
Interactive Shading Language (ISL)
Language Description

April 6, 2000
Copyright 2000, SGI

all rights reserved

I. Introduction

ISL is a shading language designed for interactive display. Like other shading languages, programs
written in ISL describe how to find the final color for each pixel on a surface. ISL was created as a
simple restricted shading language to help us explore the implications of interactive shading. As such,
the language definition itself changes often. While this may be a snapshot specification for ISL, ISL is
not proposed as a formal or informal language standard. Shading language design for interactive
shading is still an open area of research.

A. Features in common with other shading languages

The final pixel color comes from the combined effects of three function types. A light shader computes
the color and intensity for a light hitting the surface. Several light shaders may be involved in finding the
final color for a single pixel. A surface shader computes the base surface color and the interaction of the
lights with that surface. Finally, an atmosphere shader computes any changes to the color between the
surface and camera, attenuation from fog, for example. The term shader is used to refer to any of these
three special types of function.

All shading code is written with a single instruction, multiple data (SIMD) model. ISL shaders are
written as if they were operating on a single surface pixel in isolation. The same operations are
performed for all pixels on the surface, but the computed values can be different at every pixel.

Like other shading languages that follow the SIMD model, ISL data may be declared varying or
uniform. Varying values may vary from pixel to pixel, while uniform values must be the same at every
pixel on the surface.

B. Major differences from other shading languages

ISL has several differences and limitations that distinguish it from more full-featured shading languages:

The primary varying data type in ISL is limited to the range [0,1]. Results outside this range are
clamped.
ISL does not allow texture lookups based on computed results.
ISL does not allow user-defined parameters that vary across the surface. Such parameters must
either be computed or loaded as texture.

II. Data types

All ISL data is classified as either varying or uniform. Varying data may hold a different value at each
pixel, while uniform data must have the same value for every pixel on a surface. Uniform values may
still differ from surface to surface, or from frame to frame.

The complete list of ISL data types is:
uniform float uf uf is a single floating point value
uniform color uc uc is a set of four floating point values, representing a color, vector or

point. For colors, the components are ordered red, green, blue and alpha.
uniform matrix um um is a set of sixteen floating point values, representing a 4x4 matrix in

row-major order (all four elements of first row, all four elements of second
row, ...)

uniform string us us is string, as for a texture name
varying color vc vc is a four element color, vector or point that may have different values at

each pixel on the surface. Elements of the color are constrained to lie
between 0 and 1. Negative values are clamped to zero and values greater
than one are clamped to one

ISL also allows 1D arrays of all uniform types, using a C-style specification:
uniform float ufa[n] ufa is an array with n floating point elements, ufa[0] through

ufa[n-1]
uniform color uca[n] uca is an array with n uniform color elements, uca[0] through

uca[n-1].
uniform matrix uma[n] uma is an array with n uniform matrix elements, uma[0] through

uma[n-1]
uniform string usa[n] usa is an array with n uniform string elements, usa[0] through

usa[n-1]

III. Variables and identifiers

Identifiers in ISL are used for variable or function names. They begin with a letter or underscore, and
may be followed by additional letters, underscores or digits. For example a, abc, C93d, _4, and d_e_f are
all legal identifiers.

Several variables are predefined with special meaning:

varying color FB current frame buffer, intermediate result location for almost all
varying operations.

uniform float frame current integer frame number

uniform float time current elapsed time, in seconds

uniform matrix objectmatrix matrix to transform from the space where the object was
defined to camera space, equivalent to the OpenGL
ModelView matrix

uniform matrix shadermatrix Arbitrary matrix associated with the shader by the application.
This may be used to allow the shader to operate in a common
space for many independently transformed objects

IV. Uniform Operations

In the following, uf and uf0-uf15 are uniform floats; ufa is an array of uniform floats; uc, uc0 and uc1
are uniform colors; uca is an array of uniform colors; um, um0 and um1 are uniform matrices; uma is an
array of uniform matrices; us, us0 and us1 are a uniform strings; usa is an array of uniform strings; and
ur, ur0 and ur1 are uniform relations.

A. uniform float

Operations producing a uniform float:

variable reference value of uniform float variable

float constant Where
H = 1 or more hex digits (0-9 or a-f)
O = 1 or more octal digits (0-7)
D = 1 or more decimal digits (0-9)
S = +, - or nothing

One of the following non-case-sensitive patterns:
0xH (hex integer);
0O (octal integer);
D; D.; .D; D.D;
DeSD; D.eSD; .DeSD; D.DeSD

(uf) Grouping intermediate computations

-uf negate uf

uf0 + uf1 add uf0 and uf1

uf0 - uf1 subtract uf1 from uf0

uf0 * uf1 multiply uf0 and uf1

uf0 / uf1 divide uf0 by uf1

um[uf0][uf1] Gives element floor(4*uf0 + uf1) of matrix um
Behavior is undefined if floor(4*uf0 + uf1) is not in the range 0 to 15

ufa[uf] element floor(uf) of array ufa where element 0 is the first element.
Behavior is undefined if floor(uf0) falls outside the array.

f(...) function call to a function returning uniform float result

Uniform float assignments take the following forms, where lvalue is either a uniform float variable, one
element of a uniform matrix variable, accessed as var[uf0][uf1], or one element of a uniform float
array, accessed as var[uf]:

lvalue = uf simple assignment

lvalue += uf equivalent to lvalue = lvalue + uf

lvalue -= uf equivalent to lvalue = lvalue - uf

lvalue *= uf equivalent to lvalue = lvalue * uf

lvalue /= uf equivalent to lvalue = lvalue / uf

B. uniform color

Operations producing a uniform color:

variable reference value of uniform color variable
color(uf0,uf1,uf2,uf3) (red=uf0, green=uf1, blue=uf2, alpha=uf3)

uf color(uf,uf,uf,uf)

(uc) Grouping intermediate computations

-uc
uc0 + uc1
uc0 - uc1
uc0 * uc1
uc0 / uc1

Each uniform float operation is applied component-by-component

uca[uf] element floor(uf) of array uca, where element 0 is the first
element.
Behavior is undefined if floor(uf0) falls outside the array.

f(...) function call to a function returning uniform color result

Uniform color assignments take the following forms, where lvalue is either a uniform color variable or
one element of a uniform color array, accessed as var[uf]

lvalue = uc simple assignment

lvalue += uc equivalent to lvalue = lvalue + uc

lvalue -= uc equivalent to lvalue = lvalue - uc

lvalue *= uc equivalent to lvalue = lvalue * uc

lvalue /= uc equivalent to lvalue = lvalue / uc

C. uniform matrix

Operations producing a uniform matrix:

variable reference value of uniform matrix variable
matrix(uf0,uf1,uf2,uf3,
uf4,uf5,uf6,uf7,
uf8,uf9,uf10,uf11,

uf12,uf13,uf14,uf15)

matrix with rows (uf0,uf1,uf2,uf3), (uf4,uf5,uf6,uf7),
(uf8,uf9,uf10,uf11) and (uf12,uf13,uf14,uf15)

(um) Grouping intermediate computations

-um
um0 + um1
um0 - um1

Each uniform float operation is applied component-by-component

um0 * um1 matrix multiplication
result[i][k] = sumj=0..3(um0[i][j] * um1[j][k])

uma[uf] element floor(uf) of array uma where element 0 is the first
element.
Behavior is undefined if floor(uf0) falls outside the array.

f(...) function call to a function returning uniform matrix result

Uniform matrix assignments take the following forms, where lvalue is either a uniform matrix variable

or one element of a uniform matrix array accessed as var[uf]

lvalue = um simple assignment

lvalue += um equivalent to lvalue = lvalue + um

lvalue -= um equivalent to lvalue = lvalue - um

lvalue *= um equivalent to lvalue = lvalue * um

Matrix elements can also be set individually. See section A above.

E. uniform string

Operations producing a uniform string:

variable reference value of uniform string variable

constant string string inside double quotes ("string")

usa[uf] element floor(uf) of array usa where element 0 is the first element.
Behavior is undefined if floor(uf0) falls outside the array.

f(...) function call to a function returning uniform string result

Strings can include escape sequences beginning with ’\’:

character sequence name

\O octal character code

\xH hex character code

\n newline

\t tab

\v vertical tab

\b backspace

\r carriage return

\f form feed

\a alert (bell)

\\ backslash character

\? question mark

\’ single quote

\" embedded double quote

Uniform string assignments take the following forms, where lvalue is either a uniform string variable or
one element of an uniform string array, accessed by var[uf]

lvalue = us simple assignment

F. uniform relations

Operations producing a uniform relation (used in control statements discussed later):

uf0 == uf1
uf0 != uf1
uf0 >= uf1
uf0 <= uf1
uf0 > uf1
uf0 < uf1

traditional comparisons: equal, not equal, greater or equal, less or equal, greater and
less

uc0 == uc1 true if all elements of uc0 are equal to the corresponding elements of uc1

uc0 != uc1 true if any elements of uc0 does not equal the corresponding element of uc1

um0 == um1 true if all elements of um0 are equal to the corresponding elements of um1

um0 != um1 true if any elements of um0 does not equal the corresponding element of um1

us0 == us1
us0 != us1

traditional string comparison: equal and not equal

(ur) Grouping intermediate computations

ur0 && ur1 true if both ur0 and ur1 are true

ur0 || ur1 true if either ur0 or ur1 are true

!ur true if ur is not true

It is not possible to save uniform relation results to a variable

V. Varying operations

In the following, uc is as defined above, and vc is a varying color, resulting from one of the operations:

variable reference value of varying color variable

uc convert uniform color to varying, clamping the resulting color to [0,1]. After
this conversion, every pixel has its own copy of the color value.

Possible targets for varying assignments are:

FB all channels of the framebuffer

FB.C set only some channels, leaving the others alone. C is a channel specification, consisting of
some combination of the letters r,g,b and a to select the red, green, blue and alpha
channels. Each letter can appear at most once, and they must appear in order. This can be
used to isolate individual channels: FB.r, FB.g, FB.b, FB.a, or to select arbitrary groups of
channels: FB.rgb, FB.rb, FB.ga.

Varying assignments into the framebuffer can take the following forms, where lvalue is FB or FB.C (as
described above):

FB = f(...) function call to a function returning varying color result

lvalue = vc copy vc into lvalue

lvalue += vc
lvalue -= vc
lvalue *= vc

Add, subtract, or multiply lvalue and vc, putting the result in lvalue.

Assignments into varying variables can only take this form:

variable = FB copy framebuffer to variable

VI. Built-in functions

The following is a preliminary set of provided functions returning uniform results.
uniform float sin(uniform

float radians)

uniform float cos(uniform

float radians)

Trigonometric sine and cosine functions

uniform float mod(uniform
float x, uniform float

modulus)

remainder of division by modulus
x - modulus*floor(x/modulus)

uniform matrix

inverse(uniform matrix m)
matrix inverse
inverse(m)*m = identity

uniform matrix
scale(uniform float x, y,

z)

matrix(x,0,0,0, 0,y,0,0, 0,0,z,0, 0,0,0,1)

uniform matrix
translate(uniform float x,

y, z)

matrix(1,0,0,0, 0,1,0,0, 0,0,1,0, x,y,z,1)

uniform matrix
rotate(uniform float x, y,

z, radians)

matrix to rotate by given angle about axis (x,y,z,0)

uniform matrix
perspective(uniform float

degree)

matrix to perform perspective projection looking down the Z
axis with degree field of view
matrix(cotan(degree/2),0, 0, 0,

0, cotan(degree/2),0, 0,
0, 0, 1, 1,
0, 0, -2,0)

The following is a preliminary set of provided functions returning varying color results.

varying color texture(uniform string

texturename)

varying color texture(uniform float

texturearray[])

varying color texture(uniform color

texturearray[])

map texture onto surface, using texture
coordinates defined with object geometry.
Versions with array textures are 1D texturing
only (using the s texture coordinate).

varying color texture(uniform string

texturename, uniform matrix xform)

varying color texture(uniform float

texturearray[], uniform matrix xform)

varying color texture(uniform color

texturearray[], uniform matrix xform)

same as above, but transform the texture
coordinates through xform first.

varying color environment(uniform

string texturename)
map texture onto surface as an spherical
environment map.

varying color environment(uniform
string texturename, uniform matrix

xform)

same as above, but transforming the texture
coordinates through xform first. Note that this
is of questionable utility given the place in the
chain where OpenGL applies the transform.

varying color project(uniform string

texturename)
project texture onto surface using parallel
projection down z axis

varying color project(uniform string

texturename, uniform matrix xform)
same as above, but transform by xform before
projection. For example, to project in object
space, use inverse(objectmatrix).

varying color transform(FB, uniform

matrix xform)
Transform the varying color in the framebuffer
by the given matrix

varying color lookup(FB, uniform float

lut[])

varying color lookup(FB, uniform color

lut[])

lookup each framebuffer channel in the given
lookup table.

Each channel is handled independently, so the
resulting red component of the result comes
from the red component lut[n*FB.r].
Similarly, for green from lut[n*FB.g] and
blue from lut[n*FB.b]

varying color blend(FB, varying color

v)
varying color blend(varying color v,FB)

channel by channel blend: FB*(1-v) + v =
v*(1-FB) + FB

varying color ablend(FB, varying color

v)
alpha-based blend: v*(1-FB.a) + FB*FB.a

varying color ablend(varying color v,

FB)
alpha-based blend: FB*(1-v.a) + v*v.a

varying color ambient() return sum of ambient light hitting surface

varying color diffuse() return sum of diffuse light hitting surface
varying color specular(uniform float

shininess)
return sum of specular light hitting surface,
using shininess as the exponent in the Phong
lighting model

VII. Variable declarations

A variable declaration is a type name followed by one or more comma-separated variable names. Each
variable name may optionally be followed by an initial value. Some examples:

uniform float fvar, gvar;

uniform float farray[3];

uniform float fvar = 3, gvar;

uniform matrix = identity;

uniform string = "mytexture"

varying color cvar;

Variable and functions have distinct name spaces, so variables and functions may exist with the same
name. The same variable name cannot occur more than once within the same block of statements
(bounded by ’{’ and ’}’), but can be redefined within a nested block:

not legal legal
{
 uniform float x;
 uniform float x;
}

{
 uniform float x;
 {
 uniform color x;
 }
}

VIII. Statements

Legal ISL statements are:

assignment; performs assignment

variable declaration; creates and possibly initializes variable

{list of 0 or more statements} executes statements sequentially

if (ur) statement execute statement if uniform relation ur is true
if (ur) statement else

statement
execute first statement if ur is true, and second statement if ur is
false.

if (FB) statement execute statement only for pixels where FB != 0. Any uniform
operations in the statement are applied for all pixels.

if (FB) statement else

statement
execute first statement for pixels where FB != 0 and second
statement for pixels where FB == 0. Any uniform operations in
either statement are applied for all pixels.

repeat (uf) statement repeat statment max(0,floor(uf)) times.

IX. Functions

Every function has this form:
type name(formal_parameters) { body }

The type is one of the ordinary types or a shader type:

ambientlight light contributing to ambient() function.

distantlight
light shining down the z axis. It is transformed by shadermatrix, which can be
used to point in other directions. Contributes to the diffuse() and specular()
functions.

pointlight
light positioned at the origin. It is transformed by shadermatrix, which can be
used to position it in the scene. Contributes to diffuse() and specular()
functions.

surface surface appearance. Should compute the base surface color and lighting
contribution (though calls to ambient(), diffuse() and specular()).

atmosphere Atmospheric effects like fog.

The set of formal parameter declarations are a semi-colon separated list of uniform variable declarations,
with initial values. For shaders, the initial values are interpreted as defaults for any variable not set
explicitly by the application.

The body is just a list of statements. The result of each shader is just the value left in FB when the shader
exits.

The last statement of any functions returning a uniform result should be the special statement
return value;.

Functions returning a varying color should leave their result in FB.

Light shaders should leave the color of light that reaches the surface in FB. This color includes things
like shadowing, but not the interaction with the surface itself.

Surface shaders should leave the final surface color in FB. At the start of the shader, FB contains the
color of the closest surface previously seen at each pixel. Shaders with transparency should handle any
blending with this existing color. In order for surfaces with varying opacity to work, it is also necessary
that the application and/or scene graph sort transparent surfaces, and surfaces with varying opacity
should be treated as transparent.

Atmosphere shaders start with FB set to the final rendered color for each pixel. They should leave the
attenuated color in FB.

An example shader:

surface shadertest(
 uniform color c = color(1,0,0,1);
 uniform float f = .25)
{
 FB = diffuse();
 FB *= c*f;
}

X. Files

ISL source files should have the file name extension .isl. Only one shader definition (whether light,
surface, or atmosphere) can appear in each .isl file. The .isl file is processed through the C preprocessor,
so all cpp directives may be used, as well as both C-style and C++-style comments.

The .isl file itself consists of two sections. All global variable declarations and function definitions must
appear first, followed by a single shader function. Only one shader function may appear in any isl file.

