
The Solid Map:
Methods for Generating a 2-D Texture Map

for Solid Texturing

Nate Carr
Washington State University

ncarr@eecs.wsu.edu

John Hart
Washington State University

hart@eecs.wsu.edu

Jerome Maillot
Alias jWavefront

jmaillot@aw.sgi.com

ABSTRACT
The solid map provides a view-independent method for solid tex-
turing using an ordinary 2-D surface texture map. The solid map
transforms a model’s polygons into 2-D texture space without over-
lap. It then rasterizes the polygons in this space, interpolating the
solid texture coordinates across the pixels of the polygon. These
stored solid texture coordinates are then read by a texture synthesis
procedure, which generates a color that is stored at the correspond-
ing location in the texture map. This texture map when applied
to the model’s polygons yields a procedural solid texturing of the
model.
Artifacts of this method include coverage, sampling, distortion and
seams. Four algorithms for mapping polygons into texture space
without overlap are presented and compared across these artifacts.
Applications of the solid map are also presented, including solid
texturing deformed objects, real time procedural solid texturing,
procedural solid texturing in OpenGL and storing solid textures in
model description files.

1. INTRODUCTION
Solid texturing [17; 19] is now a well known and often used tool
in computer graphics. Solid texturing uses three space coordinates
instead of two surface coordinates, removing the need to navigate a
surface in order to texture it. It also accurately simulates the sculpt-
ing of a shape out of a solid substance, such that the features of the
solid appear on the shape’s surface. Solid texturing also provides
a simple and direct method for aligning texture features across the
seams at edges, mesh boundaries and intersection curves.
Solid texturing was necessarily invented in conjunction with pro-
cedural texturing, for at the time the concept of storing a 3-D array
of texture colors was prohibitively expensive. The use of programs
to generate the texture colors given three space coordinates as a
parameter overcame the limitations of memory storage at the ex-
pense of additional computation time. Compared to stored image
textures, procedural textures provide a seemingly infinite amount
of non-repeating texture across space, and allow higher resolution
textures with more intricate detail.
Conversely, many procedural textures, such as those based on the
Perlin noise function, work well with any set of texture coordinates
so long as they vary consistently across the surface. Using solid
texture coordinates based on the model coordinate system saves
the user from the burden of surface parameterization to obtain two-
dimensional surface texturing.
Procedural solid texturing is a central component of the Render-
man shading language [7]. An entire high-level little language was
developed to facilitate the simplified coding ofshaders,procedures
invoked during the rendering of a model. The flexibility offered by

these programmable shaders has permeated nearly every applica-
tion of high quality rendering, and elevated Renderman to an in-
dustry standard for procedural shader description.

Because procedural textures trade computational power for storage
space, they have been used extensively in parallel graphics systems
whose numerous processors have little internal memory storage.
[20] used a Pixel Machine to render models generated by marching
rays through solid procedural textures. [22] implemented procedu-
ral solid textures on the PixelPlanes parallel image computer, and
[16] developed this into a fully programmable shading system on
PixelFlow. However, even fifteen years after its publication, proce-
dural solid texturing has yet to find a real-time implementation in
consumer graphics systems, though there have been several recent
calls for it [21; 6].

Current graphics libraries support solid texturing with the manage-
ment of three (or more) texture coordinates, and provide the storage
of 3-D texture volumes. While modern computers have enough
memory to store such textures, storage of a 3-D array of texture
colors remains a highly inefficient use of resources since only 2-
D slices of the texture will appear on the surface polygons. Hence,
the main roadblock to procedural shading hardware is specification,
namely extending existing standards to include procedures, and de-
termining how to specify a procedure efficiently to a graphics API.

[8] based a hardware design around a single function capable of
generating several of the most popular procedural solid textures,
such that an extended version of OpenGL could specify a pro-
cedural texture as a set of parameters to this function. [18] de-
scribed a compiler that translates Renderman shading procedures
into OpenGL source code. The technique is based on costly mul-
tipass rendering, and required the extension of the precision of
OpenGL’s framebuffers. [12] proposed extending OpenGL with
programmable blending operations to allow it to generate the high
quality multipass images using a single blended multitexturing ren-
dering pass.

Rather than depending on an API extension for solid texturing, we
instead rely on a new technique for implementing real-time proce-
dural solid texturing using the surface texture mapping capabilities
existing in current graphics API’s. The technique uses a data struc-
ture we will call thesolid map.Whereas the texture map contains
colors indexed by two dimensional surface texture coordinates, the
solid map contains solid texture coordinates indexed by these same
two-dimensional surface texture coordinates. Unlike the texture
map, the solid map uses the 2-d texture coordinates to rasterize
each of the object’s polygons into a unique area of the solid map.
This rasterization interpolates the solid texture coordinates across
the polygon in the solid map. The solid texture coordinates in the
solid map may then be used as the input to a procedural texture that



generates a corresponding texture map. This texture map, when ap-
plied back onto the model’s polygons using standard texture map-
ping, yields a procedural solid texture as shown in Figure 1.

Figure 1: A wood-sculpted teapot (front) rendered using a 2-D sur-
face texture map (back) generated from a solid map.

In addition to real-time procedural solid texturing, the solid map
also supports the deformations of sculpted objects. When a real
object deforms, even an object sculpted from a solid, the features
of the texture on the surface deforms with the surface. The texture
certainly does not remain static with respect to its own coordinate
system as if the deformed object were resculpted from the same
material. [26] attempted a solution when they investigated methods
for deforming solid textured implicit surfaces using an auxilliary
coordinate system that deformed with the object. The solid map
allows the features of the solid texture to adhere to the surface,
instead of having the surface ”swim” through the material it was
sculpted from, as shown in Figure 2.

Figure 2: A piece of wood (left) warped by having the solid tex-
ture adhere to the surface (center) versus a warped piece swimming
through the solid texture (right).

The solid map is already finding use in mainstream computer graph-
ics. [1] described briefly an implementation in Renderman of a
technique similar to the solid map to store solid textures (and even
shading information) using a reference mesh on a view-perpendicular
plane filling the screen to generate a texture map that could be ap-
plied to a deformed version of the object or even a different ob-
ject altogether. A version of the solid map was also implemented
as a tool in AliasjWavefront’s PowerAnimator [3] and Maya [24]
to generate texture maps of procedural solid textures based on the

v

u

T ()
p()

s

t

r

x

s() u()

Figure 3: Model (center), solid texture (left) and surface texture
(right) coordinate spaces.

model’s existing surface texture map coordinates. Prompted by its
recent popularity, this paper documents and describes the solid map
method, and proposes and compares several algorithms to automat-
ically generate surface texture coordinates for use with solid map-
ping.
Section 2 of this paper describes the solid map in detail, using a
notation to more rigorously trace the cause of the aliasing artifacts
it can generate. Section 3 describes four attributes of the solid map-
ping method and the kind of display artifacts they can cause. Sec-
tion 4 presents four different algorithms for laying out an object’s
polygons into texture memory and compares them based on the
artifacts they generate. Section 5 concludes with recommendations
for selecting the appropriate solid mapping technique, describes the
implementation of solid mapping in OpenGL, and proposes ideas
for future work on antialiasing.

2. THE SOLID MAP
We will use two simultaneous texture coordinates. The two-dimensional
surfacetexture coordinatesu = (u; v) and the three-dimensional
solid texture coordinatess = (s; t; r): Let x be the coordinates of
a point on a given triangle inmodelcoordinates. We will denote
the 2-D surface texture coordinates of this point asu(x) and the
3-D solid texture coordinates of this point ass(x): We will also
denote the colorc = (R;G;B) and the color of a pointx on the
surface asc(x): (Following a convention commonly used in para-
metric curves and surfaces research papers, we are using the same
letter for a coordinate and a map that yields that coordinate. We
will attempt to avoid ambiguous cases by appending parentheses()
to the letter when it denotes a map.)
Letp : s 7! c synthesize a procedural solid texture, mapping solid
texture coordinatess to a colorc: Let T : u 7! c be a 2-D texture
map that returns a colorc given surface texture coordinatesu: Fig-
ure 3 pictorially differentiates the two different texture coordinates
and how they are evaluated.
We use capital letters to denote maps that are implemented with a
lookup table, such as the texture mapT . We will use the opera-
tor to denote assignment to this table. For example, the framebuffer
C : (xs; ys)! c is a mapping from screen coordinates(xs; ys) to
a colorc: The frame buffer is implemented as a table, and assign-
ment of an elementc into this table at indexxs; ys is denoted as
C(xs; ys) c:
Since the driving application for this research is real-time procedu-
ral solid texturing, we assume a forward “polygon-to-pixels” graph-
ics pipeline. The bulk of the graphics pipeline can be considered
a general projection, which we will denote�, that maps vertices
from 3-D model coordinates to 2-D screen coordinates. Rasteriza-
tion takes these screen coordinate vertices and fills in the polygon



they describe using linear interpolation. Rasterization also linearly
interpolates other attributes in addition to screen coordinates. It will
be useful for the analysis of the aliasing artifacts to know exactly
when attributes are interpolated across a polygon, as this signals
when continuous functions are discretely sampled. We will indi-
cate that such an interpolation has occured by rasterization with
the operatorlerp(). Hence,x is a point on the polygon in model-
coordinates,�(x) is the screen coordinate corresponding to that
point andlerp(�(x)) reminds us that the coordinates of that pixel
were interpolated from the screen coordinates of the polygon’s ver-
tices. Our goal is to determine an expression for the color of these
pixels and store it in the frame bufferC(lerp(�(x))).
Standard texture mapping is expressed in this notation as

C(lerp(�(x))) T (lerp(u(x))): (1)

In other words, the color of each pixel in the polygon’s projection
�(x) is given by the pixel in the texture mapT at the coordinateu
corresponding to the surface pointx:

The notation now gives us an indication of potential aliasing. The
aliasing artifacts introduced by standard texture mapping occur when
the sampling rate of the lerp on the LHS of (1) (the resolution of the
polygon’s screen projection) disagrees with the sampling rate of the
lerp on the RHS (the texture’s resolution). Methods for resampling
the texture map based on the MIP map [25] or the summed-area
table [5] fix this problem by adjusting the lerp sampling density on
the RHS of (1).
Standard procedural solid texturing is implemented as

C(lerp(�(x))) p(lerp(s(x))): (2)

In this case, the solid texture coordinates stored at each vertex are
interpolated across the pixels of the polygon’s projection, and a pro-
cedure is called for each pixel to synthesize the color of that pixel.
This was the basic texturing technique for a variety of procedural
texturing renderers [7; 8].
Aliasing from procedural solid texturing occurs when the sampling
rate of the lerp in the LHS of (2) (again the resolution of the poly-
gon’s projection) disagrees with the sampling rate of the RHS (the
resolution of the polygon sampling the solid texture). Existing
methods for antialiasing procedural solid textures include bandlim-
iting [15] and a gradient magnitude technique [22] which modify
the texture procedurep to only generate signals properly sampled
by the coordinates discretized by the lerp.
Deferred shading [14] implements procedural solid texturing in two
phases. In the first phase

Ŝ(lerp(�(x))) lerp(s(x)) (3)

such that the solid texture coordinates are stored in a mapŜ which
is the same resolution as the display. Once all of the polygons have
been scan converted, the second phase makes a single shading pass
through every pixel in the frame buffer

C(xs; ys) = p(Ŝ(xs; ys)) (4)

replacing the color with the results of the procedure applied to the
stored solid texture coordinates.
This representation reveals a shortcoming of deferred shading. An-
tialiasing is diffficult for deferred shading systems since the proce-
dural texture is generated in a separate step of the algorithm than
the step where the samples have been recorded from the lerp. Un-
less a significant amount of auxilliary information is also recorded,
previous procedural texturing antialiasing algorithms do not apply
to deferred shading.

Like deferred shading, the solid map implements procedural solid
texturing in multiple phases. In the first phase, the solid map is
similarly

S(lerp(u(x))) lerp(s(x)): (5)

Each polygon is rasterized into the solid mapS using its surface
texture coordinatesu(x): The data it places in the solid map (the
data that gets interpolated across the face of the rasterized poly-
gon) is the solid texture coordinatess(x): Note that the solid map
S : u 7! s is the same resolution as the texture map whereas the
deferred shading map̂S : (xs; ys) 7! s was the same resolution as
the display.
The solid texture coordinates are converted into texture colors in
the second phase by the assignment

T (u) p(S(u)): (6)

The color of each pixel in the texture mapT at surface texture co-
ordinatesu is synthesized by the procedural texturep on the solid
texture coordinates in the solid mapS located at the same texure
coordinatesu:
The texture mapT now contains a surface texture that when mapped
by the third phase onto the polygons using (1) corresponds to the
procedural solid texture generated by (2).
Because the solid map equations (5) and (6) resemble the deffered
shading equations (3) and (4), this solid map could be considered
deferred shading in the texture map instead of the display. How-
ever, the benefit of deferred shading is that it reduces the shad-
ing depth complexity to one; only the visible parts of polygons are
shaded. The solid map contains all of the model’s polygons without
overlap, so every polygon is is “visible” in the solid map and needs
to be textured, regardless of whether it is visible in the display.
Unlike deferred shading, the solid map is view independent. The
triangles are rasterized and the procedural texture is rendered onto
them in the texture buffer only once. The surface texture map-
ping of the solid map can occur any number of times from arbitrary
viewpoints.
The real benefit of the solid map instead comes from the fact that
the procedure is executed as a second pass, independent of the dis-
play rasterization of the model. This allows a graphics process to
rasterize polygons and a host processor to synthesize the texture
for them. By separating rasterization from texture synethisis, this
procedural solid texturing technique can be implemented in mod-
ern pipelined graphics API’s, such as OpenGL. We also expect the
solid map will support antialiasing of the solid texture better than
deferred shading could.
The aliasing artifacts introduced by this method occur when the
sampling rate of the lerp in the LHS of (5) (the surface texture co-
ordinates) disagrees with the sampling rate of the RHS (the solid
texture coordinates). We find that this aliasing is entirely governed
by the mapu(); called the u-map, in the LHS of (5).

3. THE U-MAP
Surface texture mapping uses texture coordinates assigned to poly-
gon vertices to define theu-mapu : x 7! u: If the u-map is one-
to-one, then its inversex : u 7! x parameterizes the surface. The
u-map takes points from the surface into a texture map, which then
assigns a color to the point based on its location in the texture map.
Typical u-maps are constructed for texture mapping by discretely
assigning texture coordinates to vertices on the model, and making
this map continuous by interpolating the texture coordinates across
the faces of the polygons. This interpolation provides an associa-
tion of texture coordinatesu with model coordinatesx:



Texture mapping does not require the u-map to be 1-1. However,
this is required for the u-map used for solid mapping.
In addition to being 1-1, there are several other features of the
u-map that can reduce the aliasing artifacts sometimes produced
by the solid mapping technique. These features of the u-map on
a model’s polygons are the efficiency of the covering of texture
space, scaling, distortion and the number of new boundary edges it
introduces, which we call “seams.”

3.1 Coverage
The solid map method depends on the resolution of the solid mapS
and the texture mapT used to sample the solid texture. The u-map
is 1-1, placing all of the model’s polygons into a rectangle of this
resolution without overlap. Thecoveragec of the u-map is how
effectively the u-map covers the solid map/texure map, utilizing as
many pixels in the solid map/texture map as possible, and therefore
sampling the solid texture as much as possible.
We measure the u-map coverage as the percentage of the solid
map/texture map that are covered by the images of theM poly-
gons under the u-map

c =

MX
i=1

A(ui1 ;ui2 ;ui3) (7)

whereA() returns the area of a triangle. We assume the solid
map/texture map is a unit square in surface texture coordinates.

3.2 Relative Scale
Whereas the coverage measures how well the entire u-map utilizes
texture samples, the relative scale indicates how well the u-map uti-
lizes samples locally, per polygon. The solid map can vary widely
from polygon to polygon so the relative scale need not be necessar-
ily correlated with the coverage of the u-map.
We measure the relative scale as the relative change in size between
the model coordinate polygon and its image under the u-map in sur-
face texture coordinates. There are several methods for measuring
the change in size due to a map. The Lispchitz constant of a map
finds the closest the map brings any two points relative to their orig-
inal distance apart. However, measuring the most severe compres-
sion of a u-map does not seem to be a fair indication of the average
number of samples it supports within a given triangle, especially
when the u-map compresses the triangle more in one direction than
another.
We choose instead to measure the relative scale for a single triangle
as the square root of the ratio of the triangle’s area before and after
the u-map is applied, as

scale(xi1 ;xi2 ;xi3) =

s
A(ui1 ;ui2 ;ui3 )

A(xi1 ;xi2 ;xi3 )
: (8)

We average the relative scale for all the triangles as

scale =
1

M

X
t2T

scale(t) (9)

wheret denotes a triangle andT denotes anM element triangula-
tion of the model.
Since the scale of model coordinates is not related to the scale of
texture coordinates, and polygons are not rasterized in model coor-
dinates, the relative scale is not an absolute measure of the u-map,
and only useful for the comparison of different u-maps from the
same model into the same texture space.

3.3 Distortion
The standard texture mapping practice of assigning two-dimensional
coordinates to vertices of a three-dimensional model can easily in-
troduce distortions in the induced u-map. A distorted surface tex-
turing will not directly distort the solid texturing generated by the
solid map. The pointx on the surface will still have the same solid
texture coordinates generated bys() regardless of the u-map. How-
ever, differences between neighboring polygons in the resolution of
the solid texture, and its “grain” due to the axes of the texture map,
will still be visible. Hence, the u-map used for implementing the
solid map should likewise avoid distortion.
Research in non-distorted texture mapping fixes this problem by
assigning texture coordinates such that the resulting u-map is as
close to similarity as possible, consisting, at least locally, of lit-
tle else than rotations, translations and uniform scales. [10], [2],
textcitemaillot93 and more recently [9] devised global optimization
methods that assigned texture coordinates that minimized a distor-
tion metric whereas others such as [23] instead reduced distortion
by flattening the polygons onto a cube surrounding the object.
We assume the u-map is locally affine in that it affinely maps model
coordinate triangles into surface texture coordinate triangles, but
that this affine transformation can be different for each triangle.
For the sake of simplicity, assume also that we have already rotated
and translated the model coordinate triangle from model space into
the plane of the surface texture space triangle. Then letA be the
2 � 2 transformation matrix that represents the linear part of the
rest of the u-map. Note that the linear transformationA contains
any distortion components of the u-map for the current triangle.
The first fundamental form [4] of a linear transformationA is given
by I = AAT � Id whereId is the2� 2 identity matrix. The first
fundamental form has been used as a distortion metric for optimiza-
tion in non-distorted texture mapping [11]. We will instead use it
to measure distortion in the u-map.
Since the relative scale has already been isolated, we need to factor
uniform scales out of the distortion measure. We first label the
elements ofAAT as

AAT =

�
a b
c d

�
: (10)

and assume without loss of generality thata < d and recall that
b = c: We then define

stretch =

r
d

a
� 1 (11)

as the percentage the u-map stretches one coordinate with respect
to the other, and

shear =
p
jbj (12)

as the percentage that the u-map shears one coordinate into the
other.

3.4 Seams
The u-map used for the solid map is in general different than the
u-map for standard texture mapping. The u-map for standard tex-
ture mapping is usually continuous, such that a connected texture
maps to a connected mesh of polygons. The u-map for solid map-
ping on the other hand does not necessarily need to be continu-
ous. Allowing the u-map to be discontinuous changes the optimiza-
tion problem from a distortion metric minimization problem into a
packing problem. Packing can even permit a distortion free u-map.
However, such packing-style u-maps introduce a new artifact called
“seams.”



Seamsare pixels in the texture buffer covered by the image of more
than one triangle. If the texture for these two triangles is differ-
ent, then the texture of the pixels on the edge of one triangle can
overflow into the other during texture mapping.
The rules of polygon scan conversion are designed with the goal
of plotting each pixel in a local polygonal mesh neighborhood only
once. Missing pixels can result in holes or even cracks in the mesh,
whereas plotting the same pixel twice (once for each of two dif-
ferent polygons) can cause pixel flashing as neighboring polygons
battle for ownership of the pixel on their border.

(a) (b) (c) (d)

Figure 4: Seam artifacts in red (a) and (b) corrected by overscan-
ning (c) and (d).

The rules of rasterization do not serve the solid map well, because
the polygons rasterized in the solid map do not necessarily share the
same mesh topology as they do in model coordinates. Neighboring
polygons in the solid map may not be neighboring polygons in the
model, and pixels along their boundary will have to decide which
polygon they belong to (e.g. the red pixels in Figure 4 (a) and (b)).
When the solid map texture is mapped onto the polygon, some of
these boundary pixels may be colored from a completely different
location in solid texture space.
Furthermore, some polygons rasterized in the solid map might not
share an edge with any other polygon. Pixels on this edge of this
polygon might not be covered by the rasterization, and instead of
the procedural texture, the texture map’s initial (background) color
may be mapped onto the corresponding edge when the model is
displayed (e.g. the white pixels in Figure 4).
Seams can be eliminated by overscanning each polygon, ensuring
that every pixel that covers even a portion of the polygon contains a
color specific to that polygon. This can be understandably wasteful
and decreases the coverage of the u-map. In Figure 4 (c) and (d),
we surrounded the second triangle by a one pixel buffer zone, and
rasterized it such that every pixel covered by any portion of the
triangle will still have that triangle’s attributes.
Seams can also be reduced if the u-map at least partially preserves
the mesh topology. This can be accomplish by cutting the mesh
at a small number of polygon edges, and spreading out sections
of polygons in patches. Since the patches are usually not flat, this
increases the distortion of the u-map.
We measure seams as the length of boundary edges (edges not
shared by two polygons) in surface texture space

seam =
X
fjjui � uj jj; < i; j >2 T ; < j; i >62 T g (13)

where< i; j > indicates the edge from vertexi to vertexj; and
assuming triangle vertices inT are consistently ordered clockwise
or counterclockwise.

4. SOLID MAPPING ALGORITHMS
Given the possible artifacts of coverage, relative scale, distortion
and seams, several u-map algorithms can be devised to spread out
the model’s surface onto the solid mapS: These algorithms assume
the model is constructed from triangles.

4.1 Simple Mesh
Thesimple meshu-map rasterizes the model’s triangles into texture
memory as an axis-aligned mesh of uniformly-shaped right trian-
gles. The simple mesh packing is illustrated in Figure 5. Ideally the
horizontal triangle strips of the packing will match the topology of
triangle strips in the model.

Figure 5: Simple (left) and area-approximating mesh packing of
triangles.

This technique uses the integera to set the adjacent length of the
right triangles, and should be set to

a = b
p

2HV=nc (14)

to maximize the size of triangles in order to efficiently use of the
texture buffer space available.
A shortcoming of the simple mesh is that it distributes samples un-
evenly, such that large model polygons will get the same number of
texture samples as small model polygons.

4.2 Area Approximating
The area approximatingu-map is similar to the mesh u-map, but
with a goal to distribute the texture samples more equitably. The
model’s triangles are first sorted by non-increasing area. Then the
mesh is constructed in horizontal strips, but the scale factora used
for each strip is set such that the area of the first triangle in each
strip more closely corresponds to the area of its model-coordinate
counterpart. This area approximating sampling is illustrated in Fig-
ure 5.
The problem with packing arbitrarily-shaped triangles into right-
triangle meshes is that it distorts the shape of the polygon.

4.3 Polyhedral Projection
The polyhedral projectionu-map is designed to reduce distortion
in the polygon shape while maintaining a reasonable amount of the
original mesh topology. The technique projects the model polygons
onto a plane. To reduce the distortion of projection, the projection
can occur on any one of a set of planes of different orientations.
The 3D object is first segmented into large areas based on the nor-
mal at each triangle. Every triangle is projected onto the plane clos-
est to parallel with it. The sphere in Figure 6 shows this first step.
If a single piece self overlaps, additional cuts are added to split the
area into smaller pieces. This is the case in the spiral object showed
in figure 7.
Every connected piece is then moved in the texture plane to avoid
overlaps. Currently a simple rectangle packing algorithm, using the
texture space bounding boxes, is used.
This method allows a simple control of the overall distortion due to
the mapping function. Every triangle is mapped through a planar
projection.
The first fundamental form [4] written in the appropriate basis only
depends on the angle� between the triangle and the projection
plane

I =

�
1 0
0 s2

�
; (15)



Figure 6: Projection of mesh polygons onto similarly oriented
planes.

Figure 7: Cutting a self-overlapping object.

wheres = cos(�). The deformation value is thenjjI � Ijj =
1� s2 = sin(�)2.
Even though any projection set could be used, we found that in
practice projecting onto the faces of a simple polyhedron gives a
good result. The Platonic solids (tetrahedron, cube, octahedron
and dodecahedron, icosahedron) provide uniformly sampled ori-
entations. We found that there is a large performance gap between
the tetrahedron and the cube, and so investigated five-sided non-
regular polyhedra as well. We found the best orientation covering
with 5 planes is achieved using an equilateral triangle based cylin-
der, which we will call aprism,as shown in Figure 8.

Figure 8: The five sided prism used as an intermediate between the
tetrahedron and the cube.

The deformation values in Figure 9 were computed using a sphere
tessellated into very small triangles, which is a good sample model
representative for most 3D objects because its polygons uniformly
span a discrete subset of all orientations.
Figure 9 shows that there is no need to have more than 12 pro-
jection planes. The 20 plane projection based on the icosahedron
introduces a lot more seams without a real noticeable improvement
of the distortion.

4.4 Scalene Triangle Packing
In order to avoid any distortion, a mapping technique that maintains
the shape of the triangles is needed. This is equivalent to triangle

Polyhedron Min. s Ave. s Worst Ave.
Tetra. 0.333 0.665 89% 56%
Prism 0.449 0.731 80% 47%
Cube 0.577 0.793 67% 37%
Octa. 0.577 0.893 67% 20%

Dodeca. 0.795 0.914 37% 16%
Icosa. 0.801 0.945 36% 10%

Figure 9: Polyhedral projection distortion for a tesselated sphere
model.

packing.
While there have been some studies of equilateral triangle packing,
very little work has been performed on the packing of generalsca-
lene triangles. The packing of triangles (and many other shapes)
is an NP-complete problem, and judging by the small amount of
literature, approximate solutions do not appear to be very interest-
ing theoretically. The driving application for packing of general
shapes is the textile industry, which seeks to optimize the use of
fabric for manufacturing clothing. For example, [13] uses a global
optimization technique to find a locally optimal oriented packing
of complex and possibly concave polygons.
Hence, we propose the followingscalene triangle packingalgo-
rithm as a u-map that maintains triangle shape. The algorithm is a
sub-optimal first-fit strip pack, similar to the area preserving pack-
ing in Section 4.2. Such algorithms are relatively fast, requiring an
O(n log n) sort of the items by decreasing size, but otherwise oper-
ate in seveal linear passes through the data. This complexity makes
the proposed algorithm well suited for the large polygon datasets
used in computer graphics models. Figure 10 overviews the steps
of the algorithm. Except for the sort in step 3, each step performs a
linear pass through the triangle data.

1. Rotate triangles into a single shared plane.
2. Orient longest side of triangles onto x-axis.
3. Sort triangles by non-increasing altitude.
4. Flip every other triangle vertically about midpoint.
5. Pack triangles horizontally along x-axis.
6. Group triangles into equal length sections.
7. Invert every other group of triangles.
8. Stack triangle groups vertically.

Figure 10: Scalene triangle packing algorithm.

Figure 11: Step 1. Triangles are rotated into the same plane.

Figure 11 shows the first step of the algorithm, which applies in-
dividual rigid body transformations to the triangles to make them
all coplanar. This transformation first rotates the polygon’s normal
to be perpendicular to the reference plane, and translates along this
rotated normal to place the polygon in this plane.
The second step rotates each triangle in the reference plane such
that its longest edge is horizontal, and the third vertex is above the
the x-axis. In this position, it is convenient to label the vertices



left, right and top. It is also convenient to translate the triangle
such that the left vertex is at the origin. Note that any triangle in
this canonical position can be described by three real values: the
x coordinate of the right vertex and thex andy coordinates of the
top vertex. Note also that thex coordinate of the top vertex is
necessarily between thex coordinates of the left and right vertices,
for if not, then the base of the triangle would not be the longest
edge.

Figure 12: Step 2 rotates and translates triangles in the plane to
place their longest edge along the x-axis, and Step 3 sorts these
triangles by decreasing altitude.

The third step sorts the polygons by non-increasing altitude. Note
that the altitude is given by they coordinate of the top vertex. The
triangles are now as shown in Figure 12,
The fourth step flips every other triangle vertically, so the fifth step
can pack these triangles horizontally. The alternating orientiations
of the triangles form a toothed pattern of decreasing altitude, as
shown in Figure 13. Note that the triangles lined up this way sug-
gest the shape of a bounding quadrilateral, a truncated right trian-
gle.

Figure 13: Step 4 alternates triangles into a toothed pattern so that
Step 5 can translate them left along the x-axis into a tightly packed
configuration.

This truncated triangle shape can be packed into a square of the
same area as shown in Figure 14, by slicing the quadrilateral into
segments equal to the width of the square, rotating every other seg-
ment180Æ and stacking the segments vertically. Hence, the fifth
step of the algorithm transforms the triangles bound by each seg-
ment of this quadrilateral into the square. Note that triangles will
inevitably intersect the slicing lines of the quadrilateral, and this
discretization is such that the packing of triangles is not as efficient
as packing the quadrilateral segments.

Figure 14: Steps 5, 6 and 7. Triangles are bounded by a truncated
triangle, which is sliced and packed into a square.

The trickiest part of the implementation is predicting the size of
slices of the quadrilateral. The area of the triangles is well less
than the area of the square they are packed into. We have found
empirically that increasing the square root of the total area of the
triangles by 20% yields a packing whose width approximates the
eventual height of the stack of toothed strips.
The scalene triangle packing is shown in Figure 15, as resulting
from the “head” dataset described in the next section. The trian-

Figure 15: 7,232 triangles packed into a square solid map.

gles toward the top of the packing are very small, or at least have
very low altitudes. In any case, they will likely not rasterize. The
packing algorithm preserves the relative size and shape of the poly-
gons so these are the smallest polygons and may be inconsequen-
tial. However, if they are grouped together, say at an area of high
curvature or roughness in the surface, they collectively can form a
sizable section of the surface.
Furthermore, the solid map is view independent, so the shapes and
sizes of the polygons match the model coordinates and not the
screen coordinate. A smaller polygon in model coordinates could
appear larger than the rest of the polygons depending on perspec-
tive and the viewpoint.
We depend on the alteration of rasterization rules described in Sec-
tion 3.4 to ensure that large collections of small polygons get ras-
terized appropriately in the packed solid map.

4.5 Results and Discussion
We performed experiments and gathered statistics on the results for
two datasets: a cartoon head and a kangaroo. The head dataset con-
tains 3,633 vertices and 7,232 faces. The kangaroo dataset contains
23,556 vertices and 45,784 faces. The Performance of the solid
mapping algorithms are compared in Figure 16.

Method Cover Scale Stretch Shear Comps. Seam (# edges)
Head Dataset

Simple 100% 183% 51% 3% 7,232 396.82 (21,696)
Area 100% 121% 51% 2% 7,232 333.46 (21,696)
Tetra. 33% 69% 24% 33% 50 14.47 (1,644)
Prism 26% 61% 19% 30% 59 15.06 (1,852)
Cube 29% 65% 12% 28% 79 17.45 (1,954)
Oct. 24% 60% 11% 26% 121 19.12 (2,336)
Dodeca. 24% 60% 6% 21% 154 23.86 (2,828)
Scalene 72% 100% 0% 0% 7,232 372.05 (21,696)

Kangaroo Dataset
Simple 100% 289% 164% 41% 45,784 956.17 (137,352)
Area 100% 201% 165% 28% 45,784 779.51 (137,352)
Tetra. 18% 54% 25% 1% 285 28.98 (13,610)
Prism 20% 56% 16% 0% 307 32.57 (14,624)
Cube 24% 61% 11% 0% 369 38.97 (15,956)
Octa. 27% 68% 11% 1% 555 55.14 (20,576)
Dodeca. 18% 54% 6% 0% 628 54.60 (22,636)
Scalene 65% 100% 0% 0% 45,784 983.26 (137,352)

Figure 16: Solid mapping algorithm performance statistics.

Thecoverwas measured according to the percentage of the texture
space the output of the u-map covered. The scale was measured
relative to the distortionless scale of the scalene packing result. Re-



call that larger scales correspond to better sampling. The stretch
and shear factors are distortion metrics that affect only the “grain”
of the aliasing of the solid texture, and are both ideally 0%. The
components is the number of connected mesh components placed
in texture space. The seam column measures the length of seams
in u coordinate lengths, and also counts the number of edges in the
seam as well.
The simple mesh provides the most efficient use of texture memory,
ensuring that every pixel in the texture map is used. According to
the relative scaling, the simple mesh also provides more samples on
average per triangle. The subtle mismatched sampling due to high
distortion rates can be detected in Figure 17 (left).
The area approximating mesh should do a better job of distributing
more samples to larger polygons, but according to the disappoint-
ing relative scale and distortion statistics this does not appear to be
happening. This is likely do to the fact that all triangles in each row
are still equally sized. Nonetheless, the larger triangles in Figure 17
(center) are better sampled than for the simple-mesh case.

Figure 18: Head database rendered with wood solid texture (top)
with (left) and without (right) overscanning, using the cube projec-
tion u-map (bottom).

The mesh preserving connectivity makes the polyhedral projection
method the best choice for models with many small polygons, as
demonstrated in Figure 18. As the number of polygons increases,
their u-map images into the solid map and texture map become
smaller, because the size (and resolution) of the domains of these
maps remains constant (usually the unit square) regardless of the
number of polygons. The most disappointing result from the pro-
jection methods is the sparse texture space coverage, which also
causes the low scaling results which causes the blocky sampling
in Figure 17 (right). These artifacts are caused by the bounding-
rectangle packing algorithm used to place the connected mesh com-
ponents into texture space. The packing results could be improved

with the implementation of a more advanced general polygon pack-
ing algorithm, such as the one described by [13].
While the scalene triangle packing method is the best choice to
avoid distortion, and packs texture memory more efficiently than
the projection methods, its disregard for mesh topology results in
numerous seams. These seams are more obvious than the seams
resulting from the simple and area approximating meshes because
the scalene packing seams bound the packed polygons against the
texture’s initial (background) color which creates a more noticable
artifact than the color of other similarly textured polygons.

5. CONCLUSION
We have shown how procedural solid texturing can be constructed
using standard texture mapping functionality. We have also de-
scribed and measured several algorithms for implementing the u-
map to transform model polygons into the texture map without
overlap.
We note that unlike surface texture coordinates, solid texture co-
ordinates are not uniformly implemented by graphic file formats.
Using surface texturing of solid textures allows the texture coordi-
nates to be more robustly specified in object files, and also allows
the solid texture to be included as a more compact texture map
image instead of a wasteful 3-D solid texture array. However, if
the u-map does not preserve the topology of the original mesh, the
resulting model description file will necessarily contain multiple
copies of the same model vertex with differentu values, which can
increase the size of some model description files.

5.1 Implementation
For testing a proof-of-concept prototype, we have implemented the
solid map using an existing procedural texturing rasterizer, and
combined Phases 1 and 2 in the solid map construction. Instead
of storing the solid texture coordinates in a solid map, our current
software rasterizer executes the procedural texturing procedure on
the solid texture coordinates as they are interpolated, and stores the
result in the texture map.
We are currently porting the solid map to an OpenGL implementa-
tion. Since the method does not require extension to the OpenGL
API, it can run at the same level as the GLU library, as a utility
library on top of the OpenGL standard functionality.
Since graphics API’s typically do not store texture coordinates in
the frame buffer, we use the color channels to interpolate the solid
texture coordinates. Figure 19 shows a sample implementation of
this technique in OpenGL.

float x[M][3][3]; /* model coords */
float s[M][3][3]; /* solid tex co-
ords */
float u[M][3][2]; /* surface tex co-
ords */

for (j = 0; j < m; j++) {

umap(x[j],s[j],u[j]);

glBegin(GL_POLYGON)
glColor3fv(s[j][0]);
glVertex2fv(u[j][0]);
glColor3fv(s[j][1]);
glVertex2fv(u[j][1]);
glColor3fv(s[j][2]);
glVertex2fv(u[j][2]);

glEnd();
}

for (j = 0; j < m; j++) {
glTexCoord2fv(u[j][0]);
glVertex3fv(x[j][0]);
glTexCoord2fv(u[j][1]);
glVertex3fv(x[j][1]);
glTexCoord2fv(u[j][2]);
glVertex3fv(x[j][2]);

}

Figure 19: OpenGL code for Phase 1 (left) and Phase 3 (right) of
the solid mapping technique.

The problem with using the color channels to interpolate texture
coordinates is the depth of the color channel. Color channels are
commonly 8 bits deep, which allow 256 levels of quantization of
the solid texture coordinates.



Figure 17: Kangaroo u-map artifacts from simple mesh (left), area approximation (center) and cube projection (right).

Phase 2 of the solid mapping technique reads each solid texture
coordinate at each pixelu in the solid map, executes the texturing
procedure on the solid coordinates, and places the resulting color
in the texture map at the same coordinatesu in the texture map.
As shown in Figure 19 Phase 3 uses standard texture mapping to
display the results.

5.2 Future Work
The solid map provides a method for procedural solid texturing to
use an intermediate stored image texture. This stored image tex-
ture allows standard texture antialiasing techniques to be applied to
a procedural solid texture. MIP mapping is an obvious technique
to use as it is supported by several graphics libraries. However,
MIP mapping does not apply to the solid mapped triangles in the
texture map because the triangles in the texture map are not nec-
essarily continuously arranged, nor are they necessarily in mesh
proximity. Hence the lower-resolution levels of the MIP map will
include area samples combined from unrelated polygons. One so-
lution would generalize the quadtree MIP map boundary structure
with a k-d tree. Another solution is to pack the triangles along a
space-filling Hilbert curve to better ensure that neighboring poly-
gons in the model are proximate in the texture map.
Another u-map we plan to investigate is the topological cut. Some
new methods based on the Morse theory of meshes are being de-
veloped to find the smallest collection of edges to cut to be able
to spread a given model flat, like a bearskin rug. The number of
cuts necessary is equal to the genus of the model, but the number
of edges needed for each cut may be more than one. Nonetheless,
this topological cut method should greatly decrease the resulting
seams and yield a mesh in the texture map with little topological
difference to the model’s polygon mesh. We expect however that
the distortions necessary to spread the model flat will be large.

5.3 Acknowledgments
Chris Thorne, Claudio Gatti and Andrew Woo worked on the prior
implementation of the solid mapping technique for Aliasj Wave-
front’s Maya, and their private communication on this research has
been insightful.
Ulrike Axen was very helpful in finding polygon packing results
in computational geometry. We expect her research based on the
Morse theory of polygonal meshes to yield the proposed topologi-
cal cut method very soon.
Conversations with Michael McCool have been helpful in under-
standing the breadth of real-time procedural shading techniques,
especially during a visit with the second author at Waterloo. Thanks
also to Kurt Akelely and Pat Hanrahan for an interesting conversa-
tion with the second author on antialiasing and deferred shading at

the Hardware Workshop.
The research of the first two authors are supported in part by a grant
from Evans and Sutherland Computer Company, thanks especially
for the efforts of Pete Doenges and Steve Tibbitts.

6. REFERENCES

[1] T. Apodaca. Advanced Renderman, chapter Renderman
Tricks Everyone Should Know. SIGGRAPH 98 Course
Notes, July 1998. Also available in SIGGRAPH 99 Course
Notes.

[2] C. Bennis, J. Vezien, and G. Iglesias. Piecewise surface flat-
tening for non-distorted texture mapping.Proc. SIGGRAPH
91, pages 237–246, July 1991.

[3] D. Brinsmead. Convert solid texture.Alias jWavefront Power
Animator, 5, 1993.

[4] M. D. Carmo.Differential Geometry of Curves and Surfaces.
Prentice-Hall, 1976.

[5] F. C. Crow. Summed area tables for texture mapping.Com-
puter Graphics, 18(3):137–145, July 1984. Proc. SIGGRAPH
84.

[6] P. Hanrahan. Procedural shading (keynote).Eurographics /
SIGGRAPH Workshop on Graphics Hardware, Aug. 1999.
http://graphics.stanford.EDU/ hanrahan/talks/rtsl/slides/.

[7] P. Hanrahan and J. Lawson. A language for shading and light-
ing calculations.Computer Graphics, 24(4):289–298, Aug.
1990.

[8] J. C. Hart, N. Carr, M. Kameya, S. A. Tibbitts, and T. J. Cole-
man. Antialiased parameterized solid texturing simplified for
consumer-level hardware implementation.1999 SIGGRAPH
/ Eurographics Workshop on Graphics Hardware, pages 45–
53, Aug. 1999.

[9] B. Levy and J.-L. Mallet. Non-distorted texture mapping for
sheared triangulated meshes.Proc. SIGGRAPH 98, pages
343–352, July 1998.

[10] S. Ma and H. Lin. Optimal texture mapping.Proc. Eurograph-
ics ’88, pages 421–428, Sept. 1988.

[11] J. Maillot, H. Yahia, and A. Verroust. Interactive texture map-
ping.Proc. SIGGRAPH 93, pages 27–34, Aug. 1993.



[12] M. D. McCool and W. Heidrich. Texture shaders.1999 SIG-
GRAPH / Eurographics Workshop on Graphics Hardware,
pages 117–126, Aug. 1999.

[13] V. J. Milenkovic. Rotational polygon overlap minimization
and compaction.Computational Geometry: Theory and Ap-
plications, 10:305–318, 1998.

[14] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-
speed rendering using image composition.Computer Graph-
ics (Proceedings of SIGGRAPH 92), 26(2):231–240, July
1992.

[15] A. Norton, A. P. Rockwood, and P. T. Skolmoski. Clamp-
ing: A method of antialiasing textured surfaces by bandwidth
limiting in object space.Computer Graphics, 16(3):1–8, July
1982.

[16] M. Olano and A. Lastra. A shading language on graphics
hardware: The PixelFlow shading system.Proceedings of
SIGGRAPH 98, pages 159–168, July 1998.

[17] D. R. Peachey. Solid texturing of complex surfaces.Computer
Graphics, 19(3):279–286, July 1985.

[18] M. Peercy. Re: Hardware accelerated renderman.
comp.graphics.rendering.renderman, 25 Aug. 1999. Refers
to http://reality.sgi.com/blythe for more details.

[19] K. Perlin. An image synthesizer.Computer Graphics,
19(3):287–296, July 1985.

[20] K. Perlin and E. M. Hoffert. Hypertexture.Computer Graph-
ics, 23(3):253–262, July 1989.

[21] Pixar Animation Studios. Future requirements for graphics
hardware. Memo, 12 April 1999.

[22] J. Rhoades, G. Turk, A. Bell, A. State, U. Neumann, and
A. Varshney. Real-time procedural textures.1992 Symposium
on Interactive 3D Graphics, 25(2):95–100, Mar. 1992.

[23] M. Samek. Texture mapping and distortion in digital graphics.
The Visual Computer, 2(5):313–320, 1986.

[24] C. Thorne. Convert solid texture.Alias j Wavefront Maya, 1,
1997.

[25] L. Williams. Pyramidal parametrics.Computer Graphics,
17(3):1–11, July 1983. Proc. SIGGRAPH 83.

[26] G. Wyvill, B. Wyvill, and C. McPheeters. Solid texturing
of soft objects.IEEE Computer Graphics and Applications,
7(4):20–26, Dec. 1987.


