Introduction

Hardware features improve with time

- Wireframe
- Gouraud shaded
- Texture mapped
- Multi-texturing, with flexible calculations
- Fully programmable shading (PixelFlow)

It will get even better

- Rate of change has accelerated:
 PC graphics companies produce a new generation of chips every year.
- Computation is cheap; not a big deal to add more of it to the graphics pipeline
- Trends in graphics hardware:
 - More flexible pixel (fragment) computations
 - Programmable vertex computations

Topics in today's course

- Introduction
- Fully programmable hardware (PixelFlow)
- Proposals for future hardware
- Shading algorithms for current hardware
- Procedural shading on current hardware
- Q & A

History of off-line shading

- Simple shading models
- Complex, parameterized shading models
- "Hack the renderer source code"
- Abstractions for programming
 - Shade trees
 - Perlin's pixel stream editor
 - RenderMan

What's different about hardware?

- PC graphics hardware is ~100x faster than CPU rendering, with the same die area.
- Must ask "why is graphics hardware fast"?
 - Heavily pipelined
 - No branches or data dependencies
 - Aggressive pre-fetching from memory
 - Fixed algorithm

Three options for HW shading

- Creatively use existing hardware
 - It's amazing what can be done right now.
- Develop completely different HW architectures
 - PixelFlow took this path
- Enhance existing hardware architectures, without abandoning pipeline model
 - Introduce carefully-designed flexibility, while maintaining high performance
 - PC graphics cards are taking this path
 - Must adapt and redesign algorithms for this HW
 - This approach is very promising

Why complex shading?

As visually oriented animals, people are very sensitive to subtleties of shading, and that sensitivity expresses itself as a nearly limitless demand for subtle, flexible control over shading. At the same time, the more successful a program is, the wider the range of physical reality it is expected to duplicate. Both of these facts place extraordinary demands on the shading portion of any renderer.

-- Upstill

Most real-time 3D applications can use procedural shading

- Entertainment
 - Quake III already uses a shading language
- Visual Simulation / VR
 - Realism is particularly useful for training
- Scientific and Medical Visualization
 - Flexible mapping of multi-dimensional data to 2D image colors.
- WWW
 - Displaying realistic images of merchandise, etc.

What the future holds

- Increasingly flexible PC graphics hardware
- Procedural shading languages specifically designed for real-time hardware
- Continued development of shading algorithms optimized for hardware's constraints