not the name of a program object."

 -- NEW Section 6.1.14 "Querying Current Matrix State"

 "Instead of providing distinct symbolic tokens for querying each
 matrix and matrix stack depth, the symbolic tokens CURRENT_MATRIX_NV
 and CURRENT_MATRIX_STACK_DEPTH_NV in conjunction with the GetBooleanv,
 GetIntegerv, GetFloatv, and GetDoublev return the respective state
 of the current matrix given the current matrix mode.

 Querying CURRENT_MATRIX_NV and CURRENT_MATRIX_STACK_DEPTH_NV is
 the only means for querying the matrix and matrix stack depth of
 the tracking matrices described in section 2.14.5."

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

 Add the following rule:

 "Rule X Vertex program and vertex state program instructions not
 relevant to the calculation of any result must have no effect on
 that result.

 Rules X+1 Vertex program and vertex state program instructions
 relevant to the calculation of any result must always produce the
 identical result. In particular, the same instruction with the same
 source inputs must produce the identical result whether executed by
 a vertex program or a vertex state program.

 Instructions relevant to the calculation of a result are any
 instructions in a sequence of instructions that eventually determine
 the source values for the calculation under consideration.

 There is no guaranteed invariance between vertices transformed by
 conventional GL vertex transform mode and vertices transformed by
 vertex program mode. Multi-pass rendering algorithms that require
 rendering invariances to operate correctly should not mix conventional

 2-56

 GL vertex transform mode with vertex program mode for different
 rendering passes. However such algorithms will operate correctly
 if the algorithms limit themselves to a single mode of vertex
 transformation."

Additions to the AGL/GLX/WGL Specifications

 Program objects are shared between AGL/GLX/WGL rendering contexts if
 and only if the rendering contexts share display lists. No change
 is made to the AGL/GLX/WGL API.

Dependencies on EXT_vertex_weighting

 If the EXT_vertex_weighting extension is not supported, there is no
 aliasing between vertex attribute 1 and the current vertex weight.
 Replace the contents of the last three columns in row 5 of table
 X.2 with dashes.

Dependencies on EXT_point_parameters

 When EXT_point_parameters is supported, the amended discussion
 of point size determination should be further amended with the
 language from the EXT_point_parameters specification though the point
 parameters functionality only applies when vertex program mode is
 disabled.

 Even if the EXT_point_parameters extension is not supported, the
 PSIZ vertex result register must operate as specified.

Dependencies on ARB_multitexture

 ARB_multitexture is required to support NV_vertex_program and the
 value of MAX_TEXTURE_UNITS_ARB must be at least 2. If more than 8
 texture units are supported, only the first 8 texture units can be
 assigned texture coordinates when vertex program mode is enabled.
 Texture units beyond 8 are implicitly disabled when vertex program
 mode is enabled.

Dependencies on EXT_fog_coord

 If the EXT_fog_coord extension is not supported, there is no
 aliasing between vertex attribute 5 and the current fog coordinate.
 Replace the contents of the last three columns in row 5 of table
 X.2 with dashes.

 Even if the EXT_fog_coord extension is not supported, the FOGC
 vertex result register must operate as specified. Note that the
 FOGC vertex result register behaves identically to the EXT_fog_coord
 extension's FOG_COORDINATE_SOURCE_EXT being FOG_COORDINATE_EXT.
 This means that the functionality of EXT_fog_coord is required to
 implement NV_vertex_program even if the EXT_fog_coord extension is
 not supported.

 If the EXT_fog_coord extension is supported, the state of
 FOG_COORDINATE_SOURCE_EXT only applies when vertex program mode is
 disabled and the discussion in section 3.10 is further amended by
 the discussion of FOG_COORDINATE_SOURCE_EXT in the EXT_fog_coord
 specification.

Dependencies on EXT_secondary_color

 If the EXT_secondary_color extension is not supported, there is no
 aliasing between vertex attribute 4 and the current secondary color.

 2-57

 Replace the contents of the last three columns in row 4 of table
 X.2 with dashes.

 Even if the EXT_secondary_color extension is not supported, the COL1
 and BFC1 vertex result registers must operate as specified.
 These vertex result registers are required to implement OpenGL 1.2's
 separate specular mode within a vertex program.

GLX Protocol

 Forty-five new GL commands are added.

 The following thirty-five rendering commands are sent to the sever
 as part of a glXRender request:

 BindProgramNV
 2 12 rendering command length
 2 4180 rendering command opcode
 4 ENUM target
 4 CARD32 id

 ExecuteProgramNV
 2 12+4*n rendering command length
 2 4181 rendering command opcode
 4 ENUM target
 0x8621 n=4 GL_VERTEX_STATE_PROGRAM_NV
 else n=0 command is erroneous
 4 CARD32 id
 4*n LISTofFLOAT32 params

 RequestResidentProgramsNV
 2 8+4*n rendering command length
 2 4182 rendering command opcode
 4 INT32 n
 n*4 CARD32 programs

 LoadProgramNV
 2 16+n+p rendering command length
 2 4183 rendering command opcode
 4 ENUM target
 4 CARD32 id
 4 INT32 len
 n LISTofCARD8 n
 p unused, p=pad(n)

 ProgramParameter4fvNV
 2 32 rendering command length
 2 4184 rendering command opcode
 4 ENUM target
 4 CARD32 index
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]

 ProgramParameter4dvNV
 2 44 rendering command length
 2 4185 rendering command opcode
 4 ENUM target
 4 CARD32 index
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]

 2-58

 8 FLOAT64 params[3]

 ProgramParameters4fvNV
 2 16+16*n rendering command length
 2 4186 rendering command opcode
 4 ENUM target
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT32 params

 ProgramParameters4dvNV
 2 16+32*n rendering command length
 2 4187 rendering command opcode
 4 ENUM target
 4 CARD32 index
 4 CARD32 n
 32*n FLOAT64 params

 TrackMatrixNV
 2 20 rendering command length
 2 4188 rendering command opcode
 4 ENUM target
 4 CARD32 address
 4 ENUM matrix
 4 ENUM transform

 VertexAttribPointerNV is an entirely client-side command

 VertexAttrib1svNV
 2 12 rendering command length
 2 4189 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 unused

 VertexAttrib2svNV
 2 12 rendering command length
 2 4190 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]

 VertexAttrib3svNV
 2 12 rendering command length
 2 4191 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 unused

 VertexAttrib4svNV
 2 12 rendering command length
 2 4192 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 INT16 v[3]

 VertexAttrib1fvNV
 2 12 rendering command length
 2 4193 rendering command opcode

 2-59

 4 CARD32 index
 4 FLOAT32 v[0]

 VertexAttrib2fvNV
 2 16 rendering command length
 2 4194 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]

 VertexAttrib3fvNV
 2 20 rendering command length
 2 4195 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]

 VertexAttrib4fvNV
 2 24 rendering command length
 2 4196 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]
 4 FLOAT32 v[3]

 VertexAttrib1dvNV
 2 16 rendering command length
 2 4197 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]

 VertexAttrib2dvNV
 2 24 rendering command length
 2 4198 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]

 VertexAttrib3dvNV
 2 32 rendering command length
 2 4199 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]

 VertexAttrib4dvNV
 2 40 rendering command length
 2 4200 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]
 8 FLOAT64 v[3]

 VertexAttrib4ubvNV
 2 12 rendering command length
 2 4201 rendering command opcode
 4 CARD32 index
 1 CARD8 v[0]
 1 CARD8 v[1]

 2-60

 1 CARD8 v[2]
 1 CARD8 v[3]

 VertexAttribs1svNV
 2 12+2*n+p rendering command length
 2 4202 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 2*n INT16 v
 p unused, p=pad(2*n)

 VertexAttribs2svNV
 2 12+4*n rendering command length
 2 4203 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 4*n INT16 v

 VertexAttribs3svNV
 2 12+6*n+p rendering command length
 2 4204 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 6*n INT16 v
 p unused, p=pad(6*n)

 VertexAttribs4svNV
 2 12+8*n rendering command length
 2 4205 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 8*n INT16 v

 VertexAttribs1fvNV
 2 12+4*n rendering command length
 2 4206 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 4*n FLOAT32 v

 VertexAttribs2fvNV
 2 12+8*n rendering command length
 2 4207 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 8*n FLOAT32 v

 VertexAttribs3fvNV
 2 12+12*n rendering command length
 2 4208 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 12*n FLOAT32 v

 VertexAttribs4fvNV
 2 12+16*n rendering command length
 2 4209 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT32 v

 VertexAttribs1dvNV
 2 12+8*n rendering command length

 2-61

 2 4210 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 8*n FLOAT64 v

 VertexAttribs2dvNV
 2 12+16*n rendering command length
 2 4211 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT64 v

 VertexAttribs3dvNV
 2 12+24*n rendering command length
 2 4212 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 24*n FLOAT64 v

 VertexAttribs4dvNV
 2 12+32*n rendering command length
 2 4213 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 32*n FLOAT64 v

 VertexAttribs4ubvNV
 2 12+4*n rendering command length
 2 4214 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 4*n CARD8 v

 The remaining twelve commands are non-rendering commands. These commands
 are sent separately (i.e., not as part of a glXRender or glXRenderLarge
 request), using the glXVendorPrivateWithReply request:

 AreProgramsResidentNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request length
 4 1293 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 programs
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 4 BOOL32 return value
 20 unused
 n LISTofBOOL programs
 p unused, p=pad(n)

 DeleteProgramsNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request length
 4 1294 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 programs

 2-62

 GenProgramsNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request length
 4 1295 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 n reply length
 24 unused
 n*4 LISTofCARD322 programs

 GetProgramParameterfvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request length
 4 1296 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetProgramParameterdvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request length
 4 1297 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 FLOAT64 params

 2-63

 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

 GetProgramivNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1298 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetProgramStringNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1299 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 4 unused
 4 CARD32 n
 16 unused
 n STRING program
 p unused, p=pad(n)

 GetTrackMatrixivNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request length
 4 1300 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 address
 4 ENUM pname
 =>
 1 1 reply

 2-64

 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 Note that ATTRIB_ARRAY_SIZE_NV, ATTRIB_ARRAY_STRIDE_NV, and
 ATTRIB_ARRAY_TYPE_NV may be queried by GetVertexAttribNV but
 return client-side state.

 GetVertexAttribdvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1301 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

 GetVertexAttribfvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1302 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 2-65

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetVertexAttribivNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1303 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetVertexAttribPointervNV is an entirely client-side command

 IsProgramNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request length
 4 1304 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 BOOL32 return value
 20 unused

Errors

 The error INVALID_VALUE is generated if VertexAttribNV is called
 where index is greater than 15.

 The error INVALID_VALUE is generated if any ProgramParameterNV has
 an index is greater than 95.

 The error INVALID_VALUE is generated if VertexAttribPointerNV
 is called where index is greater than 15.

 2-66

 The error INVALID_VALUE is generated if VertexAttribPointerNV
 is called where size is not one of 1, 2, 3, or 4.

 The error INVALID_VALUE is generated if VertexAttribPointerNV
 is called where stride is negative.

 The error INVALID_OPERATION is generated if VertexAttribPointerNV
 is called where type is UNSIGNED_BYTE and size is not 4.

 The error INVALID_VALUE is generated if LoadProgramNV is used to load a
 program with an id of zero.

 The error INVALID_OPERATION is generated if LoadProgramNV is used
 to load an id that is currently loaded with a program of a different
 program target.

 The error INVALID_OPERATION is generated if the program passed to
 LoadProgramNV fails to load because it is not syntactically correct
 based on the specified target. The value of PROGRAM_ERROR_POSITION_NV
 is still updated when this error is generated.

 The error INVALID_OPERATION is generated if LoadProgramNV has a
 target of VERTEX_PROGRAM_NV and the specified program fails to
 load because it does not write the HPOS register at least once.
 The value of PROGRAM_ERROR_POSITION_NV is still updated when this
 error is generated.

 The error INVALID_OPERATION is generated if LoadProgramNV has a target
 of VERTEX_STATE_PROGRAM_NV and the specified program fails to load
 because it does not write at least one program parameter register.
 The value of PROGRAM_ERROR_POSITION_NV is still updated when this
 error is generated.

 The error INVALID_OPERATION is generated if the vertex program
 or vertex state program passed to LoadProgramNV fails to load
 because it contains more than 128 instructions. The value of
 PROGRAM_ERROR_POSITION_NV is still updated when this error is
 generated.

 The error INVALID_OPERATION is generated if a program is loaded with
 LoadProgramNV for id when id is currently loaded with a program of
 a different target.

 The error INVALID_OPERATION is generated if BindProgramNV attempts
 to bind to a program name that is not a vertex program (for example,
 if the program is a vertex state program).

 The error INVALID_VALUE is generated if GenProgramsNV is called
 where n is negative.

 The error INVALID_VALUE is generated if AreProgramsResidentNV is
 called and any of the queried programs are zero or do not exist.

 The error INVALID_OPERATION is generated if ExecuteProgramNV executes
 a program that does not exist.

 The error INVALID_OPERATION is generated if ExecuteProgramNV executes
 a program that is not a vertex state program.

 The error INVALID_OPERATION is generated if Begin, RasterPos, or a
 command that performs an explicit Begin is called when vertex program
 mode is enabled and the currently bound vertex program writes program
 parameters that are currently being tracked.

 2-67

 The error INVALID_OPERATION is generated if ExecuteProgramNV is called
 and the vertex state program to execute writes program parameters
 that are currently being tracked.

 The error INVALID_VALUE is generated if TrackMatrixNV has a target
 of VERTEX_PROGRAM_NV and attempts to track an address is not a
 multiple of four.

 The error INVALID_VALUE is generated if GetProgramParameterNV is
 called to query an index greater than 95.

 The error INVALID_VALUE is generated if GetVertexAttribNV is called
 to query an <index> greater than 15, or if <index> is zero and <pname>
 is CURRENT_ATTRIB_NV.

 The error INVALID_VALUE is generated if GetVertexAttribPointervNV
 is called to query an index greater than 15.

 The error INVALID_OPERATION is generated if GetProgramivNV is called
 and the program named id does not exist.

 The error INVALID_OPERATION is generated if GetProgramStringNV is called
 and the program named <program> does not exist.

 The error INVALID_VALUE is generated if GetTrackMatrixivNV is called
 with an <address> that is not divisible by four and not less than 96.

 The error INVALID_VALUE is generated if AreProgramsResidentNV,
 DeleteProgramsNV, GenProgramsNV, or RequestResidentProgramsNV are
 called where <n> is negative.

 The error INVALID_VALUE is generated if LoadProgramNV is called
 where <len> is negative.

 The error INVALID_VALUE is generated if ProgramParameters4dvNV or
 ProgramParameters4fvNV are called where <count> is negative.

 The error INVALID_VALUE is generated if
 VertexAttribs{1,2,3,4}{d,f,s}vNV is called where <count> is negative.

New State

update table 6.22 (page 212) so that all the "9"s are "25"s because there
are 9 conventional map targets and 16 vertex attribute map targets making
a total of 25.

Get Value Type Get Command Initial Value Description Sec Attribute
---------------------------- ------ --------------------------- ------------- ------------------ -------- ------------
VERTEX_PROGRAM_NV B IsEnabled False vertex program 2.10 enable
 enable
VERTEX_PROGRAM_POINT_SIZE_NV B IsEnabled False program-specified 2.14.1.5 enable
 point size mode
VERTEX_PROGRAM_TWO_SIDE_NV B IsEnabled False two-sided color 2.14.1.5 enable
 mode
PROGRAM_ERROR_POSITION_NV Z GetIntegerv -1 last program 2.14.1.7 -
 error position
PROGRAM_PARAMETER_NV 96xR4 GetProgramParameterNV (0,0,0,0) program parameters 2.14.1.2 -
CURRENT_ATTRIB_NV 16xR4 GetVertexAttribNV see 2.14.6 vertex attributes 2.14.1.1 current
 but zero cannot be queried,
 aliased with per-vertex
 parameters
TRACK_MATRIX_NV 24xZ8+ GetTrackMatrixivNV NONE track matrix 2.14.5 -
TRACK_MATRIX_TRANSFORM_NV 24xZ8+ GetTrackMatrixivNV IDENTITY_NV track matrix 2.14.5 -
 transform
VERTEX_PROGRAM_BINDING_NV Z+ GetIntegerv 0 bound vertex 2.14.1.8 -
 program
VERTEX_ATTRIB_ARRAYn_NV 16xB IsEnabled False vertex attrib 2.14.3 vertex-array
 array enable
ATTRIB_ARRAY_SIZE_NV 16xZ GetVertexAttribNV 4 vertex attrib 2.14.3 vertex-array
 array size

 2-68

ATTRIB_ARRAY_STRIDE_NV 16xZ+ GetVertexAttribNV 0 vertex attrib 2.14.3 vertex-array
 array stride
ATTRIB_ARRAY_TYPE_NV 16xZ4 GetVertexAttribNV FLOAT vertex attrib 2.14.3 vertex-array
 array type

Table X.5. New State Introduced by NV_vertex_program.

Get Value Type Get Command Initial Value Description Sec Attribute
------------------- ------ ------------------ ------------- ------------------ -------- ---------
PROGRAM_TARGET_NV Z2 GetProgramivNV 0 program target 6.1.13 -
PROGRAM_LENGTH_NV Z+ GetProgramivNV 0 program length 6.1.13 -
PROGRAM_RESIDENT_NV Z2 GetProgramivNV False program residency 6.1.13 -
PROGRAM_STRING_NV ubxn GetProgramStringNV "" program string 6.1.13 -

Table X.6. Program Object State.

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ------ ----------- ------------- ----------------------- -------- ---------
- 12xR4 - (0,0,0,0) temporary registers 2.14.1.4 -
- 15xR4 - (0,0,0,1) vertex result registers 2.14.1.4 -
 Z4 - (0,0,0,0) vertex program 2.14.1.3 -
 address register

Table X.7. Vertex Program Per-vertex Execution State.

Get Value Type Get Command Initial Value Description Sec Attribute
----------------------------- -------- -------------- ------------- ------------------- ------- ---------
CURRENT_MATRIX_STACK_DEPTH_NV m*Z+ GetIntegerv 1 current stack depth 6.1.14 -
CURRENT_MATRIX_NV m*n*xM^4 GetFloatv Identity current matrix 6.1.14 -

Table X.8. Current matrix state where m is the total number of matrices
including texture matrices and tracking matrices and n is the number of
matrices on each particular matrix stack. Note that this state is
aliased with existing matrix state.

New Implementation Dependent State
 Minimum
Get Value Type Get Command Value Description Sec Attribute
-------------------------------- ---- ----------- ---------- ------------------ ------ ---------
MAX_TRACK_MATRIX_STACK_DEPTH_NV Z+ GetIntegerv 1 maximum tracking 2.14.5 -
 matrix stack depth
MAX_TRACK_MATRICES_NV Z+ GetIntegerv 8 (not to maximum number of 2.14.5 -
 exceed 32) tracking matrices

Table X.9. New Implementation-Dependent Values Introduced by NV_vertex_program.

Revision History

 Version 1.1:

 Added normalization example to Issues.

 Fix explanation of EXP and ARL floor equivalence.

 Clarify that vertex state programs fail if they load more than
 one vertex attribute (though only one is possible).

 Version 1.2

 Add GLX protocol for VertexAttrib4ubvNV and VertexAttribs4ubvNV

 Add issue about TrackMatrixNV transform behavior with example

 Fix the C code specifying VertexAttribsvNV

 Version 1.3

 Dropped support for INT typed vertex attrib arrays.

 Clarify that when ArrayElement is executed and vertex program
 mode is enabled and the vertex attrib 0 array is enabled, the
 vertex attrib 0 array command is executed last. However when
 ArrayElement is executed and vertex program mode is enabled and the
 vertex attrib 0 array is disabled and the vertex array is enabled,
 the vertex array command is executed last.

 2-69

 Version 1.4

 Allow TEXTUREi_ARB for the track matrix. This allows matrix
 tracking of a particular texture matrix without reference to active
 texture (set by glActiveTextureARB) state.

 Early NVIDIA drivers (prior to October 5, 2001) have a bug
 in their handling of tracking matrices specified with TEXTURE.
 Rather than tracking the particular texture matrix indicated
 by the active texture state when TrackMatrixNV is called, these
 early drivers incorrectly track matrix the active texture's texture
 matrix _at track matrix validation time_. In practice this means,
 every tracked matrix defined with TEXTURE tracks the same matrix
 values; you cannot track distinct texture matrices at the same
 time and the texture matrix you actually track depends on the
 active texture matrix at validation time. This is a driver bug.

 Drivers after October 5, 2001 properly track the texture matrix
 specified by active texture when TrackMatrix is called.

 The new correct drivers can be distinguished from the old drivers
 at run time with the following code:

 while (glGetError() != GL_NO_ERROR); // Clear any pre-existing OpenGL errors.
 glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 8, GL_TEXTURE0_ARB, GL_IDENTITY_NV);
 if (glGetError() != GL_NO_ERROR) {
 // Old buggy pre-version 1.4 drivers with GL_TEXTURE
 // glTrackMatrixNV bug.
 } else {
 // Correct new version 1.4 drivers (or later) with GL_TEXTURE
 // glTrackMatrixNV bug fixed and GL_TEXTUREi_NV support.

 // Note: you may want to untrack the matrix at this point.
 }

 Version 1.5

 Earlier versions of this specification claimed for
 GetVertexAttribARB that it is an error to query any vertex attrib
 state for vertex attrib array zero. In fact, it should only be
 an error to query the CURRENT_ATTRIB_ARB state for vertex attrib
 zero; the size, stride, and type of vertex attrib array zero may
 be queried. Version 1.5 specifies the correct behavior.

 Early NVIDIA drivers (prior to January 11, 2002) did not implement
 generate error when querying vertex attrib array zero state (ie,
 did the right thing for size, stride, and type) but not create an
 error when querying the current attribute values for vertex attrib
 array zero either.

 Version 1.6

 GLX opcodes and vendorpriv values assigned.

