
Chapter 1

Introduction
Marc Olano





1 About This Course
Or, “why do we want to do real-time shading, and why offer a course on it?”

Over the years of graphics hardware development, there have been obvious strides
in the geometric complexity of objects that can be rendered in real-time. The first
statistic quoted for any new piece of graphics hardware is the number of polygons it
can render per second. However, there has also been a steady pace of improvement in
appearance for objects rendered in real-time (Figure 1). These improvements are harder
to benchmark and tend to come in jumps across the industry. Nonetheless, no one today
would seriously consider buy a new graphics system that did only flat shading only.

Compare this to software rendering, where techniques like procedural shading have
been in use for 15-20 years [3, 5, 8, 10]. Procedural shading is popular in a large part
because of the power it provides to customize the appearance of everything you render
by changing the procedures that control that appearance.

In the past few years, we’ve begun to see graphics hardware that can do some form
of procedural shading in real-time. This new freedom in expressing the appearance of
rendered objects has excited the imagination of people across the spectrum of interac-
tive graphics users, including everyone from game developers to car designers.

However, the capabilities and ease of use of new real-time shading hardware varies
widely. This course is designed to provide a solid comparison of many of the latest
offerings. Even as we offer this course, hardware capabilities and software interfaces
for them are improving. Any attempt to show the “state of the art”, is at best a snapshot.
As such, these notes will be but one snapshot, and the course presentations another.
While the notes may serve as a starting point, we encourage you to check the web sites
of the various course presenters for the latest developments at and after SIGGRAPH.

Figure 1: Progression of hardware-accelerated appearance: vector, flat shading,
Gouraud shading, 2D Texture + Gouraud shading, 2D Texture + per-vertex Phong,
3D Procedural Shader

1-1



The course itself is divided into two major sections. The morning presenters (Bill
Mark from NVIDIA, Jason Mitchell from ATI and Marc Olano from SGI) will focus
on the how the shaders that determine surface appearance are described. The after-
noon presenters (Chas Boyd from Microsoft on DirectX, Randi Rost from 3DLabs on
OpenGL 2.0 and Michael McCool from the University of Waterloo on API Design and
SMASH) will focus on API issues. That is, on the interface for using shaders and
shaded objects within an application.

2 The Examples
To provide a common ground for comparison, each presenter in both sections will
show three common examples on their latest and greatest system. These will be sup-
plemented by their additional examples for each presenter to show off other important
features of their system.

The common examples are not so much a benchmark of performance as a bench-
mark of ease of use and understanding. By using the same set of examples, course
participants will be able to compare the different hardware and software interfaces. On
the other hand, we haven’t attempted to define the examples too precisely since each
system has its strengths and weaknesses. If we’d defined every detail of the examples,
we’d run the danger of giving a false comparison by the chance overlap with strengths
for some systems and weaknesses for others. Instead, the examples are more roughly
defined, giving each presenter the option to target their strengths — they way you’d do
it if you were writing the shaders.

Note that not all chapters in these notes show implementation of the examples —
in some cases major changes are expected between the course notes deadline and SIG-
GRAPH. In those cases, these notes include reference material that may continue to
prove useful for those platforms.

The following sections describe each of the three common examples, including the
problem statement given to the presenters at the outset of the course.

2.1 Shiny Bump Map

Environment mapped bump mapping ... dependent texturing, ev-
erybody seems to like it

The first example combines environment mapping, a common technique for sim-
ulating reflection, with bump mapping, a common technique for simulating fine-scale
surface features through shading without changing the surface geometry. These two are
interesting when put together since both bump map and environment map are results
of texturing operations. Put together, they require the results of one texture lookup to
influence the texture coordinates used in a second lookup.

It’s also included because bumpy-shiny things have become a trite examples on
recent graphics hardware, being applied to practically every object in some cases.

The problem statement intentionally avoids specifying exactly how the bump map
is computed. The traditional formulation originally proposed by Blinn uses a bump

1-2



Figure 2: Shiny Bump Map on a low-tessellation torus

1-3



Figure 3: Car rendered with Homomorphic BRDF factorization for paint from [7], and
again with environment-map based Fresnel reflectance layer on top of BRDF-based
paint

texture representing a grey-scale height map of the surface [1]. Changes to the shading
normal are determined from the gradients of this bump map texture. Another for-
mulations by Cabral, subtracts shifted versions of the texture in a technique similar
to 3D image embossing to compute the bump gradients [2]. Yet another formulation
by Fournier uses a texture map containing surface normals (a normal map) instead of
computing perturbations to the original shading normals [4]. Any of these or other
method of computing the bumped surface normals could be used. Also, the shader
could compute some other related quantity rather than the bumped normal if it seems
more efficient.

The problem statement also avoids specifying how the environment map is stored.
Once again, there are many options that may make more or less sense for certain imple-
mentations. All systems in this course can represent environment maps in sphere map
form, as an image of a reflective sphere. Some can also use cube map form, mapping
reflection vectors onto the faces of a cube, or parabolic map form, as images of two
reflective paraboloids [6].

2.2 Homomorphic BRDF Factorization

non-standard texgen, realistic surfaces
texture("p",V) * texture("q",H) * texture("p",L)
* diffuse * color

This is the run-time aspect of McCool, Ang and Ahmad’s 2001 SIGGRAPH pa-
per [7]. The bulk of this paper dealt with numerical factorization of arbitrary bidirec-
tional reflectance distribution functions (BRDFs) into combinations of 2D textures.

A BRDF is a 4D function that encodes the reflectance of a surface based on both
the direction of view (V = 2 dimensions) and the incoming light direction (L = 2 dimen-
sions). Equipment exists to measure the BRDF of a real surfaces, typically at a large
number of discrete locations for both light and view directions. Given this BRDF, we

1-4



Figure 4: Scan of wood

can create realistic renderings of many surfaces. However, the nature of the BRDF as
a 4D function prevent its direct use for real-time rendering.

The homomorphic factorization method computes a least-squares fit to a full 4D
BRDF by a product of 2D textures, each with a unique set of texture coordinates de-
pendent on both V and L. The method doesn’t constrain the choice of texture coordi-
nates for each 2D texture, but good results were obtained in the original paper using
one texture lookup indexed by V , one indexed by L (actually the same texture used over
again) and one indexed by H = V +L, all expressed in the local tangent coordinates.
This set of textures makes some physical sense relative to “microfacet” BRDF mod-
els that model the surface as a distribution of microscopic perfectly reflective facets.
The H texture can be interpreted as the probability any microfacet will have the given
orientation, H. The V and L textures can be interpreted as shadowing and masking of
some microfacets by other facets.

This is a good choice for an example since it requires non-standard texture coordi-
nate generation (and hence application or vertex-level computation). It also gives more
realistic appearance than is typically seen in real-time rendering, even on systems with
full shading support.

2.3 Procedural Wood
Should be able to morph between 3D versions of the different
wood samples in [Figure 4]. ...a good basis is the wood shader
in The RenderMan Companion [9]. It should be parameterized
for dark and light bands (color, width and transition) and also
different fine grain in the dark and light bands (color, frequency
and specularity). I’ll try to get a better scan to show the last
effect – there is a variation in the specular highlight intensity that
correlates well with the fine grain of some of the wood.
Since it should be parameterized for all of these things, a simple
3D wood texture won’t cut it, but feel free to use 1D, 2D or 3D
textures for other things if it makes it easier.

This example is intended to be more complex than the typical real-time shader

1-5



(though not as complex as some of the 1000-line shaders used in software rendering).
A single wood shader, with a great degree of parameterization, should give all of us a
reasonable challenge in comparison to the relative simplicity of the first example.

References
[1] BLINN, J. F., AND NEWELL, M. E. Texture and reflection in computer generated

images. Communications of the ACM 19 (1976), 542–546.

[2] CABRAL, B. K., PEERCY, M. S., AND AIREY, J. M. Method, system, and com-
puter program product for bump mapping in tangent space. US Patent 5,949,424,
1999.

[3] COOK, R. L. Shade trees. In Proc. ACM SIGGRAPH (July 1984), pp. 223–231.

[4] FOURNIER, A. Normal distribution functions and multiple surfaces. In Graphics
Interface ’92 Workshop on Local Illumination (May 1992), pp. 45–52.

[5] HANRAHAN, P., AND LAWSON, J. A language for shading and lighting cal-
culations. In Computer Graphics (SIGGRAPH ’90 Proceedings) (Aug. 1990),
pp. 289–298.

[6] HEIDRICH, W., AND SEIDEL, H.-P. View-independent environment maps. In
Eurographics/SIGGRAPH Workshop on Graphics Hardware (1998), pp. 39–45.

[7] MCCOOL, M. D., ANG, J., AND AHMAD, A. Homomorphic factorization of
brdfs for high-performance rendering. In Proc. ACM SIGGRAPH (Aug. 2001).

[8] PERLIN, K. An image synthesizer. vol. 19, pp. 287–296.

[9] UPSTILL, S. The RenderMan companion: A Programmer’s Guide to Realistic
Computer Graphics. Addison-Wesley, 1990.

[10] WHITTED, T., AND WEIMER, D. M. A software testbed for the development of
3D raster graphics systems. ACM Transactions on Graphics 1, 1 (January 1982),
43–57.

1-6


