

Antialiased Parameterized Solid Texturing Simplified for Consumer-
Level Hardware Implementation

John C. Hart, Nate Carr, Masaki Kameya

Washington State University

Stephen A. Tibbitts, Terrance J. Coleman

Evans and Sutherland Computer Corp.

Abstract
Procedural solid texturing was introduced fourteen years ago, but
has yet to find its way into consumer level graphics hardware for
real-time operation. To this end, a new model is introduced that
yields a parameterized function capable of synthesizing the most
common procedural solid textures, specifically wood, marble,
clouds and fire. This model is simple enough to be implemented
in hardware, and can be realized in VLSI with as little as 100,000
gates.

The new model also yields a new method for antialiasing
synthesized textures. An expression for the necessary box filter
width is derived as a function of the texturing parameters, the
texture coordinates and the rasterization variables. Given this
filter width, a technique for efficiently box filtering the
synthesized texture by either mip mapping the color table or using
a summed area color table are presented. Examples of the
antialiased results are shown.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture --- Graphics processors; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism --- Color, shading,
shadowing and texture.
Keywords: antialiasing, hardware. procedural texturing, solid
texturing.

1. INTRODUCTION
Peachey [1985] and Perlin [1985] introduced procedural solid
texturing as a method for simulating the sculpture of objec ts
(of arbi t rary deta i l and genus) out of a so l id
mater ia l such as wood or s tone, and a lso the
s imulat ion of the natural e lements of f i re , water

(waves) , a i r (c louds) and ear th (ter ra in and planets).
Figure 1 through Figure 6 illustrate the variety of images that can
be synthesized using procedural solid textures.

Solid texturing creates the illusion that a shape is carved out of a
solid three-dimensional substance. The details of a solid texture
align across edges and corners of an object surface. For example
the grain features on the teapots in Figure 1 and Figure 2 align
with the block of material out of which they were sculpted.
Depending on the detail and genus of the object, similar alignment
of 2-D image texture maps can be very tricky [Peachey, 1985].

Procedural textures require much less memory than stored image
textures, and unlike image textures their resolution depends only
on computation precision. The sky and water in Figure 3 extend to
infinity with non-repeating procedural detail. The fire in Figure 4
is procedurally textured on a single polygon. Zooming into the
coastlines of the planet in Figure 5 reveals an arbitrarily intricate
level of detail depending on the number of noise functions used in
its generation. Figure 6 simulates the reflection of the moon on
water without ray tracing or environment mapping by clever
manipulation of the color maps of a procedural texture.

While this popular, powerful and flexible technique is found in
nearly all high-quality photorealistic rendering packages, it has
not yet found its way into consumer-level hardware for real-time
rendering. Procedural solid textures would greatly enrich the
quality of some of the 2D-image-textured graphical elements
found in 3-D interactive games and virtual worlds, not only with
wooden and stone objects, but with expansive terrain, oceans and
skies filled with non-repeating detail.

Hardware implementation would also support the real-time
animation of procedural textures. Varying the parameters of a
procedure yields a dynamic animated texture. Depending on the
paths chosen through parameter space, these animations can
smoothly loop or be non-repeating. These animated textures
would support such effects as ripples forming in marble, fire
exploding, waves gently rising and falling, clouds billowing, and
continents forming on planets.

1.1. Previous Work
Some have identified memory bandwidth as a major obstacle in
increasing the performance of real-time graphics hardware. While
memory size grows at a rate of 50% per year (one thousandfold
over the past two decades), memory bandwidth only grows 12%
per year (only tenfold over the past two decades) [Torborg &
Kajiya, 1996]. Texture mapping in particular relies heavily on
memory, and the bandwidth of this memory is the primary factor
limiting the number and complexity of 2-D image textures

Addresses: WSU, School of EECS, Pullman. WA 99164-2752
{hart,ncarr,mkameya}@eecs.wsu.edu.
E&S (Seattle), 33400 8th Ave. S. #136, Federal Way, WA 98003
{stibbitt,tcoleman}@es.com.

available in real-time. Some have overcome the memory
bandwidth limitation at the expense of increasing memory size to
hold multiple redundant copies of the texture [Akeley, 1993],
[Montrym, et al., 1997]. Others relaxed the memory bandwidth
limitation by reducing the size of the textures via compression
[Torborg & Kajiya, 1996],[Beers, et al., 1996]. Procedural
texturing hardware is a way of increasing the performance of
current graphics hardware by augmenting its existing pre-stored 2-
D image textures with a variety of procedural solid textures
without impacting the hardware’s memory requirements.

Accessing a procedural texture requires more time than an image
texture as the texture value must be computed instead of accessed
from memory. Hence, real-time procedural texturing has
previously only been available in high-end parallel graphics
systems. For example, Pixel Planes [Rhoades, et al., 1992],
PixelFlow [Molnar, et al., 1992] and the Pixel Machine [Potmesil
& Hoffert, 1989] all supported real-time procedural texturing.
Indeed, PixelFlow now has a fully-developed procedural shading
system, including support for procedural solid texturing [Olano &
Lastra, 1998].

Solid texturing is also not new to hardware implementation. The
Reality Engine, for example, has the memory bandwidth
necessary to support prestored solid texture volumes up to a
maximum resolution of 256 x 256 x 64 texture elements [Akeley,
1993]. The InfiniteReality graphics system [Montrym, et al.,
1997] has 1GB of physical texture memory that could be
organized into a 10243 pre-stored solid texture volume.

Antialiasing procedural textures is more complicated than for
stored image textures. Whereas MIP maps [Williams, 1983] and
summed-area tables [Crow, 1984] can be precomputed and stored
for image textures, procedural textures are generated on the fly
and such antialiasing techniques can not be readily applied.

Supersampling is a common technique for antialiasing procedural
textures but directly increases rendering time. For example,
supersampling was the method used to inhibit aliasing in
PixelFlow’s procedural textures [Olano & Lastra, 1998].
Bandlimiting the procedural texture is also an effective technique
[Norton, et al., 1982], but works easily and efficiently only on
procedures based completely on spectral synthesis.

1.2. Overview
Section 2 introduces a texture model capable of synthesizing the
most commonly used procedural textures (in fact all textures in
Figure 1 through Figure 6) but concise enough to implement in
hardware. The identification of this model allows the textures to
be specified by parameters to a fixed procedure which can be
simplified enough to be implemented in present-day VLSI
technology.

Section 3 introduces a new method for antialiasing procedural
textures based on computing a first order approximation of the
color index variance over the area of a pixel. This approximation
allows the antialiasing method to simulate an area sample of the
textured image faster than supersampling. Unlike bandlimiting
(which is a pre-filter), the new method is a post-filter that does not
affect the parameters of the generation of the texture.

Section 4 exhibits the results of this model, exploring the various
tradeoffs necessary to feasibly implement the model without
significantly compromising image quality. An effective but
reduced model can be implemented with as few as 100,000 gates,
which is about 10% of the real-estate of modern consumer-level
graphics processors.

Figure 1: Carved wooden teapot.

Figure 2: Marble teapot sculpture.

Figure 3: Seascape.

Figure 4: Fire.

Figure 5: Planet.

Figure 6: Moonrise.

2. A MODEL FOR PROCEDURAL
TEXTURING

Various formalisms on procedural solid texture specifications
have been proposed. Perhaps the most pervasive has been the
Renderman shading language [Hanrahan & Lawson, 1990], but
there are also other alternatives (e.g. [Abram & Whitted, 1990]).
We propose a concise class of procedures capable of synthesizing
a variety of textures and effects, but simple and direct enough to
facilitate hardware implementation. The procedures are
parameterized by values that completely control the type and
character of the texture this model generates, such that these
parameters (and the texture’s color map) are the only
representation of the texture that need be stored.

2.1. Analytical Model
Procedural solid texture mapping uses a mapping of the form p:
R3→ R4 from solid texture coordinates s = (s,t,r) into a color space
(R,G,B,α). (We follow the convention of using boldface to
indicate vector values and functions, and italics to indicate scalar
values and functions.) Some texture mapping techniques also
include a homogeneous texture coordinate [Segal, et al., 1992] but
it remains to be explored how such a coordinate benefits
procedural solid texturing. Often procedural solid textures
incorporate a color map. In such cases, p = c ο f consisting of an
implicit classification of the texture space f: R3→ R and a color
map c: R→ R4.

For a given polygon, the texture coordinate functions s(x) =
(s(x),t(x),r(x)) indicate the range of the texture coordinates with
respect to screen coordinates x=(x,y). Hence, the procedural
texture can be evaluated with respect to screen coordinates as p(x)
= c o f o s(x).

We restrict the texture map p to the family of functions

 ,))(()()(




 += ∑ sscsp i

i
i Tnaq (1)

where q: R3→ R is a quadric classification function and n: R3→ R
is a noise function. The combination of quadrics and noise yields
a specification sufficient to generate a wide variety of commonly
used procedural solid textures. The affine transformations Ti
control the frequency and phase of the noise functions.

2.1.1. Color Map

The color map c associates a color (R,G,B) with each index
returned by the classification function f. The color map c is
typically implemented as a lookup table

 c(f) = clut[round(n modclamp(f))] (2)

where clut[] is an array of n RGB color vectors. Color map
indices returned by f are, depending on a flag parameter, either
clamped to [0,1] or taken modulo one to map within the bounds of
the lookup table.

2.1.2. Quadric Classification Function

The function q: R3→ R in (1) is the quadric

JIrHrGtFtrEt

DsCsrBstAsrtsq

+++++
++++=

222

222),,(
22

2
 (3)

which can more conveniently be represented homogeneously as

 []




































==

1

1,,,)(
r
t
s

JIGD
IHFC
GFEB
DCBA

rtsQq T sss
 (4)

treating s as a homogeneous column vector [Blinn, 1982].

The quadric function supports the spherical, cylindrical,
hyperbolic and parabolic classification of space for texturing.

2.1.3. Noise Function

The function n: R3→ R in (1) is an implementation of the Perlin
noise function [Perlin, 1985]. The values ai control the amplitude
of the noise function, whereas the affine transformation Ti controls
the frequency and phase of each noise component. There are a
fixed number of noise components available, and this limit is
typically between four and eight in typical texturing examples.

2.2. Texture Examples
The space of solid textures spanned by (1) covers the textures
most commonly found in procedural solid texturing. The four
fundamental procedural solid textures are: wood, clouds, marble
and fire.

2.2.1. Wood

The texture model generated the wood texture shown in Figure 1,
by using the quadratic function to classify the texture space into a
collection of concentric cylinders [Peachey, 1985]. Waviness in
the grain is created by modulation of a noise function

).,4,4(),,(22 rtsntsrtsf ++= (5)

The color map consists of a modulo-one linear interpolation of a
light “earlywood” grain and a darker “latewood” grain. The
quadric classification makes the early rings wider than the later
rings, which is to a first approximation consistent with tree
development.

2.2.2. Clouds

Cloudy skies are made with a fractal 1/f sum of noise

).2(2)(
4

1

ss i

i

inf ∑
=

−= (6)

The texture described by (6) is mapped onto a very large high-
altitude polygon parallel to the ground plane in Figure 3, resulting
in clouds that become more dense in the distance due to
perspective-corrected texturing coordinate interpolation. The color
map is a clamped linear interpolation from blue to white. The
water is the same procedural texture with a blue-to-black
colormap.

2.2.3. Marble

Marble uses the noise function to distort a linear ramp function of
one coordinate [Perlin, 1985]

)).2,2,2(2),,(
4

1

rtsnrrtsf iii

i

i∑
=

−+= (7)

The color map consists of a modulo-one table of colors from a
cross section of the marble. Figure 2 demonstrates the marble
texture on a cube, and the solid texturing again aligns the texture
details on the edges of the cube. Continuously increasing the noise
amplitude animates the formation of the ripples in the marble,
simulating the pressure and heating process involved in the
development of marble [Ebert, 1994].

2.2.4. Fire

Like marble, fire is simulated by offsetting a texture coordinate
with fractal noise [Musgrave & Mandelbrot, 1989]. The fire
example shown in Figure 4 was textured onto a single polygon
and modeled as

)).2,0,2(2),,(
4

1

φ++= ∑
=

− rsnrrtsf ii

i

i (8)

Continuously varying the noise phase term φ animates the fire
texture.

2.2.5. Planet

A wide variety of different worlds, such as the one shown in
Figure 5, can be generated by applying fractal textures, such as
(6), to spheres. The color map for such images resembles a
cartographic “legend.” The cloudy atmosphere was rendered on
the same sphere “over” the planet in a second pass using a color
map with varying opacity values.

2.2.6. Moonrise

The moonrise in Figure 6 was rendered completely using
synthesized textures, without any other kind of shading. The
moon is a sphere with a fractal texture. The clouds were rendered
on a single polygon perpendicular to the viewer and imposed over
the moon. The water was rendered with a single polygon
extending off to infinity. The highlight on the water was faked
with two triangles textured using (7) with a partially transparent
color map.

3. ANTIALIASING
Image texture aliases occur due to texture magnification and
minification. Texture magnification occurs when the texture
image itself contains too few samples such that a single texture
element projects to several screen pixels. Texture minification
results when the projection of the texture image covers too few
pixels and several texture elements project to the same screen
pixel. Modern texture mapping hardware inhibits aliases due to
texture magnification by bilinear or bicubic interpolation of the
appropriate texture elements. Such hardware inhibits texture
minification aliases through the use of a MIP map that
precomputes lower resolution versions of the texture, and samples
the MIP map using trilinear or tricubic interpolation of
neighboring pixels at the appropriate resolution level.

Aliases of synthesized textures do not fall into such categories
since there is no fixed image resolution. Each such texture will
exhibit some form of aliasing if sampled below twice the highest
frequency in the texture’s spectrum, which may be infinite for
some textures. Hence, procedural textures do not suffer from
magnification aliases, but require filtering to remove frequencies
above the Nyquist limit to avoid minification aliases.

Synthetic textures could be antialiased by precomputing them,
storing the results in MIP-mapped image textures. However, such

an antialiasing technique would remove the flexibility such
textures provided, and would also consume a tremendous amount
of space when used on solid textures. Band limiting the output of
the texture map removes aliases by prefiltering the texture before
sampling [Norton, et al., 1982], but is difficult to implement in a
generalized texturing environment. Supersampling the texture
degrades time perfomance and arbitrarily increases the complexity
of the hardware implementation.

Instead, we analyze the function p(x) that textures pixels to
determine the width of a box filter that would eliminate the
aliasing frequencies from the spectrum of the synthesized texture.
Several have described techniques for antialiasing procedural
textures by antialiasing the textures’ colormaps [Rhoades, et al.,
1992], [Worley, 1994]. In the next section, we provide a more
rigorous mathematical justification and derivation of the
technique, resulting in an ideal filter width for the texture which is
used to box filter to the procedural texture by averaging the
elements of the color table that the texture procedure generates
over the support of the filter.

3.1. Texture Filtering via Color Table
Filtering

Consider a domain D on the screen consisting of pixels whose
color is determined solely by the projection of a single
procedurally texture mapped polygon. We assume the color map
indices generated by the procedural texture are continuous across
the polygon. Let a = minD f(x) be the least possible color map
index used in the pixels in D, and let b = maxD f(x) be the greatest
such index. Then we assume

ab

dff

d

d b

a

D

D

−
≈∫

∫
∫)()(c

x

xxp
 (9)

the average color in D is sufficiently approximated by the average
of the color table entries between indices a and b. As shown in
Figure 7, we provide a first-order approximation of the bounds a
and b used in the RHS of (9) by differentiating the texture
function f(x) and setting a = f(x) - ||∇f(x)||/2 and b = f(x) +
||∇f(x)||/2. If either a or b or both fall outside the bounds of the
color table, then the boundary of the color table is extended using

x

 f(x)
1

df/dx1

df/dx

pixels

clut
indices

Figure 7: The derivative df/dx approximates the extent of the color

map indices one pixel in either direction. Half of the derivative
estimates the variation in color map indi ces half of a pixel in either

direction.

either the modulo or clamp operators according to the modclamp
flag.

The remainder of this section describes this differentiation in
detail, applies efficient methods for integrating the color map to
determine the numerator of the RHS of (9), and demonstrates the
results.

3.2. Differentiating the Texture
Procedure

The magnitude of the gradient ∇f = (∂f/∂x,∂f/∂y) indicates the
width of the appropriate filter on the color map. From (1), we
have that the gradient of f is

i

i
i naqf ∇+∇=∇ ∑ (10)

where ni is the ith noise function: n(Ti(s)). From (3) we have that
the gradient of q is

[]

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂



















=

=






+=∇

00

 0 2

2

)(

x
r

x
r

y
t

x
t

y
s

x
s

JIGD
IHFC
GFEB
DCBA

rts

d
dQ

Q
d
d

d
dQq

T

T
T

x
ss

s
x
s

x
ssx (11)

since Q is symmetric.

The derivative of the noise terms are given by

x
s

s
xs

xs
d
dT

d
Tdn

aTna i
i

iii

))((
))((=∇ . (12)

The gradient dn/ds = [∂n/∂s ∂n/∂t ∂n/∂r 0] is also known as the
function DNoise [Perlin, 1985].

The value ds/dx is the Jacobian of the texture coordinates s with
respect to the screen coordinates x. The values of ds/dx is
computed during the scan conversion of the polygon as the
perspective-corrected pixel increments. The values of ds/dy can be
computed for each triangle using the plane equation and
performing a perspective-correcting division.

3.3. Filtering the Color Table
The filtering of color map values can be evaluated efficiently
using either a color table MIP map or a summed area color table.

3.3.1. Color table MIP map

MIP maps are commonly used in standard texturing systems to
prefilter image textures and sample from the prefiltered texture
when the texture is minified (insufficiently sampled by the image
pixels) [Williams, 1983].

One may also create a MIP map of a color table. The process
begins with the n-element full resolution color table clut1[]. Then
neighboring colors in the table are averaged t o create a half-
resolution n/2-element color table clut2[]. This process is repeated
until a one-element color table clutlg n[] results, representing the
average color of the entire color table.

Given a filter width w, let i = floor(lg w). Then the proper
resolution color table from the mip map is selected and the color
indexed is returned as cluti[f/i] (or more accurately the linear or
cubic interpolation of the values of clut i[f/i] and clut i+1[f/(i+1)]).

(a) (b)

Figure 8: Zone plate aliased (a) and filtered (b).

3.3.2. Summed area color table

Image textures are also an tialiased efficiently using the summed
area table [Crow, 1984]. A summed area table transforms
information into a structure that can quickly perform integration,
specifically a box filtering operation.

The summed area color table consis ts of a table where each entry
consists of the sum of all elements in the color table including the
current entry’s element

 ∑
=

=
i

j

ji
0

][][clutcsat (13)

or recurrently as csat[i] = csat[i-1] + clut[i]. The current entry’s
element can be recovered by subtracting the previous summed
area element from the current summed area element as

 clut[i] = csat[i] – csat[i-1] (14)

for i > 0. Box filtering the color map entries for a given filter
width is computed as

 (csat[f + w/2] - csat[f - w/2])/w. (15)

Special care must be taken for the cases where the support of the
filter crosses the bounds of the color table. For the following cases
let N is the number of entries in the color table.

• w ≥ N: Return the average of the entire co lor map: csat[N-1]/N.

• f + w/2 ≥ N:

mod: (csat[f + w/2 – N] + csat[N-1] – csat[f – w/2 - 1])/w.
clamp: ((f+w/2–(N-1))clut[N-1] + csat[N-1] – csat[f–w/2-1])/w.

• f - w/2 < 0:
mod: (csat[f + w/2] + csat[N-1] - csat[N + f - w/2 - 1])/w.
clamp: (-(f - w/2) clut[0] + csat[f + w/2])/w.

An alternative to performing the above computations at render
time is to use the above formulae to precompute a color summed
area table three times as long, ranging from –N to 2N – 1.

3.4. Examples
The derivations in Section 3.2 show that procedural textures
produce aliasing artifacts from three possible places.
1. Quadric Variation: The quadric classification changes too

quickly: ||dq/ds|| too large.
2. Noise Variation: The noise changes too quickly:

ai||dn(Tis)/ds|| too large.
3. Texture Coordinate: The texture coordinates change too

quickly: ||ds/dx|| too large.
Each of these components can create a signal containing
frequencies exceeding the Nyqist limit of the pixel sampling rate.

Figure 8 demonstrates quadratic variation aliasing (type #1) with a
zone plate constructed from the procedure

 22 5050),,(tsrtsf += . (16)

rendered with an extremely harsh “zebra” color map. Analysis of
(16) shows that the aliases are governed by ∇f = dq/ds ds/dx, with
dq/ds = (100 s,100 t). The zone plate was plotted at a resolution of
2562 and over the unit square in texture coordinate space, hence
∂s/∂x = ∂t/∂y = 1/256. Setting the colormap filter width to (100 s
+ 100 t)/256 reduces the aliases to the point of being barely
noticable.

Noise variation aliases (type #2) happen in concert with texture
coordinate aliasing (type #3), since in a single scene the frequency
and amplitude of noise is constant, and only varies across the
image with distance from the viewer. For example, the cloud s on
the horizon in Figure 3 do not alias near the horizon because the
filter width is scaled in part by the noise function derivative, and
increases as the magnitude of ds/dx increases. In the distance as
the projection of the noise reaches the Nyquist limit, the filter
width reaches the size of the entire color table, yielding a
homogeneous hazy blue color.

Figure 9 illustrates all three types of texture aliasing on a torus.
The centerline of the woodgrain rings passes through the left side
of the torus, creating grain of increasing frequency on the right.
Hence the filterwidth increases from the left to the right side of

(a)

(b)

(c)
Figure 9: Torus rendered with wood texture (a) is antialiased

(b) using filterwidths shown in (c) ranging from one (black) to
256 (white).

the torus demonstrating quadric variation (type #1) aliasing. The
amplitude and frequency of the noise term remains constant over
the torus object, and so causes a uniform increase of the
filterwidth due to noise variation (type #2) aliasing. The polygons
on the silhouette of the torus have larger filterwidths than their
neighbors, demonstra ting texture coordinate (type #3) aliasing.

4. Results
The goal of the previous sections was to simplify the synthesis of
antialiased solid textures. In this section, we describe and
demonstrate software and simulated hardware implementations,
and document some of the tests performed in the process.

4.1. Software Implementation
The basic tool of this research is a simulator that implements in
fixed point arithmetic the texture synthesis model along with its
associated filtering and color table mechanisms, as well as a
prototype rasterizer. This simulator is responsible for all of the
textured images in this paper. While the textures themselves were
antialiased, the polygon edges were not. In fact, we avoided the
temptation to use many small polygons to create smoot her
surfaces and silhouettes in order to better demonstrate the ability
of procedural textures instead of geometry to provide visual detail.

This simulator serves as an antialiasing procedural texturing
shader, and could be incorporated as a plug -in to existing software
rendering systems. This simulator also serves as the basis of an
extension to OpenGL, which already supports solid texture
coordinates. The current implementation uses the OpenGL
feedback buffer to collect the transformed polygons in screen
coordinates for rasterization by the simulator [Carr & Hart, 1999] .
The resulting textured raster image generated by the simulator is
then combined with the raster image generated by OpenGL’s
rasterization engine using the associated z -buffers to negotiate
visibility. Hence the simulator integrates synthesized solid
textures into OpenGL’s existing texturing, lighting and modeling
system.

4.2. Hardware Implementation
A complete implementation of the model can be realized in VLSI
with 1.25 million gates, resulting in the image quality shown in
Figure 1 through Figure 6. A reduced and approximated version
of the texture synthesis model can be implemented in as few as
100,000 gates. Sample images from such an implementation are
exhibited in Figure 11.

Overall, the compromises in image quality necessary to
implement the model in 100,000 gates appear minor, and the
effects are very subtle. Some texture coordinate aliasing is
noticable on the polygons of the teapots closest to the viewer. The
character of the water, sky, planet and moonrise are slightly
smoother due to a reduction in the number of noise function
evaluations. The teapots and fire have noticable artifacts due to a
linear approximation to the noise function.

4.3. Precision Tests
Several tests have been conducted to determine the texture
coordinate precision necessary to avoid magnification aliases
[Kameya & Hart, 1999] . Figure 10 shows the results of tests with
a 5122-pixel scene of a coarsely-triangulated objects computed
using a variety of texture coordinate precisions.

4.4. Animation Tests
The seascape was animated to determine the effectiveness of the
antialiasing technique. The seascape scene (Figure 3) was the
most taxing on the colormap filtering algorithm because it
textures infinite planes. Two animations of flights into the horizon
were generated, one with and one without filtering. The unfiltered
animation resulted in severe aliasing in the form of distracting
noise near the horizon. The filtered animation significantly
reduced these aliases, although some very slight flicker is still
observable. This subtle flicker seems to be an inevitable
compromise of the colormap -averaging filter in that removing the
flicker results in textured planes that get too blurry too soon
before reaching the horizon.

4 bits

5 bits

6 bits

7 bits

8 bits

16 bits

Figure 10: The effect of numerical precision on texture appearance.

The flame shown in Figure 11 was also animated to determine
how effectively they would appear in the hardware
implementation. The rectilinear grid bas is of the noise functions is
clearly evident due to the reduced number of noise octaves and
the tri-linear interpolation. However the animation does clearly
resemble burning flames and would sufficently represent such in
typical consumer real -time graphics applications.

5. Conclusion
We set out to formalize a model for synthesizing popular
procedural solid textures, and analyzed this model to derive an
effective antialiasing scheme and an efficient hardware
implementation. We showed that the model is capable of
simulating the common procedural text ures of wood, clouds,
marble and fire, but is also simple enough to adequately
implement in hardware.

Often textures are animated, to simulate fire, billowing clouds and
other dynamic effects. Animation of texture map images requires
a significant amount of texture memory and fast CPU access to
the texture memory. The procedural texturing hardware will be
capable of real-time animation of clouds billowing, fire burning
and marble forming.

PixelFlow defered shading until after all of the rasterization was
completed [Molnar, et al., 1992]. It stored all of the shading
information in the frame buffer, such that each pixel was shaded
only once regardless of the number of polygons that overlapped it.
The procedural texturing hardware descri bed in this paper could
be used to texture such pixels if the texture index, coordinates and
Jacobian were stored in the framebuffer.

5.1. Future Work
This work only scratches the surface of procedural texturing
hardware. Procedural texturing inexpensively over comes the
fundamental graphics texture rendering problems of memory
bandwidth. With the success of this particular model, we expect
other more sophisticated texturing models will be developed. The
connotation of procedural texturing is that an actual progr am is
run to generate the texture. While our model uses a fixed program
with parameters controlling the character of its output, future
procedural texturing hardware might be designed to permit
uploading of texture programs. While such machines already exi st
(e.g. the Pixel Machine, Pixel Planes) there is no restriction on the
texturing programs. Hence the user is burdened responsibility of
antialiasing. Restricting the language used to write a procedural
shader can increase the quality of its output, as it allows the
hardware to better analyse the program to predict the aliases its
output may contain, and automatically take measures to inhibit
those aliases.

The antialiasing technique was derived from the model, but there
is nothing specific to the model t hat makes this antialiasing
technique work. Hence the color map antialiasing technique could
be generalized and applied to any procedural texture so long as
the derivatives are available. Computation of these derivatives is
straightforward for this simple model, but could be quite
complicated for true procedural textures described in a
programming language. The error associated with approximation
(9) should also be investigated further.

The colormap of the planet in Figure 5 is not continuous, jumping
from a sandy color to an aquamarine to mark the coastlines of the
world. As the filterwidth increases due to the noise contributions,
this sharp coastline diffuses into a muddy color inbetween. A

Figure 11: 100,000 gate simulations of Figure 1 through Figure 6.

more sophisticated antialiasing system might mark such jump
discontinuities in the colormap and affect the filterwidth in these
areas to further inhibit this artifact.

The noise function used was adapted from Rayshade [Skinner &
Kolb, 1991], which uses cubic blending functions on a lattice of
random numbers. This particular version lends itself to efficient
hardware implementation, but the details of such an
implementation are left as future work.

Procedural hardware need not be limited to just texture.
Procedural hardware bump mapping, displacement mapping and
shading in general seem to be logical extensions of this work.
Recently, minor extensions to existing graphics pipelines for
increased shading language support have been proposed [McCool
& Heidrich, 1999]. Further extension might lead to the generation
of procedural geometry that would overcome the bandwidth
problem of transmitting polygons from the host to the graphics
processor.

5.2. Acknowledgments
This research is supported in part by Evans and Sutherland
Computer Corp., with a matching grant by the Washington
Technology Center. This research was performed in part using the
facilities of the Image Research Laboratory in the School of EECS
at Washington State Universit y.

Bibliography
[Abram & Whitted, 1990] Abram, Gregory D. and Turner

Whitted. Building block shaders. Computer Graphics
24(4), (Proc. SIGGRAPH 90), Aug. 1990, pp. 283 -288.

[Akeley, 1993] Akeley, Kurt. Reality engine graphics. Computer
Graphics 27, Annual Conference Series, (Proc.
SIGGRAPH 93), July 1993, pp. 109 -116.

[Beers, et al., 1996] Beers, Andrew C., Maneesh Agrawala and
Navin Chaddha. Rendering from Compressed Textures.
Computer Graphics, Annual Conference Series, (Proc.
SIGGRAPH 96), Aug. 1996, pp. 373-378.

[Blinn, 1982] Blinn, James F., A generalization of algebraic
surface drawing . ACM Transactions on Graphics 1(3),
July 1982, pp. 235-256.

[Carr & Hart, 1999] Carr, Nate and John C. Hart. APST
Antialiased Procedural Texturing Interface for OpenGL.
Proc. Western Computer Graphics Symposium. March
1999, pp. 46-55.

[Crow, 1984] Crow, Franklin C. Summed area tables for texture
mapping. Computer Graphics 18(3), (Proc. SIGGRAPH
84), July 1984, pp. 137-145.

[Ebert, 1994] Ebert, David. Animating Solid Space s: Animating
Solid Textures. Chapter in: Texturing and Modeling: A
Procedural Approach, Ebert, D., Ed. Academic Press
Professional, Boston, 1984, pp. 165-170.

[Hanrahan & Lawson, 1990] Hanrahan, P. and J. Lawson. A
language for shading and lighting calcula tions.
Computer Graphics 24(4), (Proc. SIGGRAPH 90), Aug.
1990, pp. 289-298.

[Kameya & Hart, 1999] Kameya, Masaki and John C. Hart. Bit
width necessary for solid texturing hardware. Proc.
Western Computer Graphics Symposium. March 1999,
pp. 121-126.

[Molnar, et al., 1992] Molnar, Steven, John Eyles and John
Poulton. PixelFlow: High-speed rendering using image
composition. Computer Graphics 26(2), (Proc.
SIGGRAPH 92), July 1992, pp. 231 -240.

[Montrym, et al., 1997] Montrym, John S., Daniel R. Baum,
David L. Dignam and Christopher J. Migdal.
InfiniteReality: A real -time graphics system. Computer
Graphics, Annual Conference Proceedings, (Proc.
SIGGRAPH 97), Aug. 1997, pp. 293 -302.

[Musgrave & Mandelbrot, 1989] Musgrave, F. Kenton and Benoit
B. Mandelbrot. Natura Ex Machina. IEEE Computer
Graphics and Applications 9(1), Jan. 1989, p. 4-7.

[McCool & Heidrich, 1999] McCool, Michael D. and Wolfgang
Heidrich. Texture Shaders. Proc. Eurographics -
SIGGRAPH Graphics Hardware Workshop, Aug.
1999.

[Norton, et al., 1982] Norton, Alan, Alyn P. Rockwood and
Phillip T. Skolmoski. Clamping: A method for
antialiased textured surfaces by bandwidth limiting in
object space. Computer Graphics 16(3), (Proc.
SIGGRAPH 82), July 1982, pp. 1 -8.

[Olano & Lastra, 1998] Marc Olano and An selmo Lastra. A
Shading Language on Graphics Hardware: The
PixelFlow Shading System. Computer Graphics, Annual
Conference Proceedings, (Proc. SIGGRAPH 98), July
1998, pp. 159-168.

[Peachey, 1985] Peachey, Darwyn. R. Solid texturing of complex
surfaces. Computer Graphics 19(3), (Proc. SIGGRAPH
85), July 1985, pp. 279-286.

[Perlin, 1985] Perlin, Ken. An image synthesizer. Computer
Graphics 19(3), (Proc. SIGGRAPH 85), July 1985, pp.
287-296.

[Potmesil & Hoffert, 1989] Potmesil, Michael and Eric M.
Hoffert. The Pixel Machine: A parallel image computer.
Computer Graphics 23(3), (Proc. SIGGRAPH 89), July
1989, pp. 69-78.

[Rhoades, et al., 1992] Rhoades, John, Greg Turk, Andrew Bellm
Andrei State, Ulrich Neumann and Amitabh Varshney.
Real-Time Procedural Textures. Proc. Interactive 3 -D
Graphics Workshop, 1992. pp. 95 -100.

[Segal, et al., 1992] Segal, Mark, Carl Korobkin, Rolf van
Widenfelt, Jim Foran and Paul Haeberli. Fast shadows
and lighting effects using texture mapping. Computer
Graphics 26(2), (Proc. SIGGRAPH 92), July 1992, pp.
249-252.

[Skinner & Kolb, 1991] Skinner, Robert and Craig E. Kolb.
noise.c (file in the Rayshade raytracing system).

[Torborg & Kajiya, 1996] Torborg, Jay and James T. Kajiya.
Talisman: Commodity realtime 3D graphics for the PC.
Computer Graphics Annual Conference Proceedings,
(Proc. SIGGRAPH 96), Aug. 1996, pp.353 -363.

[Williams, 1983] Williams, Lance. Pyramidal parametrics.
Computer Graphics 17(3), (Proc. SIGGRAPH 83), July
1983, pp. 1-11.

[Worley, 1994] Steven Worley. Practical Meth ods for Texture
Design: Antialiasing. Chapter in: Texturing and
Modeling: A Procedural Approach, Ebert, D., Ed.
Academic Press Professional, Boston, 1984, pp. 117 -
124.

