
Page 1

Stanford
Real-Time Programmable Shading

Project

Kekoa Proudfoot
Stanford University

http://graphics.stanford.edu/projects/shading/

(joint work with Bill Mark, Svetoslav Tzvetkov, and Pat Hanrahan)

Motivation

Real-time shading languages
� Easy-to-use, high-level interface to hardware
� Shader compilation results in platform 

independence
� Fast exploration of interesting new effects

Multipass rendering is not enough
� Fragment processing is expensive
� Today’s fragment operations are limited:

fixed point, simple operators



Page 2

Multiple computation frequencies

Constant

Per Primitive Group

Per Vertex

Per Fragment

Evaluated less often
More complex operations
Floating point

Evaluated more often
Simpler operations
Fixed point

Programmable pipeline abstraction

Primitive 
Group 

Processing

Vertex 
Processing

Fragment 
Processing

Shader
Parameters

e.g. lighting
e.g. transforms

e.g. matrix setup e.g. texturing

Programmable pipeline
� All stages may be fully programmed

Traditional pipeline
� Fixed but configurable processing
� Fragment programmability enabled by multipass

A framework for multiple computation frequencies



Page 3

A shading language

A shading language is the user-level interface to 
pipeline programmability

Language highlights
� C-like syntax for computations
� Scalar, vector, matrix types and operators
� Automated (but user-controllable) 

management of computation frequencies
� Support for surface and light shaders


