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1 Abstract 
 
This project report presents a mechanism for allowing remote clients to navigate and 
interact with a 3D scene that resides entirely on a server, while having only a subset of 
the scene in memory at an instance.  This will allow the client to traverse larger scenes 
than it could handle locally and does not require the client to have any persistent storage.  
Real-Time Transport Protocol (RTP) is used to manage data distribution and Real-Time 
Streaming Protocol (RTSP) for state synchronization.  These protocols were originally 
designed for streaming audio and video feeds to a client.  The described mechanism 
extends these protocols to allow the streaming of 3D scene data, which is rendered on a 
client.  Unlike streaming audio and video, where the data is only valid during a given 
time interval, the algorithm will not dispose of the scene data once it has been received.  
The stream data can then be reused when necessary, reducing the transmission cost to the 
client.  Because the overall scene may be larger than the client can maintain, the client 
can dispose of portions of the scene as needed.  In the event that the client disposed of 
scene data that it now needs, the protocol will retransmit that information. 
 

2 Introduction 
 
The idea of remote navigation and interaction with a 3D environment has generated quite 
a bit of attention with the increased presence of broadband in the home and the recent 
surge of online gaming.  In today’s world, the client is required to: a) already have an 
existing knowledge of the scene by installing software from a provided media, or b) 
download the scene information prior to interacting with the environment.  When 
interacting with a remote scene, it is likely that the scene is larger than the client could 
manage locally on its own.   
 
One example of a Large Scale Virtual Environment (LSVE) is an online gaming world.  
An online gaming world is typically managed across a farm of servers, and it would not 
be possible for a client to maintain the entire world.  In addition, the user must install a 
client application specific to that online gaming world before they can begin to interact 
with it.  Updates to the world must be downloaded offline before the user can continue 
interacting with the environment.   
 
To relieve this burden, we developed a technique to pre-fetch portions of the scene, 
including associated resources, and transmit them to the client on an as-needed basis.   In 
addition to online gaming, this technique could be applied to handheld clients or clients 
with limited communications bandwidth.    
 
Today many different portable devices are capable of rendering 3D graphics but lack the 
runtime and/or persistent storage to maintain a large scene in the memory.  For example a 
Special Forces soldier will be in the field with a handheld computing device wirelessly 
linked to a ground station.  Due to the nature of their work, these machines will have 
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significant computing power, but they lack substantial persistent storage due to their size 
and propensity to be damaged.  This technique would allow the soldier to visualize the 
battlefield on their computing device as if they were sitting at a terminal attached to the 
ground station using a high speed link.  Many researchers have been working on new 
solutions to the problem by proposing new means for navigating an interacting with 
LSVE. 
 
 

3  Related Work 
 
Current large scale virtual environment systems have identified common areas of 
functionality many of which will pertain to future LSVEs.  The areas of particular interest 
are entity management, communication model, scenegraph management and data 
reduction and compression.  Several systems have been developed that provide 
significant contributions to these major functional areas. 
 

3.1 Entity Management 
In an LSVE system, entities can influence the state of other entities in the system.  For 
large environments, managing these interactions in a real-time manner poses a significant 
challenge.   
 
In 1999, Greenhalgh and Benford, developed the MASSIVE system.  The MASSIVE 
system defined a concept known as an “aura”.  Every object in the MASSIVE 
environment has an aura.  The aura defines the physical extent to which interaction with 
other objects in the environment is possible.  When two auras collide, an interaction 
between those objects is possible.  The aura reduces the number of possible interactions a 
given entity can have, which reduces the computational overhead of managing 
interactions within an LSVE.  The effect of an interaction occurrence varies based on the 
application and the object’s behavior.  In an LSVE system, entities come in many 
different flavors each with unique properties and behaviors.  Dynamic discovery of new 
entity types provides for a rich and extensible system.   
 
The Bamboo system [Watsen and Zyda 1998] focused on dynamic configuration without 
explicit user interaction, allowing the system to discover new virtual environments on the 
Bamboo network at runtime.  The Bamboo framework’s network component is capable 
of downloading and updating the local scene with information from a remote site.  This 
information may typically be geometry, texture and sounds, and it may also contain 
executable code that defines its physical behavior.  Today’s massively multiplayer, online 
games include features for developing custom modifications to the LSVE.  The 
extensions must be acquired offline before the user can interact in an environment with 
them.  Applying techniques from the Bamboo system would remove the offline 
acquisition step and improve the user experience.  The Bamboo system recognizes the 
security problems associated with downloading binary data from un-trusted hosts, but it 
was left as an area of future work. 
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3.2 Communication Model 
 
Large scale virtual environments require communication between a large number of 
client and server processes.  The server entity will be composed of one or more 
computers designed to manage the virtual environment.  As with all distributed 
computing applications, the network topology used can greatly affect the performance of 
the system.   
 
The MASSIVE architecture utilizes a peer-to-peer (P2P) framework built upon a 
combination of streams and RPC for exchanging data among peers.  P2P networks 
usually have the option of retrieving identical data from multiple locations and are 
designed to retrieve it from the most cost effective node.  By design a P2P network is 
decentralized, meaning clients can talk directly to one another without relaying their 
messages through a common server, and because of this there is no single network 
bottleneck or hotspot.  Due to the lack of a centralized authority, it is more difficult to 
maintain a consistent global state.  In addition to P2P, a client/server based approach is 
also possible and provides some benefits over P2P.   
 
Macedonia et. al. [1995] developed a system for interacting with an LSVE utilizing 
multicast groups.  When managing an LSVE, the server must manage a large number of 
participants.  The solution is built upon partitioning the virtual environment by 
associating “spatial, temporal, and functionality related entity classes with network 
multicast groups” [Macedonia et. al. 1995].  Each partition is associated with a multicast 
group.  The partitioning allows them to devote an entities processing and networking 
resources for its area of interest to a specific local Area of Interest Manager (AOIM).  
The AOIM uses the partitioning properties to determine membership in multicast groups 
for entities.  In their implementation, the AOIM partitions the virtual environment into 
hexagonal cells.  They chose hexagons for two main reasons: 1) they have uniform 
adjacency, that is as an entity leaves one cell, it moves exactly into another, and 2) they 
provide better coverage of an entity’s AOI than a square would, without having to reduce 
the size of the cell, which would directly increase the number of multicast groups.  In 
their implementation an entity may belong to multiple multicast groups if its AOI spans 
multiple cells, but it only publishes updates to the multicast group that corresponds to the 
cell it is in (based on location point).  This model using multicast groups creates a 
potential network bottleneck but simplifies the state management compared to P2P since 
all updates come directly from the server entity.  The described communication models 
require proprietary network configuration.  A communication model that was inherently 
compatible with today’s web technologies would be ideal. 
 

3.3 Scenegraph Management 
 
Both managing interactions and communicating changes in the scene, affect the contents 
of the global scenegraph.  Two existing systems have provided contrasting methods for 
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managing the global scenegraph.  A scenegraph is a graph structure that represents a 
three dimensional environment; it can be used traversed to generate a two dimensional 
image of the environment. 
 
Cheng et al. [2004] proposed a real time 3D graphics streaming architecture leveraging 
MPEG-4.  They divide their architecture into a three layered system: 1) control plane, 2) 
data plane and 3) transmission plane.  The control plane transmits user interactivity to the 
server where it is interpreted by the data plane.  The data plane renders the scene using 
the server’s resources based on the user interactivity at the client.  It is assumed that the 
client lacks the resources to render the scene (i.e. lack of necessary rendering hardware or 
lack of the data to be visualized).  After rendering the frame, it is compressed using 
MPEG-4 then streamed back to the client.  Cheng et al. address consistency issues with a 
globally replicated scenegraph by only maintaining one scenegraph on the server and 
performing all rendering on the server.  An opposite approach would be to maintain 
replicas of the scenegraph on all clients and have the client’s use their resources to render 
the scene.   
 
Sahm and Soetebier [2004] proposed another method for managing remote scenes using a 
client/server scenegraph that is represented as a dynamic Space Partition Tree (SPT) on 
both the client and the server.  Their proposed scenegraph representation allows for easier 
matching of objects on the client and the server, which simplifies the identification of 
objects being manipulated in an interactive scene.  The scenegraph design also simplifies 
the process of managing scenes that exceed the available memory, even with regard to 
the server.  The organization of their scenegraph allows for quicker identification of 
objects that need to be sent to the client, based on the client’s viewing parameters.  
Access time to locate and update objects in the scenegraph is crucial to providing real-
time performance.  In addition to scenegraph design, minimizing the overall size of the 
scenegraph is equally important. 
 

3.4 Data Reduction and Compression 
 
Reducing the size of the scenegraph maintained on the client is important for both 
rendering speed and minimizing the memory footprint required to participate in the 
LSVE.  Teler and Lichinski [2001] approached the problem by streaming the 3D scene 
using a real-time on demand algorithm.  In this approach, the server sends sections of the 
scene to the client, based on the client’s viewing parameters, while focusing on 
bandwidth as the bottleneck in rendering a remote scene.  By using bandwidth analysis, 
continuous level of detail and image imposters, the transmission cost is reduced.  This 
approach is ideal for clients that have unlimited local resources (i.e. a state of the art 
home PC), because it is assumed that the server will never need to retransmit anything to 
the client.   
 
In addition to trimming the client-side scenegraph, one could also compress the data 
stored at each node.  One mechanism for doing this is geometry compression. Deering 
[1995] proposed a new mechanism for compressing 3D triangle data with six to ten times 
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fewer bits than conventional techniques, with limited loss.  This approach required an 
efficient decompression algorithm, but it did not require a real-time compression 
solution.  In this analysis, it was assumed that all geometry was pre-compressed offline 
before the 3D scene was to be rendered, and that no compression would be required at 
runtime.  In addition to discussing the software implementation of the algorithm, Deering 
pointed out that this design was meant for hardware decompression on the 3D 
accelerator, thus simulating higher bandwidth on the graphics bus. 
 
The LSVE systems to date have presented varying solutions to these common 
architectural areas.  Presented is a new architecture that builds on the current systems and 
incorporates web technology friendly transport protocols, as well as new algorithms for 
managing the global scenegraph.   
 

4 Design 

4.1 Overview 
We present a new mechanism for navigating and interacting with a 3D environment from 
a remote client.  This mechanism introduces two main concepts: data delivery and data 
synchronization.   Data delivery is the ability to deliver scene information to the client in 
a timely manner.  This information may include geometry, textures and audio.  The data 
delivery service must be extensible to other types of binary data to ensure adequate 
flexibility.  Unlike the approaches discussed earlier, we will utilize a standard protocol 
known as RTP [Schulzrinne et al. 2003] for transmitting streaming scene data to the 
client.  Real Networks and Apple QuickTime, as well as other lesser-known streaming 
media applications, use this protocol to deliver streaming audio and/or video feeds.  The 
RTP protocol is capable of streaming binary data to a client bundled with timing, 
sequence information and payload encoding information.  In addition to delivering the 
scene information, the client and server must be able to synchronize their states of the 
scene (data synchronization).  Like in the Unreal Network [Sweeney 2005] architecture, 
the server’s state will be considered the absolute authority, and clients must correct their 
state as they receive updates from the server.  In our approach, the client’s scene state is 
merely an approximate replica of a subset of the scene resident on the server.  The 
communication of state between client and server will be handled using the RTSP 
protocol [Schulzrinne et al. 1998].  The RTSP protocol can be thought of as the remote 
control for the scene playing out on the server.  When using this protocol to manage 
streams of video or audio one can adjust the temporal properties of the stream (i.e. rewind 
or fast forward).  In this application, instead of manipulating temporal properties, we 
adjust the spatial position of the client actor, which in turn will adjust the flow of data on 
the stream.  The client will use this protocol to:  

1) Set up a session with the server 
2) Begin playing in and interacting with the 3D environment  
3) Disconnect from the server 
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4.2 Communications Layer 
 
RTP and its control counterpart, RTSP, are independent high-level transport protocols.  
They do not define the mechanism for delivering the packets at the network layer, and 
because of that, they do not depend on their capabilities in order to function properly.  
We transmit the RTP packets using a connectionless protocol known as UDP (User 
Datagram Protocol).  The UDP protocol does not guarantee delivery, order or Quality of 
Service (QOS).  Since RTP provides sequence numbers in its message headers, out of 
order delivery and packet loss are overcome, making UDP a viable transport protocol.  
The UDP protocol provides the ability to multicast data to a group of clients.  
Multicasting is the process of sending data to a client group address, and the underlying 
protocol will transmit a copy of the data to each client in the multicast group.  This is 
ideal when managing a scene with a large number of clients.  
 
RTSP also does not require a particular transport protocol.  The RTSP protocol is a text 
message based protocol and was purposely designed to be similar to HTTP.  Like HTTP, 
the RTSP implementation will run on TCP.  RTSP does not have the capabilities of RTP 
that allowed the use of UDP, and it does not adapt well to packet loss.  It does provide a 
means for reordering requests that was designed for pipelining purposes; that is allowing 
a client to send out additional requests, while it has one or more outstanding requests. 
 

DESCRIBE

SETUP PLAY

PAUSE

TEARDOWN

Setup Session
play

Pause StreamClose Session

Stop Play ing

Resume Play ing

Timeout

Created with Poseidon for UML Community Edition. Not for Commercia l Use.
 

Figure 1 – RTSP Connection State Machine 
 

4.3 Scene Management  
 

4.3.1 Initialization 
Before a client can begin rendering and interacting with a remote 3D environment, it 
must setup a session with the server.  Setting up a session is a multiple step process using 
the DESCRIBE and SETUP messages described in the RTSP protocol.  The DESCRIBE 
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method is used by the server to provide the presentation details to the client.  The 
presentation details contain information about the streams available at that server.  The 
information includes network settings, CODECs and other implementation specific data.  
Typically this information is described using the SDP [Handley and Jacobson 1998] 
protocol, which is used in this implementation.  Once the client has determined which 
stream it would like to listen to, it issues a SETUP message to the server.  In the response 
message from the SETUP request, the server establishes the session and returns the 
session identifier to the client. 
 
   
     Client->Server:  
      DESCRIBE rtsp://server.example.com/fizzle/foo RTSP/1.0 
      CSeq: 312 
      Accept: application/sdp, application/rtsl, application/mpeg 
 
     Server->Client:  
          RTSP/1.0 200 OK 
          CSeq: 312 
          Date: 23 Jan 1997 15:35:06 GMT 
          Content-Type: application/sdp 
          Content-Length: 376 
 
           v=0 
           o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4 
           s=SDP Seminar 
           i=A Seminar on the session description protocol 
           u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps 
           e=mjh@isi.edu (Mark Handley) 
           c=IN IP4 224.2.17.12/127 
           t=2873397496 2873404696 
           a=recvonly 
           m=audio 3456 RTP/AVP 0 
           m=video 2232 RTP/AVP 31 
           m=whiteboard 32416 UDP WB 
           a=orient:portrait 
Figure 2 – Example DESCRIBE interaction adapted from Schulzrinne et al. [1998] 

 
 

    Client->Server:  
SETUP rtsp://example.com/foo/bar/baz.rm RTSP/1.0 
CSeq: 302 
Transport: RTP/AVP;unicast;client_port=4588-4589 

 
    Server->Client:  

RTSP/1.0 200 OK 
CSeq: 302 
Date: 23 Jan 1997 15:35:06 GMT 
Session: 47112344 
Transport: RTP/AVP;unicast; client_port=4588-
4589;server_port=6256-6257 

Figure 3 – Example SETUP interaction adapted from Schulzrinne et al. [1998] 
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4.3.2 Interaction and Scene Maintenance 
 
Once the session has been established, the client must initiate the beginning of the data 
stream by issuing a PLAY message.  The PLAY message contains the initial spatial 
properties of the client.  Upon receipt of this message, the server begins transmitting the 
scene data to the client based on the client’s initial viewing parameters.  At anytime after 
transmitting the PLAY message, the client may issue a PAUSE message.  The PAUSE 
message will cause the server to stop transmitting scene data to the client.  During the 
session, the client will continuously update its spatial properties, including position and 
direction of movement, with the server.  The server uses the update information to 
determine what portions of the scene the client might need next.  Unlike streaming audio 
or video data that is only valid during a specific time period, the scene data is valid 
whenever it is in view of the client actor.  This property can be leveraged to optimize the 
scene data transmitted from the server.  In order to use this property, several issues must 
be addressed.  The first is replicating scene data on the client and synchronizing that data 
with the server.  More formally, this requires a means of correlating entities on the client 
and the server and exchanging updates to the scene data, the details of which are 
presented later.  The second requires the server to have knowledge of what data is on the 
client so that it does not retransmit data that the client already has, unless it has been 
modified.   
 
     Client->Server:  

PLAY rtsp://audio.example.com/twister.en RTSP/1.0 
CSeq: 833 
Session: 12345678 
Range: smpte=0:10:20-;time=19970123T153600Z 

 
     Server->Client: 

RTSP/1.0 200 OK 
CSeq: 833 
Date: 23 Jan 1997 15:35:06 GMT 
Range: smpte=0:10:22-;time=19970123T153600Z 

Figure 4 – Example PLAY interaction adapted from Schulzrinne et al. [1998] 
 

     Client->Server:  
PAUSE rtsp://example.com/fizzle/foo RTSP/1.0 
CSeq: 834 
Session: 12345678 

 
     Server->Client:  

RTSP/1.0 200 OK 
CSeq: 834 
Date: 23 Jan 1997 15:35:06 GMT 

Figure 5 – Example PAUSE interaction adapted from Schulzrinne et al. [1998] 
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4.3.3 Uniquely Identifying Scene Entities 
 
As presented earlier, in order to maintain consistency between the client and server, an 
object must be uniquely identified consistently on both the client and the server.  In this 
solution the server will assign identifiers to all entities that exist in the scene.  The server 
will use UUIDs (Universally Unique Identifiers) [The Open Group 1997] for all entities 
in the scene.  The UUID specification was originally developed by the Open Software 
Foundation as part of its DCE (Distributing Computing Environment).  It was designed to 
uniquely identify an entity in a distributed environment with reasonable certainty that it 
will not be duplicated intentionally.  UUID is currently documented as part of the 
ISO/IEC 11578, and an effort is underway by ISO/IEC and the IETF to document it as a 
separate standard. 
 

0679E900-A387-110F-9215-930269220000 
Figure 6 – Example UUID 
 

4.3.4 Sending Updates to the Server 
 
The RTSP protocol provides a general message for setting and retrieving parameters on 
the server or client.  The SET_PARAMETER message is used to transmit scene data 
updates and client spatial information to the server.  In addition, the server may use the 
GET_PARAMETER message to request updates from the client.  It may also be valuable 
if the client were to buffer updates to the scenegraph until another client needs them, 
similar to a delayed write back cache.   In this implementation, updates are immediately 
transmitted to the server. 
 
     Server->Client:  

GET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0 
CSeq: 431 
Content-Type: text/parameters 
Session: 12345678 
Content-Length: 15 
 
packets_received 
jitter 

 
     Client->Server:  

RTSP/1.0 200 OK 
CSeq: 431 
Content-Length: 46 
Content-Type: text/parameters 
 
packets_received: 10 
jitter: 0.3838 

Figure 7 – Example GET_PARAMETER interaction adapted from Schulzrinne et al. 
[1998] 
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     Client->Server:  

SET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0 
CSeq: 421 
Content-length: 20 
Content-type: text/parameters 
 
barparam: barstuff 

 
     Server->Client:  

RTSP/1.0 200 OK 
CSeq: 421 
Date: 23 Jan 1997 15:35:06 GMT 

Figure 8 – Example SET_PARAMETER interaction adapted from Schulzrinne et al. 
[1998] 
 

4.3.5 Managing Multiple Clients 
 
So far only a methodology for controlling a 3D interactive scene using RTSP and 
delivering the scene data using RTP have been discussed.  While our implementation 
functions in a single client state, its true value is in multi-client state.  Managing multiple 
clients means handling changes to the global scenegraph from multiple sources.  When 
managing the changes, the temporal ordering of the updates must be maintained.  The 
architecture provides a queuing mechanism for buffering updates received from the 
clients.  In addition, the queue is self-sorting, and it orders the messages using temporal 
properties maintained within the updates.  The server maintains a world time for the 3D 
environment, and each client will approximately synchronize to that time.  This allows 
the clients to timestamp their messages with reasonable accuracy.  Applying a timestamp 
to a message and maintaining a session time is natively supported by RTSP due to its 
original design for streaming audio and video. 
 

4.3.6 Termination of the Session 
 
When a client disconnects from the server, it sends a TEARDOWN message to the 
server.  When the server receives this message, it releases all resources associated with 
this session, and any future messages from the client with regard to this destroy session 
are ignored.  The TEARDOWN message is only valid once the client has issued a 
SETUP message to server.  An implicit TEARDOWN may occur if the client has paused 
the stream using the PAUSE message and the timeout interval has elapsed.  In the event 
that an implicit teardown has occurred, a TEARDOWN message is sent from the server 
to the client. 



 
   

13 

 
 
     Client->Server:  

TEARDOWN rtsp://example.com/fizzle/foo RTSP/1.0 
CSeq: 892 
Session: 12345678 

     Server->Client:  
RTSP/1.0 200 OK 
CSeq: 892 

Figure 9 – Example TEARDOWN interaction adapted from Schulzrinne et. al. [1998] 
  

4.4 Streaming Scene Data Using RTP 
 
The RTP protocol is used to stream the scene data to the client.  The scene data includes 
the scenegraph, textures, audio and any other resources that are required for the scene 
implementation.  RTP does not concern itself with contents of the payload, making the 
implementation independent of the scenegraph package used on the client and the server.  
The payload of the RTP packets is the serialized DirectX scenegraph.  The DirectX 
scenegraph may require other resource files.  These files are also transmitted using the 
RTP channel. 
 
The client does not dispose of the scene data it received from the server, unless it is 
forced due to a resource constraint.  Using RTSP, a session between the client and the 
server is established.  Utilizing this session, the server maintains a list of the UUID’s for 
all entities it transmitted to the client.  In the event that the client disposed of an entity, it 
must notify the server by sending the UUID to the server using the SET_PARAMETER 
message.  If it does not notify the server, it may not receive that entity for the duration of 
the session.  The list of entities transmitted to the client will allow the server to only send 
entities to the client that are new or have been modified since the client was last updated.  
When a client receives updated scene data from the server, it must determine if it 
received new or modified entities.  This is accomplished by comparing the entity’s UUID 
with all entities known to exist in the client’s subset of the scene.  If the entity already 
exists, it is replaced by the entity that was received.  If it is not already in existence, the 
entity is added to the client’s scene.  This approach handles only new and updated 
entities.  In the implementation a hashtable is used to quickly determine if a node exists 
in the scenegraph.  The table provides a mapping of the UUID directly to the 
corresponding node in the scenegraph.  It does not provide enough information to 
determine if an entity was removed.  When an entity is removed from the scene, a remove 
message is sent as the payload of a SET_PARAMETER message containing the UUID of 
the entity to be removed.   
 

4.4.1 Determining the RTP Payload 
 
The previous section outlined, at a high level, the process of transmitting and 
incorporating scene data received from the server.  This section highlights the process of 
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determining what to send to the client and how to maintain the accuracy of that data.  In 
order for the client to begin rendering the scene, it must have scene data based on the 
client’s current viewing parameters.  First, the client transmits its initial viewing 
parameters.  The parameters include a spherical area of interest and a direction of 
movement vector.  Upon receipt of the viewing parameters, the server begins transmitting 
the related scene data.  On the client’s end, the data is buffered until it receives all the 
necessary data to render the scene accurately based on the initial viewing parameters.  
Once the server finishes transmitting the initial scene data, it begins the speculative pre-
fetching portion of the session lifecycle.  During the speculative pre-fetching, the server 
makes an educated guess when sending additional data to the client.  The guess is based 
on the client’s known current position and the associated direction of movement vector.  
In addition to the speculative data, the server is also responsible for sending any updates 
to the scene that occur in the client’s current area of interest. Throughout this process, the 
client is rendering and navigating the scene.  As it navigates the scene, it continuously 
updates its viewing parameters with the server.  The viewing parameter updates are used 
as the basis for the speculative pre-fetching.  In order to maintain the accuracy of the 
client’s cache, the server invalidates an entity that has been modified in the scene.  For 
example, suppose a client had recently viewed a pencil on a table and then left the area.  
While the client was gone, another client removed the pencil from the table.  When the 
first client returned to that area, it would render the pencil because the pencil is still in the 
cache.  This problem is solved by invalidating anything in the client cache that is 
modified in the scene.  In addition to server invalidation, an entity may be removed from 
the cache due to a resource constraint on the client.  When this occurs, the client removes 
the least recently used entry in the cache.  This is believed to be correct because the 
elements that have been used more frequently are more likely to be used again and are 
more likely to be in a fixed position, which eliminates the possibility that the server will 
invalidate them. 
 
 

Transmit initial v iewing parameters

Receive Server Updates Render

Update Viewing Parameters
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Figure 10 – Client Management Activity Diagram (Client) 
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Receive initial v iewing parameters

Fetch and transmit initial scene data

Receive v iewing parameter updates

Pre-f etch scene data using speculation

Process updated v iewing parameters

Compute current updates

Transmit Scene Data

Includes cache invalidation

Created with Poseidon for UML Community Edition. Not for Commercial Use.
 

Figure 11 – Client Management Activity Diagram (Server) 
 

4.5 Rendering 
 
Rendering the scene on the client is done in a separate thread.  This keeps the rendering 
from being delayed by update processing.  Prior to rendering, but in the context of the 
render thread, any entities in the scene that have a position and velocity vector will be 
moved, unless their positions have been updated by the server since the last render pass.  
This allows the client to guess as to how the entity is moving for frames that are rendered 
in between updates from the server.  When the client receives an update for an entity, the 
client will correct the position and velocity vector for that entity.  Rendering consists of 
two phases: update processing and rendering.  These phases repeat through the lifecycle 
of the application.  As updates come in, they are buffered while the current frame is being 
rendered.  After the render completes the buffered, updates are processed and the next 
frame is rendered.  This will continue until the application is terminated.  Each update 
that is received from the server is an add/modify/remove a node.  The node is identified 
using the UUID as described above.  The UUID is used to locate the node being modified 
or deleted, or is used to add a new node to the scenegraph.  As an optimization in this 
implementation, we added a secondary data structure that maps the UUID directly to the 
node in the scenegraph.  An entry is made to this table each time a node is added, and the 
entry is removed when it’s deleted.  In addition to this optimization, each node maintains 
a reference to its parent.  This back reference enables us to delete a node quickly from the 
scenegraph by deleting the child from its parent without traversing the tree to locate the 
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parent of a node that is to be removed.  Add and updates contain the new node as well as 
the UUID of the parent node.  Using the “UUID to node mapping” we can find the parent 
and append the child in constant time. 
 

5 Implementation 
 
A prototype of the design was implemented, it is not as full featured as the design but it 
illustrates the proof of concept.  The prototype implementation is capable of 
disseminating the initial scene state to all attached clients.  The clients render the scene 
using a DirectX scenegraph that was developed as part of this effort.  In addition, a 
prototype communications layer based on the RTP/RTSP protocols was developed.  The 
communications layer is used by the clients to send updates to the server.  In this 
prototype implementation, the communications layer is used to send the client’s position 
to the server and it also disseminates the positional information of other objects in the 
scene.  On the server, it receives the update messages and makes the corresponding 
updates to the server side scenegraph and disseminates that information to all clients. 
 
This deviates slightly from the design, in a production implementation the updates would 
only be sent to clients that needed that information at that time.  For example, if an object 
was moved by client A, client B would only receive the update from the server if the 
object was in client B’s scenegraph.  If client B receives an update message for an entity 
that it does not have in its local scenegraph, the update is discarded.   
 
The full multi-user implementation as described in the design has not been fully 
implemented.  Each message is time stamped but they are processed in the order in which 
they are received from the server.  Due to the speed of the local network, the packets tend 
to match their temporal order.  The following are several screenshots from the client and 
the server.  The client images illustrate the process of moving the camera in the scene and 
receiving updates from the server.  The server images show the server view in the scene 
when the camera is at the same position and direction as the client.  Figures 12 and 16 
show the initial scene state when the application loads on both the client and the server.  
In Figure 13, we have suspended updates from the server and moved the camera, when 
the updates are resumed the pink spaceship appears on the client as can be seen in Figure 
14 which now matches the server state, Figure 17. 
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Figure 12 – Initial client scene state. 
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Figure 13 – Camera reposition with updates suspended. 
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Figure 14 – Updates resumed on client, Pink Spaceship appears. 
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Figure 15 – Frontal view of the client scene. 
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Figure 16 – Initial server scene state. 
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Figure 17 – Server scene state at client camera position. 
 

6 Results 
As a result, a system design and implementation of an LSVE was produced, based upon 
the research of Teler and Lichinski [2001].  Beyond the benefits of the Teler and 
Lichinski design our system includes the utilization of standard multimedia 
communication protocols, provides a LRU cache for maintaining entities on the client 
and provides a scenegraph implementation that supports intermediate updates based on 
the clients viewing parameters.   
 
Teler and Lichinski’s implementation called for a proprietary communications protocol 
which was replaced with our RTP/RTSP communication framework.  Utilizing RTP and 
RTSP, the design allowed the system to function over the internet without specific 
firewall and router configuration.  RTP and RTSP are used today to stream audio and 
video over the internet, and leveraging this technology allowed us to piggyback on the 
already existing infrastructure, which minimizes the complexity of the system.   
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Teler and Lichinski’s system did not address the possibility that the total scene may be to 
large for the client to maintain within its local resources.  Developing an LSVE like other 
parallel programming problems requires a large number of processes to work on a 
common dataset (scenegraph) that is larger than single process could handle on its own.  
In order for a system to be a viable solution for massively multiplayer systems it must be 
able to handle this case.  In this system the scenegraph management system was extended 
with a LRU cache for graphical resources.  The client will disposed of resources 
(textures, sound files, models, portions of scenegraph, etc) in a least recently used 
manner, as it encounters its upper memory bound.  This design worked well for clients 
with a reasonably sized cache (>2MB for our sample scene).  If the cache was too small 
(less than 512KB for our sample scene) the client begins to thrash.  It devoted most of its 
resources to selecting entities to remove and transmitting dispose messages to the server.  
This is a common limitation of caching algorithms and was expected.   
 
The scenegraph maintenance algorithm was constructed on top of the RTP/RTSP 
framework and the LRU cache and minimized client/server communication, while 
maintaining a consistent global state.  Teler and Lichinski proposed a scenegraph system 
that transmitted portions of the scene to the client as needed.  Their design properly 
handled clients with slower connections. This system’s design was extended to handle 
scenes which our larger than a client can maintain in its entirety.   
 
This system implementation also had some limitations, some of which are present due to 
a simplified implementation, not of the overall design.  The design required the client to 
process messages in temporal order from the server, which was not implemented at this 
time in order to reduce complexity.  In this implementation, messages were processed in 
the order they were received, which may not have matched the actual temporal order.  
However, this was particularly evident when multiple clients were interacting in the 
scene.  In the laboratory LAN the message order matched the temporal order with a 
single client, which allowed for this simplification.  The design for maintaining global 
state called for transmitting updates to entities, only if a client’s scenegraph had a 
reference to that entity.  In this implementation all updates were sent to all clients, which 
significantly increased the message traffic and computation required at the server.   
 
In order to evaluate the performance of this system a two pronged analysis is provided.  
Both the communication and computational overhead of the LSVE design were analyzed, 
and analysis to support a clustered server design is provided.  The core of this algorithm 
involves receiving viewing updates from each client, traversing the scenegraph utilizing 
those parameters, and constructing an update message, which will be sent to the client at 
the end of the traversal.  Figure 18 presents the cost (Ts) equation for the prototype 
implementation, which uses a single processor server.  The presented equations were 
derived from standard formulations for analyzing sequential and parallel applications. 
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n = number of clients. 
w = size of the viewing parameters. 
 
tlatency = the cost of setting of the socket connection. 
tdata = the cost of sending one unit of data. 
 
ttraversal = cost of traversing the scenegraph. 
 
tcomm = tlatency + tdata. 
 
tcomp = computational cost. 
 
Ts= tcomm + tcomp =  
Ts = n(tlatency + wtdata) + nttraversal 
 
Figure 18 – Sequential cost analysis for LSVE server. 
 
Note, that there is no cost in this equation for transmitting the scene data back to the 
client.  Similar to a circuit switched network, a stream is dedicated to each client.  
Increasing performance could be achieved by parallelizing the server.   
 
The equation for the single processor model shows that as n increases the communication 
and computational cost increase linearly.  The cost can be reduced by distributing the 
work inside of a server cluster.  If the server load is distributed over p processors, the 
processing of the client viewing updates can be parallelized.  In addition the number of 
streams maintained at each server processor would be n/p instead of the original n.  If the 
scenegraph updates to all processors in the server cluster additional costs are incurred, 
thus the maximum speedup of p cannot be achieved.  The parallel form of the equations 
from Figure 18 is shown below in Figure 19.  In Figure 19 a term (ytdata) is introduced to 
account for the cost of multicasting the scenegraph to the other processors in the server 
cluster.  This architecture will provide a significant speed up over the single processor 
model when the number of clients and the size of the scenegraph are large.  If this is not 
the case, the cost of the communication overhead will be greater than the savings 
achieved by distributing the computational component. This will occur if the ratio tcomp / 
tcomm < 1.   
 
y = size in data units for the scenegraph. 
 
T = tcomm + tcomp =  
T = n/p(tlatency + wtdata) + ytdata + (n/p)ttraversal 
 
Figure 19 – Parallel formulation of the equations from figure 18.  
 
Based on this analysis, it is apparent that the server is a bottleneck in the design and it 
should be implemented as a cluster on a high bandwidth network in order to support the 
number clients required by today’s massively multiplayer online games.  The future work 
section highlights the areas of improvement that could be researched and expanded on to 
make this a viable solution.  
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7 Contributions 
 
This project presented a set of problems necessary to navigate and interact with LSVE.  
Our research contributions are in the areas related to distributed scenegraph management.  
Primarily we focused on researching and developing techniques for generating 
scenegraph updates on the server and merging those updates with the client’s local 
scenegraph.  This required algorithms and implementations for uniquely identifying all 
entities and resources in the scenegraph, traversing the scenegraph efficiently to 
determine the resources required at each client and a mechanism for constructing a subset 
of the scenegraph on the client.  The client’s local scenegraph is thought of as a cached 
subset of the server’s scenegraph.  Research was done to see how known caching 
algorithms for distributed systems may apply to this problem space, and an LRU-based 
algorithm was developed for the client side cache.  Similar research has produced 
mechanisms for transmitting data to the client and merging it with the client’s local 
scenegraph.  Consistent with our research, we do not believe a viable solution has been 
found for dealing with limited resources on the client.  Our algorithm addressed 
transmission and merging and also dealt with scene data disposal and retransmission, 
which we believe is necessary for interacting with LSVE.  In addition, we developed 
prototype extensions to RTP and RTSP in order to facilitate the management and delivery 
of a 3D interactive world to a client.  Previous research in this area produced proprietary 
protocols for managing the scene.  By utilizing standard protocols for streaming 
multimedia any hardware or software optimizations developed for RTP and RTSP would 
also benefit this system.  In addition RTP and RTSP are widely used throughout the 
industry for streaming audio and video.  By extending this protocol we allow for 
bundling of video and audio streams with the 3D world content. 
 

8 Future Work 
In the future, we would expand the applications scenegraph to support more advanced 
features, such as additional lighting, collision detection, picking and other features 
necessary to facilitate additional scene interaction.  In addition, the current 
implementation does not support interacting with objects in the scene, so future work is 
needed in this area to support the distributed state management required to support this 
feature. This implementation supported only a single user.  Ideally, a multi-user 
implementation is needed to meet the demands of online applications.   
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