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Motivation

Real-time shading languages
� Easy-to-use, high-level interface to hardware
� Shader compilation results in platform 

independence
� Fast exploration of interesting new effects

Multipass rendering is not enough
� Fragment processing is expensive
� Today’s fragment operations are limited:

fixed point, simple operators
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Multiple computation frequencies

Constant
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Evaluated less often
More complex operations
Floating point

Evaluated more often
Simpler operations
Fixed point

Programmable pipeline abstraction
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Programmable pipeline
� All stages may be fully programmed

Traditional pipeline
� Fixed but configurable processing
� Fragment programmability enabled by multipass

A framework for multiple computation frequencies
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A shading language

A shading language is the user-level interface to 
pipeline programmability

Language highlights
� C-like syntax for computations
� Scalar, vector, matrix types and operators
� Automated (but user-controllable) 

management of computation frequencies
� Support for surface and light shaders


