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Abstract 
Procedural solid texturing was introduced fourteen years ago, but 
has yet to find its way into consumer level graphics hardware for 
real-time operation. To this end, a new model is introduced that 
yields a parameterized function capable of synthesizing the most 
common procedural solid textures, specifically wood, marble, 
clouds and fire. This model is simple enough to be implemented 
in hardware, and can be realized in VLSI with as little as 100,000 
gates. 
 
The new model also yields a new method for antialiasing  
synthesized textures. An expression for the necessary box filter 
width is derived as a function of the texturing parameters, the 
texture coordinates and the rasterization variables. Given this 
filter width, a technique for efficiently box filtering the 
synthesized texture by either mip mapping the color table or using 
a summed area color table are presented. Examples of the 
antialiased results are shown. 
 
CR Categories: I.3.1 [Computer Graphics]: Hardware 
Architecture --- Graphics processors; I.3.7 [Computer Graphics]: 
Three-Dimensional Graphics and Realism --- Color, shading, 
shadowing and texture. 
Keywords: antialiasing, hardware. procedural texturing, solid 
texturing. 

1. INTRODUCTION 
Peachey [1985] and Perlin [1985] introduced procedural solid 
texturing as a method for simulating the sculpture  of  objec ts  
(of  arbi t rary  deta i l  and genus)  out  of  a  so l id  
mater ia l  such as  wood or  s tone,  and a lso  the  
s imulat ion of  the  natural  e lements  of  f i re ,  water  

(waves) ,  a i r  (c louds)  and ear th  ( ter ra in  and planets). 
Figure 1 through Figure 6 illustrate the variety of images that can 
be synthesized using procedural solid textures. 
 
Solid texturing creates the illusion that a shape is carved out of a 
solid three-dimensional substance. The details of a solid texture 
align across edges and corners of an object surface. For example 
the grain features on the teapots in Figure 1 and Figure 2 align 
with the block of material out of which they were sculpted. 
Depending on the detail and genus of the object, similar alignment 
of 2-D image texture maps can be very tricky [Peachey, 1985].  
 
Procedural textures require much less memory than stored image 
textures, and unlike image textures their resolution depends only 
on computation precision. The sky and water in Figure 3 extend to 
infinity with non-repeating procedural detail. The fire in Figure 4 
is procedurally textured on a single polygon. Zooming into the 
coastlines of the planet in Figure 5 reveals an arbitrarily intricate 
level of detail depending on the number of noise functions used in 
its generation. Figure 6 simulates the reflection of the moon on 
water without ray tracing or environment mapping by clever 
manipulation of the color maps of a procedural texture. 
 
While this popular, powerful and flexible technique is found in 
nearly all high-quality photorealistic rendering packages, it has 
not yet found its way into consumer-level hardware for real-time 
rendering. Procedural solid textures would greatly enrich the 
quality of some of the 2D-image-textured graphical elements 
found in 3-D interactive games and virtual worlds, not only with 
wooden and stone objects, but with expansive terrain, oceans and 
skies filled with non-repeating detail. 
 
Hardware implementation would also support the real-time 
animation of procedural textures. Varying the parameters of a 
procedure yields a dynamic animated texture. Depending on the 
paths chosen through parameter space, these animations can 
smoothly loop or be non-repeating. These animated textures 
would support such effects as ripples forming in marble, fire 
exploding, waves gently rising and falling, clouds billowing, and 
continents forming on planets. 

1.1. Previous Work 
Some have identified memory bandwidth as a major obstacle in 
increasing the performance of real-time graphics hardware. While 
memory size grows at a rate of 50% per year (one thousandfold 
over the past two decades), memory bandwidth only grows 12% 
per year (only tenfold over the past two decades) [Torborg & 
Kajiya, 1996]. Texture mapping in particular relies heavily on 
memory, and the bandwidth of this memory is the primary factor 
limiting the number and complexity of 2-D image textures 
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available in real-time. Some have overcome the memory 
bandwidth limitation at the expense of increasing memory size to 
hold multiple redundant copies of the texture [Akeley, 1993], 
[Montrym, et al., 1997]. Others relaxed the memory bandwidth 
limitation by reducing the size of the textures via compression 
[Torborg & Kajiya, 1996],[Beers, et al., 1996]. Procedural 
texturing hardware is a way of increasing the performance of 
current graphics hardware by augmenting its existing pre-stored 2-
D image textures with a variety of procedural solid textures 
without impacting the hardware’s memory requirements. 
 
Accessing a procedural texture requires more time than an image 
texture as the texture value must be computed instead of accessed 
from memory. Hence, real-time procedural texturing has 
previously only been available in high-end parallel graphics 
systems. For example, Pixel Planes [Rhoades, et al., 1992], 
PixelFlow [Molnar, et al., 1992] and the Pixel Machine [Potmesil 
& Hoffert, 1989] all supported real-time procedural texturing. 
Indeed, PixelFlow now has a fully-developed procedural shading 
system, including support for procedural solid texturing [Olano & 
Lastra, 1998]. 
 
Solid texturing is also not new to hardware implementation. The 
Reality Engine, for example, has the memory bandwidth 
necessary to support prestored solid texture volumes up to a 
maximum resolution of 256 x 256 x 64 texture elements [Akeley, 
1993]. The InfiniteReality graphics system [Montrym, et al., 
1997] has 1GB of physical texture memory that could be 
organized into a 10243 pre-stored solid texture volume. 
 
Antialiasing procedural textures is more complicated than for 
stored image textures. Whereas MIP maps [Williams, 1983] and 
summed-area tables [Crow, 1984] can be precomputed and stored 
for image textures, procedural textures are generated on the fly 
and such antialiasing techniques can not be readily applied. 

Supersampling is a common technique for antialiasing procedural 
textures but directly increases rendering time. For example, 
supersampling was the method used to inhibit aliasing in 
PixelFlow’s procedural textures [Olano & Lastra, 1998]. 
Bandlimiting the procedural texture is also an effective technique 
[Norton, et al., 1982], but works easily and efficiently only on 
procedures based completely on spectral synthesis.  

1.2. Overview 
Section 2 introduces a texture model capable of synthesizing the 
most commonly used procedural textures (in fact all textures in 
Figure 1 through Figure 6) but concise enough to implement in 
hardware. The identification of this model allows the textures to 
be specified by parameters to a fixed procedure which can be 
simplified enough to be implemented in present-day VLSI 
technology. 
 
Section 3 introduces a new method for antialiasing procedural 
textures based on computing a first order approximation of the 
color index variance over the area of a pixel. This approximation 
allows the antialiasing method to simulate an area sample of the 
textured image faster than supersampling. Unlike bandlimiting 
(which is a pre-filter), the new method is a post-filter that does not 
affect the parameters of the generation of the texture. 
  
Section 4 exhibits the results of this model, exploring the various 
tradeoffs necessary to feasibly implement the model without 
significantly compromising image quality. An effective but 
reduced model can be implemented with as few as 100,000 gates, 
which is about 10% of the real-estate of modern consumer-level 
graphics processors. 

 
Figure 1: Carved wooden teapot. 

 
Figure 2: Marble teapot sculpture. 

 
Figure 3: Seascape. 

 
Figure 4: Fire. 

 
Figure 5: Planet. 

 
Figure 6: Moonrise. 

 



  

2. A MODEL FOR PROCEDURAL 
TEXTURING 

Various formalisms on procedural solid texture specifications 
have been proposed. Perhaps the most pervasive has been the 
Renderman shading language [Hanrahan & Lawson, 1990], but 
there are also other alternatives (e.g. [Abram & Whitted, 1990]). 
We propose a concise class of procedures capable of synthesizing 
a variety of textures and effects, but simple and direct enough to 
facilitate hardware implementation. The procedures are 
parameterized by values that completely control the type and 
character of the texture this model generates, such that these 
parameters (and the texture’s color map) are the only 
representation of the texture that need be stored. 

2.1. Analytical Model 
Procedural solid texture mapping uses a mapping of the form p: 
R3→ R4 from solid texture coordinates s = (s,t,r) into a color space 
(R,G,B,α). (We follow the convention of using boldface to 
indicate vector values and functions, and italics to indicate scalar 
values and functions.) Some texture mapping techniques also 
include a homogeneous texture coordinate [Segal, et al., 1992] but 
it remains to be explored how such a coordinate benefits 
procedural solid texturing. Often procedural solid textures 
incorporate a color map. In such cases, p = c ο f consisting of an 
implicit classification of the texture space f: R3→ R and a color 
map c: R→  R4. 
 
For a given polygon, the texture coordinate functions s(x) = 
(s(x),t(x),r(x)) indicate the range of the texture coordinates with 
respect to screen coordinates x=(x,y). Hence, the procedural 
texture can be evaluated with respect to screen coordinates as p(x) 
= c o f o s(x). 
 
We restrict the texture map p to the family of functions 
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where q: R3→ R is a quadric classification function and n: R3→ R 
is a noise function. The combination of quadrics and noise yields 
a specification sufficient to generate a wide variety of commonly 
used procedural solid textures. The affine transformations Ti 
control the frequency and phase of the noise functions. 

2.1.1. Color Map 

The color map c associates a color (R,G,B) with each index 
returned by the classification function f. The color map c is 
typically implemented as a lookup table 

 c( f ) = clut[round(n modclamp( f ))] (2) 

where clut[] is an array of n RGB color vectors. Color map 
indices returned by f are, depending on a flag parameter, either 
clamped to [0,1] or taken modulo one to map within the bounds of 
the lookup table. 

2.1.2. Quadric Classification Function  

The function q: R3→ R in (1) is the quadric 

 
JIrHrGtFtrEt

DsCsrBstAsrtsq

+++++
++++=

222

222),,(
22

2
  (3) 

which can more conveniently be represented homogeneously as 
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treating s as a homogeneous column vector [Blinn, 1982]. 
 
The quadric function supports the spherical, cylindrical, 
hyperbolic and parabolic classification of space for texturing.  

2.1.3. Noise Function 

The function n: R3→ R in (1) is an implementation of the Perlin 
noise function [Perlin, 1985]. The values ai control the amplitude 
of the noise function, whereas the affine transformation Ti controls 
the frequency and phase of each noise component. There are a 
fixed number of noise components available, and this limit is 
typically between four and eight in typical texturing examples. 

2.2. Texture Examples 
The space of solid textures spanned by (1) covers the textures 
most commonly found in procedural solid texturing. The four 
fundamental procedural solid textures are: wood, clouds, marble 
and fire. 

2.2.1. Wood 

The texture model generated the wood texture shown in Figure 1, 
by using the quadratic function to classify the texture space into a 
collection of concentric cylinders [Peachey, 1985]. Waviness in 
the grain is created by modulation of a noise function 

 ).,4,4(),,( 22 rtsntsrtsf ++=  (5) 

The color map consists of a modulo-one linear interpolation of a 
light “earlywood” grain and a darker “latewood” grain. The 
quadric classification makes the early rings wider than the later 
rings, which is to a first approximation consistent with tree 
development.  

2.2.2. Clouds 

Cloudy skies are made with a fractal 1/f sum of noise 
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The texture described by (6) is mapped onto a very large high-
altitude polygon parallel to the ground plane in Figure 3, resulting 
in clouds that become more dense in the distance due to 
perspective-corrected texturing coordinate interpolation. The color 
map is a clamped linear interpolation from blue to white. The 
water is the same procedural texture with a blue-to-black 
colormap. 

2.2.3. Marble 

Marble uses the noise function to distort a linear ramp function of 
one coordinate [Perlin, 1985] 
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The color map consists of a modulo-one table of colors from a 
cross section of the marble. Figure 2 demonstrates the marble 
texture on a cube, and the solid texturing again aligns the texture 
details on the edges of the cube. Continuously increasing the noise 
amplitude animates the formation of the ripples in the marble, 
simulating the pressure and heating process involved in the 
development of marble [Ebert, 1994]. 

2.2.4. Fire 

Like marble, fire is simulated by offsetting a texture coordinate 
with fractal noise [Musgrave & Mandelbrot, 1989]. The fire 
example shown in Figure 4 was textured onto a single polygon 
and modeled as 
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Continuously varying the noise phase term φ animates the fire 
texture. 

2.2.5. Planet 

A wide variety of different worlds, such as the one shown in 
Figure 5, can be generated by applying fractal textures, such as 
(6), to spheres. The color map for such images resembles a 
cartographic “legend.” The cloudy atmosphere was rendered on 
the same sphere “over” the planet in a second pass using a color 
map with varying opacity values. 

2.2.6. Moonrise 

The moonrise in Figure 6 was rendered completely using 
synthesized textures, without any other kind of shading. The 
moon is a sphere with a fractal texture. The clouds were rendered 
on a single polygon perpendicular to the viewer and imposed over 
the moon. The water was rendered with a single polygon 
extending off to infinity. The highlight on the water was faked 
with two triangles textured using (7) with a partially transparent 
color map. 

3. ANTIALIASING 
Image texture aliases occur due to texture magnification and 
minification. Texture magnification occurs when the texture 
image itself contains too few samples such that a single texture 
element projects to several screen pixels. Texture minification 
results when the projection of the texture image covers too few 
pixels and several texture elements project to the same screen 
pixel. Modern texture mapping hardware inhibits aliases due to 
texture magnification by bilinear or bicubic interpolation of the 
appropriate texture elements. Such hardware inhibits texture 
minification aliases through the use of a MIP map that 
precomputes lower resolution versions of the texture, and samples 
the MIP map using trilinear or tricubic interpolation of 
neighboring pixels at the appropriate resolution level. 
 
Aliases of synthesized textures do not fall into such categories 
since there is no fixed image resolution. Each such texture will 
exhibit some form of aliasing if sampled below twice the highest 
frequency in the texture’s spectrum, which may be infinite for 
some textures. Hence, procedural textures do not suffer from 
magnification aliases, but require filtering to remove frequencies 
above the Nyquist limit to avoid minification aliases. 
 
Synthetic textures could be antialiased by precomputing them, 
storing the results in MIP-mapped image textures. However, such 

an antialiasing technique would remove the flexibility such 
textures provided, and would also consume a tremendous amount 
of space when used on solid textures. Band limiting the output of 
the texture map removes aliases by prefiltering the texture before 
sampling [Norton, et al., 1982], but is difficult to implement in a 
generalized texturing environment. Supersampling the texture 
degrades time perfomance and arbitrarily increases the complexity 
of the hardware implementation. 
 
Instead, we analyze the function p(x) that textures pixels to 
determine the width of a box filter that would eliminate the 
aliasing frequencies from the spectrum of the synthesized texture. 
Several have described techniques for antialiasing procedural 
textures by antialiasing the textures’ colormaps [Rhoades, et al., 
1992], [Worley, 1994]. In the next section, we provide a more 
rigorous mathematical justification and derivation of the 
technique, resulting in an ideal filter width for the texture which is 
used to box filter to the procedural texture by averaging the 
elements of the color table that the texture procedure generates 
over the support of the filter. 

3.1. Texture Filtering via Color Table 
Filtering 

Consider a domain D on the screen consisting of pixels whose 
color is determined solely by the projection of a single 
procedurally texture mapped polygon. We assume the color map 
indices generated by the procedural texture are continuous across 
the polygon. Let a = minD f(x) be the least possible color map 
index used in the pixels in D, and let b = maxD f(x) be the greatest 
such index. Then we assume 
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the average color in D is sufficiently approximated by the average 
of the color table entries between indices a and b. As shown in 
Figure 7, we provide a first-order approximation of the bounds a 
and b used in the RHS of (9) by differentiating the texture 
function f(x) and setting a = f(x) - ||∇f(x)||/2 and b = f(x) + 
||∇f(x)||/2. If either a or b or both fall outside the bounds of the 
color table, then the boundary of the color table is extended using 

x

 f(x)
1

df/dx1

df/dx

pixels

clut
indices

 
Figure 7: The derivative df/dx approximates the extent of the color 

map indices one pixel in either direction. Half of the derivative 
estimates the variation in color map indi ces half of a pixel in either 

direction. 



  

either the modulo or clamp operators according to the modclamp 
flag. 
 
The remainder of this section describes this differentiation in 
detail, applies efficient methods for integrating the color map to 
determine the numerator of the RHS of (9), and demonstrates the 
results. 

3.2. Differentiating the Texture 
Procedure 

The magnitude of the gradient ∇f = (∂f/∂x,∂f/∂y) indicates the 
width of the appropriate filter on the color map. From (1), we 
have that the gradient of f is 
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where ni is the ith noise function: n(Ti(s)). From (3) we have that 
the gradient of q is 
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since Q is symmetric. 
 
The derivative of the noise terms are given by  
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The gradient dn/ds = [∂n/∂s ∂n/∂t ∂n/∂r 0] is also known as the 
function DNoise [Perlin, 1985]. 
 
The value ds/dx is the Jacobian of the texture coordinates s with 
respect to the screen coordinates x. The values of ds/dx is 
computed during the scan conversion of the polygon as the 
perspective-corrected pixel increments. The values of ds/dy can be 
computed for each triangle using the plane equation and 
performing a perspective-correcting division.  

3.3. Filtering the Color Table  
The filtering of color map values can be evaluated efficiently 
using either a color table MIP map or a summed area color table.  

3.3.1. Color table MIP map 

MIP maps are commonly used in standard texturing systems to 
prefilter image textures and sample from the prefiltered texture 
when the texture is minified (insufficiently sampled by the image 
pixels) [Williams, 1983]. 
 
One may also create a MIP map of a color table. The process 
begins with the n-element full resolution color table clut1[]. Then 
neighboring colors in the table are averaged t o create a half-
resolution n/2-element color table clut2[]. This process is repeated 
until a one-element color table clutlg n[] results, representing the 
average color of the entire color table.  
 
Given a filter width w, let i = floor(lg w). Then the proper  
resolution color table from the mip map is selected and the color 
indexed is returned as cluti[f/i] (or more accurately the linear or 
cubic interpolation of the values of clut i[f/i] and clut i+1[f/(i+1)]). 

(a) (b) 

Figure 8: Zone plate aliased (a) and filtered (b). 



  

3.3.2. Summed area color table 

Image textures are also an tialiased efficiently using the summed 
area table [Crow, 1984]. A summed area table transforms 
information into a structure that can quickly perform integration, 
specifically a box filtering operation.  
 
The summed area color table consis ts of a table where each entry 
consists of the sum of all elements in the color table including the 
current entry’s element  
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or recurrently as csat[i] = csat[i-1] + clut[i]. The current entry’s 
element can be recovered by subtracting the previous summed 
area element from the current summed area element as  

 clut[i] = csat[i] – csat[i-1] (14) 

for i > 0. Box filtering the color map entries for a given filter 
width is computed as 

 (csat[f + w/2] - csat[f - w/2])/w.  (15) 

 
Special care must be taken for the cases where the support of the 
filter crosses the bounds of the color table. For the following cases 
let N is the number of entries in the color table.  
 
• w ≥  N: Return the average of the entire co lor map: csat[N-1]/N. 
 
• f + w/2 ≥  N: 

mod: (csat[f + w/2 – N] + csat[N-1] – csat[f – w/2 - 1])/w. 
clamp: ((f+w/2–(N-1))clut[N-1] + csat[N-1] – csat[f–w/2-1])/w. 
 

• f - w/2 < 0: 
mod: (csat[f + w/2] + csat[N-1] - csat[N + f - w/2 - 1])/w. 
clamp: (-(f - w/2) clut[0] + csat[f + w/2])/w. 
 

An alternative to performing the above computations at render 
time is to use the above formulae to precompute a color summed 
area table three times as long, ranging from –N to 2N – 1. 

3.4. Examples 
The derivations in Section 3.2 show that procedural textures 
produce aliasing artifacts from three possible places.  
1. Quadric Variation: The quadric classification changes too 

quickly: ||dq/ds|| too large. 
2. Noise Variation: The noise changes too quickly: 

ai||dn(Tis)/ds|| too large. 
3. Texture Coordinate: The texture coordinates change too 

quickly: ||ds/dx|| too large. 
Each of these components can create a signal containing 
frequencies exceeding the Nyqist limit of the pixel sampling rate.  
 
Figure 8 demonstrates quadratic variation aliasing (type #1) with a 
zone plate constructed from the procedure  

 22 5050),,( tsrtsf += . (16) 

rendered with an extremely harsh “zebra” color map. Analysis of 
(16) shows that the aliases are governed by ∇f = dq/ds ds/dx, with 
dq/ds = (100 s,100 t). The zone plate was plotted at a resolution of 
2562 and over the unit square in texture coordinate space, hence 
∂s/∂x = ∂t/∂y = 1/256. Setting the colormap filter width to (100 s 
+ 100 t)/256 reduces the aliases to the point of being barely 
noticable. 
 
Noise variation aliases (type #2) happen in concert with texture 
coordinate aliasing (type #3), since in a single scene the frequency 
and amplitude of noise is constant, and only varies across the 
image with distance from the viewer. For example, the cloud s on 
the horizon in Figure 3 do not alias near the horizon because the 
filter width is scaled in part by the noise function derivative, and 
increases as the magnitude of ds/dx increases. In the distance as 
the projection of the noise reaches the Nyquist limit, the filter 
width reaches the size of the entire color table, yielding a 
homogeneous hazy blue color.  
 
Figure 9 illustrates all three types of texture aliasing on a torus. 
The centerline of the woodgrain rings passes through the left side 
of the torus, creating grain of increasing frequency on the right. 
Hence the filterwidth increases from the left to the right side of 

(a) 

(b) 

(c) 
Figure 9: Torus rendered with wood texture (a) is antialiased 

(b) using filterwidths shown in (c) ranging from one (black) to 
256 (white). 



  

the torus demonstrating quadric variation (type #1) aliasing. The 
amplitude and frequency of the noise term remains constant over 
the torus object, and so causes a uniform increase of the 
filterwidth due to noise variation (type #2) aliasing. The polygons 
on the silhouette of the torus have larger filterwidths than their 
neighbors, demonstra ting texture coordinate (type #3) aliasing.  
 

4. Results 
The goal of the previous sections was to simplify the synthesis of 
antialiased solid textures. In this section, we describe and 
demonstrate software and simulated hardware implementations, 
and document some of the tests performed in the process.  

4.1. Software Implementation 
The basic tool of this research is a simulator that implements in 
fixed point arithmetic the texture synthesis model along with its 
associated filtering and color table mechanisms, as well as a 
prototype rasterizer. This simulator is responsible for all of the 
textured images in this paper. While the textures themselves were 
antialiased, the polygon edges were not. In fact, we avoided the 
temptation to use many small polygons to create smoot her 
surfaces and silhouettes in order to better demonstrate the ability 
of procedural textures instead of geometry to provide visual detail.  
 
This simulator serves as an antialiasing procedural texturing 
shader, and could be incorporated as a plug -in to existing software 
rendering systems. This simulator also serves as the basis of an 
extension to OpenGL, which already supports solid texture 
coordinates. The current implementation uses the OpenGL 
feedback buffer to collect the transformed polygons in screen  
coordinates for rasterization by the simulator [Carr & Hart, 1999] . 
The resulting textured raster image generated by the simulator is 
then combined with the raster image generated by OpenGL’s 
rasterization engine using the associated z -buffers to negotiate 
visibility. Hence the simulator integrates synthesized solid 
textures into OpenGL’s existing texturing, lighting and modeling 
system. 

4.2. Hardware Implementation 
A complete implementation of the model can be realized in VLSI 
with 1.25 million gates, resulting in the image quality shown in 
Figure 1 through Figure 6. A reduced and approximated version 
of the texture synthesis model can be implemented in as few as 
100,000 gates. Sample images  from such an implementation are 
exhibited in Figure 11. 
 
Overall, the compromises in image quality necessary to 
implement the model in 100,000 gates appear minor, and the 
effects are very subtle. Some texture coordinate aliasing is 
noticable on the polygons of the teapots closest to the viewer. The 
character of the water, sky, planet and moonrise are slightly 
smoother due to a reduction in the number of noise function 
evaluations. The teapots and fire have noticable artifacts due to a 
linear approximation to the noise function.  

4.3. Precision Tests 
Several tests have been conducted to determine the texture 
coordinate precision necessary to avoid magnification aliases 
[Kameya & Hart, 1999] . Figure 10 shows the results of tests with 
a 5122-pixel scene of a coarsely-triangulated objects computed 
using a variety of texture coordinate precisions.  

4.4. Animation Tests 
The seascape was animated to determine the effectiveness of the 
antialiasing technique. The seascape scene ( Figure 3) was the 
most taxing on the colormap filtering algorithm because it 
textures infinite planes. Two animations of flights into the horizon 
were generated, one with and one without filtering. The unfiltered 
animation resulted in severe aliasing in the form of distracting 
noise near the horizon. The filtered animation significantly 
reduced these aliases, although some very slight flicker is still 
observable. This subtle flicker seems to be an inevitable 
compromise of the colormap -averaging filter in that removing the 
flicker results in textured planes that get too blurry too soon 
before reaching the horizon.  
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Figure 10: The effect of numerical precision on texture appearance.  



  

The flame shown in Figure 11 was also animated to determine 
how effectively they would appear in the hardware 
implementation. The rectilinear grid bas is of the noise functions is 
clearly evident due to the reduced number of noise octaves and 
the tri-linear interpolation. However the animation does clearly 
resemble burning flames and would sufficently represent such in 
typical consumer real -time graphics applications. 

5. Conclusion 
We set out to formalize a model for synthesizing popular 
procedural solid textures, and analyzed this model to derive an 
effective antialiasing scheme and an efficient hardware 
implementation. We showed that the model is capable of 
simulating the common procedural text ures of wood, clouds, 
marble and fire, but is also simple enough to adequately 
implement in hardware.  
 
Often textures are animated, to simulate fire, billowing clouds and 
other dynamic effects. Animation of texture map images requires 
a significant amount of texture memory and fast CPU access to 
the texture memory. The procedural texturing hardware will be 
capable of real-time animation of clouds billowing, fire burning 
and marble forming.  
 
PixelFlow defered shading until after all of the rasterization was 
completed [Molnar, et al., 1992]. It stored all of the shading 
information in the frame buffer, such that each pixel was shaded 
only once regardless of the number of polygons that overlapped it. 
The procedural texturing hardware descri bed in this paper could 
be used to texture such pixels if the texture index, coordinates and 
Jacobian were stored in the framebuffer. 

5.1. Future Work 
This work only scratches the surface of procedural texturing 
hardware. Procedural texturing inexpensively over comes the 
fundamental graphics texture rendering problems of memory 
bandwidth. With the success of this particular model, we expect 
other more sophisticated texturing models will be developed. The 
connotation of procedural texturing is that an actual progr am is 
run to generate the texture. While our model uses a fixed program 
with parameters controlling the character of its output, future 
procedural texturing hardware might be designed to permit 
uploading of texture programs. While such machines already exi st 
(e.g. the Pixel Machine, Pixel Planes) there is no restriction on the 
texturing programs. Hence the user is burdened responsibility of 
antialiasing. Restricting the language used to write a procedural 
shader can increase the quality of its output, as it  allows the 
hardware to better analyse the program to predict the aliases its 
output may contain, and automatically take measures to inhibit 
those aliases. 
 
The antialiasing technique was derived from the model, but there 
is nothing specific to the model t hat makes this antialiasing 
technique work. Hence the color map antialiasing technique could 
be generalized and applied to any procedural texture so long as 
the derivatives are available. Computation of these derivatives is 
straightforward for this simple model, but could be quite 
complicated for true procedural textures described in a 
programming language. The error associated with approximation 
(9) should also be investigated further.  
 
The colormap of the planet in Figure 5 is not continuous, jumping 
from a sandy color to an aquamarine to mark the coastlines of the 
world. As the filterwidth increases due to the noise contributions, 
this sharp coastline diffuses into a muddy color inbetween. A 

 
 

 

 
Figure 11: 100,000 gate simulations of  Figure 1 through Figure 6. 



  

more sophisticated antialiasing system might mark such jump 
discontinuities in the colormap and affect the filterwidth in these 
areas to further inhibit this artifact.  
 
The noise function used was adapted from Rayshade [Skinner & 
Kolb, 1991], which uses cubic blending functions on a lattice of 
random numbers. This particular version lends itself to efficient 
hardware implementation, but the details of such an 
implementation are left as future work.  
 
Procedural hardware need not be limited to just texture. 
Procedural hardware bump mapping, displacement mapping and 
shading in general seem to be logical extensions of this work. 
Recently, minor extensions to existing graphics pipelines for 
increased shading language support have been proposed [McCool 
& Heidrich, 1999]. Further extension might lead to the generation 
of procedural geometry that would overcome the bandwidth 
problem of transmitting polygons from the host to the graphics 
processor. 
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